Optimal Control for a Second Grade Fluid System

Size: px
Start display at page:

Download "Optimal Control for a Second Grade Fluid System"

Transcription

1 Optimal Control for a Second Grade Fluid System Conference, Chile-Euskadi Luis Friz Facultad de Ciencias, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chile Partially supported by Grant FONDECYT December 2014

2 Indice Introduction 1 Introduction 2 3 4

3 We consider the system of second grade fluid: (u α u) ν u + curl(u α u) u + q = f + v, Ω ]0, T[ t divu = 0, Ω ]0, T[ u = 0, Ω ]0, T[, u(0) = u 0, Ω Where u is the velocity, f and v are external forces.

4 The problem is to find an externel force v such that u minimize the functional T T J(u, v) = u u 1 2 dx + v 2 dxdt 0 ω 0 Ω here u 1 defined in ω Ω is a given velocity.

5 Indeed the system of second grade fluid: (u α u) ν u + curl(u α u) u + q = f, Ω ]0, T[, t divu = 0, Ω ]0, T[ u = 0, Ω ]0, T[, u(0) = u 0, Ω Where u is the velocity, f is the external forces and q is a kind of pressure.

6 The study of such fluids was initiated by Dunn and Fosdick, and [1] Fosdick and Rajapogal [2] in order to model, for example, ceramics in a fluid state. The first successful mathematical analysis was found by Cioranescu and Ouazar[1], and subsequently Cioranescu and Girault [3]. This work follows the ideas given by Boldrini, Fernández-Cara and Rojas-Medar [2].

7 Ω R 3 is a simply-connected bounded domain, with boundary Ω of class C 3,1. Define: H = {Ψ L 2 (Ω) : div Ψ = 0, Ψ n = 0 on Ω} V = {v H 1 (Ω) : div v = 0, v = 0, on Ω} H(curl; Ω) = {v L 2 (Ω) : curl v L 2 (Ω)}

8 Ω R 3 is a simply-connected bounded domain, with boundary Ω of class C 3,1. Define: H = {Ψ L 2 (Ω) : div Ψ = 0, Ψ n = 0 on Ω} V = {v H 1 (Ω) : div v = 0, v = 0, on Ω} H(curl; Ω) = {v L 2 (Ω) : curl v L 2 (Ω)}

9 For α R +, we introduce the space: V 2 = { v V : curl (v α v) L 2 (Ω) } Equipped with the norm: u V2 = u + α u + curl (u α u)

10 For α R +, we introduce the space: V 2 = { v V : curl (v α v) L 2 (Ω) } Equipped with the norm: u V2 = u + α u + curl (u α u)

11 The variational formulation is: Given f + v L 2 (0, T; H(curl; Ω)) L (0, T; L 2 (Ω)) and u 0 V 2 to find u L (0, T; V 2 ) (u, w) + α( u, w) + ν( u, w) + u(0) = u 0 for every w V. + b(u; u, w) αb(u; u, w) + αb(w, u, u) = (f + v, w), where b(u; v, w) = 3 v j u i w j dx. Ω x i i,j=1

12 The variational formulation is: Given f + v L 2 (0, T; H(curl; Ω)) L (0, T; L 2 (Ω)) and u 0 V 2 to find u L (0, T; V 2 ) (u, w) + α( u, w) + ν( u, w) + u(0) = u 0 for every w V. + b(u; u, w) αb(u; u, w) + αb(w, u, u) = (f + v, w), where b(u; v, w) = 3 v j u i w j dx. Ω x i i,j=1

13 Theorem. There exists a constant δ > 0 such that if the following inequalities hold: u 0 2 L 2 (Ω) + α u 0 2 H 1 (Ω) < δ u 0 2 V 2 < δ, ( ) 1/2 ( v(t) 2 L 2 (Ω) + curl(v(t)) 2 L 2 (Ω) ) < δ, 0 ( ) 1/2 ( f(t) 2 L 2 (Ω) + curlf(t) 2 L 2 (Ω) ) < δ, 0 then, the above variational formulation has a unique solution for each t 0. Moreover u L (R +, V 2 ), u L (R +, V)

14 Define: W 1 = {w L (0, T; V 2 ) : w L (0, T; V)}, W 2 = L 2 (0, T, H(curl; Ω)) L (0, T, L 2 (Ω)), W = W 1 W 2. And the admissible controls: ( ) 1/2 U = v W 2 : ( v(t) 2 L 2 (Ω) + curl(v(t)) 2 L 2 (Ω) ) < δ 0

15 Define: W 1 = {w L (0, T; V 2 ) : w L (0, T; V)}, W 2 = L 2 (0, T, H(curl; Ω)) L (0, T, L 2 (Ω)), W = W 1 W 2. And the admissible controls: ( ) 1/2 U = v W 2 : ( v(t) 2 L 2 (Ω) + curl(v(t)) 2 L 2 (Ω) ) < δ 0

16 If we define: M(w, v) = (ψ 1, ψ 2 ) by t (w αaw) νaw + P(curl(w α w) w) f v = ψ 1 w(0) u 0 = ψ 2, (1) where P : L 2 (Ω) V(Ω) is the orthogonal projection and A is the Stokes operator.

17 The optimal control problem is the following: Find u and v such that J(u, v) = inf J(w, ṽ) (w,ṽ) G Where G is the non-empty set: G = {(w, ṽ) W : ṽ U, M(w, ṽ) = 0}.

18 The optimal control problem is the following: Find u and v such that J(u, v) = inf J(w, ṽ) (w,ṽ) G Where G is the non-empty set: G = {(w, ṽ) W : ṽ U, M(w, ṽ) = 0}.

19 Let us see that there exists at least one solution of this problem. Let (w n, ṽ n ) n 1 be a minimizing sequence in G, i.e., lim J(w n, ṽ n ) = inf J(w, ṽ). n (w,ṽ) G

20 Let us see that there exists at least one solution of this problem. Let (w n, ṽ n ) n 1 be a minimizing sequence in G, i.e., lim J(w n, ṽ n ) = inf J(w, ṽ). n (w,ṽ) G

21 Since (w n, ṽ n ) n 1 is uniformly bounded, there exists a subsequence (w nk, ṽ nk ) k 1 that converge to (u, v). By convexity of J, we have that lim inf k J(w n k, ṽ nk ) J(u, v).

22 Since (w n, ṽ n ) n 1 is uniformly bounded, there exists a subsequence (w nk, ṽ nk ) k 1 that converge to (u, v). By convexity of J, we have that lim inf k J(w n k, ṽ nk ) J(u, v).

23 Since M(w nk, ṽ nk ) = 0 for every k N, we have that M(u, v) = 0, then (u, v) G. This conclude the proof.

24 Since M(w nk, ṽ nk ) = 0 for every k N, we have that M(u, v) = 0, then (u, v) G. This conclude the proof.

25 A set K is a cone with vertex a if for every λ > 0, λ(k a) K a Figure, cone with vertex (0, 0): y xx Figure:

26 Consider E X and F X. We define: E = {f X : f(x) 0, x E} F = {x X : f(x) 0, f F} If K X is a closed convex cone, then (K ) = K.

27 Consider E X and F X. We define: E = {f X : f(x) 0, x E} F = {x X : f(x) 0, f F} If K X is a closed convex cone, then (K ) = K.

28 (Dubovitskii-Milyutin Formalism) Let K 1, K 2,..., K n, K n+1 be convex cones in the real normed space X with K 1, K 2,..., K n open. Then n+1 i=1 K i = if and only if there exists f i K, not i all zero, such that f f n + f n+1 = 0.

29 The cone of decreasing directions of J at (u, v) is given by: DC(J; u, v) = {(w, v) W : DJ(u, v)(w, v) < 0} The corresponding dual cone is: [DC(J; u, v)] = { λdj(u, v) : λ 0}

30 The cone of tangent directions of G at (u, v), is: TC(M; u, v) = {(w, v) W : DM(u, v)(w, v) = 0} The cone of feasible directions of U at (u, v) is given by: FC(U; u, v) = {(w, v) W 1 U : ε > 0, such that (u, v) + λ(w, v) W 1 U, λ ]0, ε]}

31 The cone of tangent directions of G at (u, v), is: TC(M; u, v) = {(w, v) W : DM(u, v)(w, v) = 0} The cone of feasible directions of U at (u, v) is given by: FC(U; u, v) = {(w, v) W 1 U : ε > 0, such that (u, v) + λ(w, v) W 1 U, λ ]0, ε]}

32 Or, FC(U; u, v) = W 1 {λ(v v) : v U, λ > 0} And its dual cone: [FC(U; u, v)] = {(0, h) : h W 2 }

33 Or, FC(U; u, v) = W 1 {λ(v v) : v U, λ > 0} And its dual cone: [FC(U; u, v)] = {(0, h) : h W 2 }

34 It is known that DC(J; u, v) TC(M; u, v) FC(U; u, v) = Therefore, there exists f 1 [DC(J; u, v)], f 2 [FC(U; u, v)] y f 3 [TC(M; u, v)] not all zero: f 1 + f 2 + f 3 = 0.

35 It is known that DC(J; u, v) TC(M; u, v) FC(U; u, v) = Therefore, there exists f 1 [DC(J; u, v)], f 2 [FC(U; u, v)] y f 3 [TC(M; u, v)] not all zero: f 1 + f 2 + f 3 = 0.

36 Let us recall that M(u, v) = (M 1 (u, v), M 2 (u, v)), define: M 1 (u, v) = (u Au) νau + P(curl(u u) u) f v t M 2 (u, v) = u(0) u 0 And its derivative: DM 1 (u, v)(w, v) = (w Aw) νaw + P(curl(u u) w t + curl(w w) u) v DM 2 (u, v)(w, v) = w(0)

37 Let us recall that M(u, v) = (M 1 (u, v), M 2 (u, v)), define: M 1 (u, v) = (u Au) νau + P(curl(u u) u) f v t M 2 (u, v) = u(0) u 0 And its derivative: DM 1 (u, v)(w, v) = (w Aw) νaw + P(curl(u u) w t + curl(w w) u) v DM 2 (u, v)(w, v) = w(0)

38 Thus, DM(u, v)(w, v) = 0. It is equivalent to: (w Aw) νaw+ t +P(curl(u u) w + curl(w w) u) = v w(0) = 0

39 Thus, DM(u, v)(w, v) = 0. It is equivalent to: (w Aw) νaw+ t +P(curl(u u) w + curl(w w) u) = v w(0) = 0

40 Therefore, DM(u, v)(w, v) = 0, implies that f 3 (w, v) = 0. Then, (f 1 + f 2 )(w, v) = 0

41 Now f 1 (w, v) = λdj(u, v)(w, v), for some λ 0. But, DJ(u, v)(w, v) = T 0 ω T (u u 1 )wdxdt + 0 v vdxdt Ω

42 Now f 1 (w, v) = λdj(u, v)(w, v), for some λ 0. But, DJ(u, v)(w, v) = T 0 ω T (u u 1 )wdxdt + 0 v vdxdt Ω

43 Now, f 2 (w, v) = h( v). and therefore, by assuming λ = 1: h( v) = T 0 ω T (u u 1 )wdxdt + 0 v vdxdt Ω

44 Now, f 2 (w, v) = h( v). and therefore, by assuming λ = 1: h( v) = T 0 ω T (u u 1 )wdxdt + 0 v vdxdt Ω

45 There exists ξ such that T 0 Ω T ξ vdxdt = (u u 1 )wdxdt 0 ω It follows from the theorem of Riesz. With the right-hand side of the above equality.

46 There exists ξ such that T 0 Ω T ξ vdxdt = (u u 1 )wdxdt 0 ω It follows from the theorem of Riesz. With the right-hand side of the above equality.

47 It is solution of the adjoint problem: (ξ αaξ) νaξ P(curl(u α u) ξ t +curl[(u ξ) α (u ξ)]) +P(χ ω (u u 1 )) = 0, in Ω ]0, T[ ξ = 0, on Ω ]0, T[ ξ(t) = 0, in Ω

48 So: h( v) = T 0 Ω ( ξ + v) vdxdt. Finally: T 0 Ω ( ξ + v)( v v)dxdt 0.

49 So: h( v) = T 0 Ω ( ξ + v) vdxdt. Finally: T 0 Ω ( ξ + v)( v v)dxdt 0.

50 J. E. Dunn and R.L. Fosdick Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade. Arch. Rat. Mech. Anal. 56, 191 (1974). J. L. Boldrini, E. Fernández-Cara and M.A. Rojas-Medar, An optimal control problem for a generalized Boussinesq model: the time dependent case, Rev. Mat. Complut. 20 (2007), no. 2, D. Cioranescu and V. Girault, Weak and classical solutions of a family of second grade fluids, Int. J. Non-Linear Mechanics 32 (1997),

51 D. Cioranescu and E. H. Ouazar, Existence and uniqueness for fluids of second grade. In Nonlinear Partial Differential Equations 109, Collége de France Seminar, Pitman (1984). R.L. Fosdick and K. R. Rajapogal, Anomalous features in the model of second grade fluids. Arch. Rat. Mech. Anal. 70, 1 (1979).

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS PORTUGALIAE MATHEMATICA Vol. 59 Fasc. 2 2002 Nova Série OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS J. Saint Jean Paulin and H. Zoubairi Abstract: We study a problem of

More information

Problem of Second grade fluids in convex polyhedrons

Problem of Second grade fluids in convex polyhedrons Problem of Second grade fluids in convex polyhedrons J. M. Bernard* Abstract This article studies the solutions of a three-dimensional grade-two fluid model with a tangential boundary condition, in a polyhedron.

More information

Optimal shape and position of the support for the internal exact control of a string

Optimal shape and position of the support for the internal exact control of a string Optimal shape and position of the support for the internal exact control of a string Francisco Periago Abstract In this paper, we consider the problem of optimizing the shape and position of the support

More information

arxiv: v1 [math.ap] 22 Jul 2016

arxiv: v1 [math.ap] 22 Jul 2016 FROM SECOND GRADE FUIDS TO TE NAVIER-STOKES EQUATIONS A. V. BUSUIOC arxiv:607.06689v [math.ap] Jul 06 Abstract. We consider the limit α 0 for a second grade fluid on a bounded domain with Dirichlet boundary

More information

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 147, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE AND REGULARITY OF SOLUTIONS FOR

More information

Existence of minimizers for the pure displacement problem in nonlinear elasticity

Existence of minimizers for the pure displacement problem in nonlinear elasticity Existence of minimizers for the pure displacement problem in nonlinear elasticity Cristinel Mardare Université Pierre et Marie Curie - Paris 6, Laboratoire Jacques-Louis Lions, Paris, F-75005 France Abstract

More information

A NOTE ON PROJECTION OF FUZZY SETS ON HYPERPLANES

A NOTE ON PROJECTION OF FUZZY SETS ON HYPERPLANES Proyecciones Vol. 20, N o 3, pp. 339-349, December 2001. Universidad Católica del Norte Antofagasta - Chile A NOTE ON PROJECTION OF FUZZY SETS ON HYPERPLANES HERIBERTO ROMAN F. and ARTURO FLORES F. Universidad

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

The Navier-Stokes Equations with Time Delay. Werner Varnhorn. Faculty of Mathematics University of Kassel, Germany

The Navier-Stokes Equations with Time Delay. Werner Varnhorn. Faculty of Mathematics University of Kassel, Germany The Navier-Stokes Equations with Time Delay Werner Varnhorn Faculty of Mathematics University of Kassel, Germany AMS: 35 (A 35, D 5, K 55, Q 1), 65 M 1, 76 D 5 Abstract In the present paper we use a time

More information

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces Nonlinear Analysis 74 (11) 5 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A regularity criterion for the 3D magneto-micropolar fluid equations

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Elliptic boundary value problems often occur as the Euler equations of variational problems the latter

More information

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN Electronic Journal of Differential Equations, Vol. 2013 2013, No. 196, pp. 1 28. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu STOKES PROBLEM

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

New estimates for the div-curl-grad operators and elliptic problems with L1-data in the whole space and in the half-space

New estimates for the div-curl-grad operators and elliptic problems with L1-data in the whole space and in the half-space New estimates for the div-curl-grad operators and elliptic problems with L1-data in the whole space and in the half-space Chérif Amrouche, Huy Hoang Nguyen To cite this version: Chérif Amrouche, Huy Hoang

More information

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID DRAGOŞ IFTIMIE AND JAMES P. KELLIHER Abstract. In [Math. Ann. 336 (2006), 449-489] the authors consider the two dimensional

More information

Krein-Rutman Theorem and the Principal Eigenvalue

Krein-Rutman Theorem and the Principal Eigenvalue Chapter 1 Krein-Rutman Theorem and the Principal Eigenvalue The Krein-Rutman theorem plays a very important role in nonlinear partial differential equations, as it provides the abstract basis for the proof

More information

Chapter 2 Finite Element Spaces for Linear Saddle Point Problems

Chapter 2 Finite Element Spaces for Linear Saddle Point Problems Chapter 2 Finite Element Spaces for Linear Saddle Point Problems Remark 2.1. Motivation. This chapter deals with the first difficulty inherent to the incompressible Navier Stokes equations, see Remark

More information

On a Suitable Weak Solution of the Navier Stokes Equation with the Generalized Impermeability Boundary Conditions

On a Suitable Weak Solution of the Navier Stokes Equation with the Generalized Impermeability Boundary Conditions Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August -, 5 pp36-41 On a Suitable Weak Solution of the Navier Stokes Equation with the Generalized Impermeability

More information

New Discretizations of Turbulent Flow Problems

New Discretizations of Turbulent Flow Problems New Discretizations of Turbulent Flow Problems Carolina Cardoso Manica and Songul Kaya Merdan Abstract A suitable discretization for the Zeroth Order Model in Large Eddy Simulation of turbulent flows is

More information

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* DOUGLAS N ARNOLD, RICHARD S FALK, and RAGNAR WINTHER Dedicated to Professor Jim Douglas, Jr on the occasion of his seventieth birthday Abstract

More information

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018 EXTENDED EULER-LAGRANGE AND HAMILTONIAN CONDITIONS IN OPTIMAL CONTROL OF SWEEPING PROCESSES WITH CONTROLLED MOVING SETS BORIS MORDUKHOVICH Wayne State University Talk given at the conference Optimization,

More information

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Jinkai Li Department of Mathematics The Chinese University of Hong Kong Dynamics of Small Scales in Fluids ICERM, Feb

More information

A non-newtonian fluid with Navier boundary conditions

A non-newtonian fluid with Navier boundary conditions A non-newtonian fluid with Navier boundary conditions Adriana Valentina BUSUIOC Dragoş IFTIMIE Abstract We consider in this paper the equations of motion of third grade fluids on a bounded domain of R

More information

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system Electronic Journal of Differential Equations, Vol. 20082008), No. 119, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu login: ftp) EXISTENCE

More information

T. Godoy - E. Lami Dozo - S. Paczka ON THE ANTIMAXIMUM PRINCIPLE FOR PARABOLIC PERIODIC PROBLEMS WITH WEIGHT

T. Godoy - E. Lami Dozo - S. Paczka ON THE ANTIMAXIMUM PRINCIPLE FOR PARABOLIC PERIODIC PROBLEMS WITH WEIGHT Rend. Sem. Mat. Univ. Pol. Torino Vol. 1, 60 2002 T. Godoy - E. Lami Dozo - S. Paczka ON THE ANTIMAXIMUM PRINCIPLE FOR PARABOLIC PERIODIC PROBLEMS WITH WEIGHT Abstract. We prove that an antimaximum principle

More information

Approximation in Banach Spaces by Galerkin Methods

Approximation in Banach Spaces by Galerkin Methods 2 Approximation in Banach Spaces by Galerkin Methods In this chapter, we consider an abstract linear problem which serves as a generic model for engineering applications. Our first goal is to specify the

More information

Konstantinos Chrysafinos 1 and L. Steven Hou Introduction

Konstantinos Chrysafinos 1 and L. Steven Hou Introduction Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ANALYSIS AND APPROXIMATIONS OF THE EVOLUTIONARY STOKES EQUATIONS WITH INHOMOGENEOUS

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

Centre d Economie de la Sorbonne UMR 8174

Centre d Economie de la Sorbonne UMR 8174 Centre d Economie de la Sorbonne UMR 8174 On alternative theorems and necessary conditions for efficiency Do Van LUU Manh Hung NGUYEN 2006.19 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital,

More information

1. INTRODUCTION 2. PROBLEM FORMULATION ROMAI J., 6, 2(2010), 1 13

1. INTRODUCTION 2. PROBLEM FORMULATION ROMAI J., 6, 2(2010), 1 13 Contents 1 A product formula approach to an inverse problem governed by nonlinear phase-field transition system. Case 1D Tommaso Benincasa, Costică Moroşanu 1 v ROMAI J., 6, 2(21), 1 13 A PRODUCT FORMULA

More information

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1 On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma Ben Schweizer 1 January 16, 2017 Abstract: We study connections between four different types of results that

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

NECESSARY OPTIMALITY CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM OF 2D

NECESSARY OPTIMALITY CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM OF 2D NECESSARY OPTIMALITY CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM OF 2D g-navier-stokes EQUATIONS Nguyen Duc Loc 1 Abstract Considered here is the optimal control problem of 2D g-navier-stokes equations.

More information

On a variational inequality of Bingham and Navier-Stokes type in three dimension

On a variational inequality of Bingham and Navier-Stokes type in three dimension PDEs for multiphase ADvanced MATerials Palazzone, Cortona (Arezzo), Italy, September 17-21, 2012 On a variational inequality of Bingham and Navier-Stokes type in three dimension Takeshi FUKAO Kyoto University

More information

Existence of at least two periodic solutions of the forced relativistic pendulum

Existence of at least two periodic solutions of the forced relativistic pendulum Existence of at least two periodic solutions of the forced relativistic pendulum Cristian Bereanu Institute of Mathematics Simion Stoilow, Romanian Academy 21, Calea Griviţei, RO-172-Bucharest, Sector

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Ricardo G. Durán and Ariel L. Lombardi Abstract. The classical error analysis for the Raviart-Thomas interpolation

More information

On the p-laplacian and p-fluids

On the p-laplacian and p-fluids LMU Munich, Germany Lars Diening On the p-laplacian and p-fluids Lars Diening On the p-laplacian and p-fluids 1/50 p-laplacian Part I p-laplace and basic properties Lars Diening On the p-laplacian and

More information

A locally convex topology and an inner product 1

A locally convex topology and an inner product 1 Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016, pp. 3327-3338 Research India Publications http://www.ripublication.com/gjpam.htm A locally convex topology and

More information

Proof of the existence (by a contradiction)

Proof of the existence (by a contradiction) November 6, 2013 ν v + (v )v + p = f in, divv = 0 in, v = h on, v velocity of the fluid, p -pressure. R n, n = 2, 3, multi-connected domain: (NS) S 2 S 1 Incompressibility of the fluid (divv = 0) implies

More information

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω.

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω. 1 The Stokes System The motion of a (possibly compressible) homogeneous fluid is described by its density ρ(x, t), pressure p(x, t) and velocity v(x, t). Assume that the fluid is barotropic, i.e., the

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

Variational Assimilation of Discrete Navier-Stokes Equations

Variational Assimilation of Discrete Navier-Stokes Equations Variational Assimilation of Discrete Navier-Stokes Equations Souleymane.Kadri-Harouna FLUMINANCE, INRIA Rennes-Bretagne Atlantique Campus universitaire de Beaulieu, 35042 Rennes, France Outline Discretization

More information

hal , version 6-26 Dec 2012

hal , version 6-26 Dec 2012 ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS ABDEHAFID YOUNSI Abstract. In this paper, we give a new regularity criterion on the uniqueness results of weak solutions for the 3D Navier-Stokes equations

More information

An optimal control problem governed by implicit evolution quasi-variational inequalities

An optimal control problem governed by implicit evolution quasi-variational inequalities Annals of the University of Bucharest (mathematical series) 4 (LXII) (213), 157 166 An optimal control problem governed by implicit evolution quasi-variational inequalities Anca Capatina and Claudia Timofte

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

Optimal control of the time-periodic MHD equations

Optimal control of the time-periodic MHD equations Nonlinear Analysis 63 (25) e1687 e1699 www.elsevier.com/locate/na Optimal control of the time-periodic MHD equations Max Gunzburger, Catalin Trenchea School of Computational Science and Information Technology,

More information

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence 1 CONVERGENCE THEOR G. ALLAIRE CMAP, Ecole Polytechnique 1. Maximum principle 2. Oscillating test function 3. Two-scale convergence 4. Application to homogenization 5. General theory H-convergence) 6.

More information

Formulation of the problem

Formulation of the problem TOPICAL PROBLEMS OF FLUID MECHANICS DOI: https://doi.org/.43/tpfm.27. NOTE ON THE PROBLEM OF DISSIPATIVE MEASURE-VALUED SOLUTIONS TO THE COMPRESSIBLE NON-NEWTONIAN SYSTEM H. Al Baba, 2, M. Caggio, B. Ducomet

More information

FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) FOR PLANAR LINEAR ELASTICITY: PURE TRACTION PROBLEM

FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) FOR PLANAR LINEAR ELASTICITY: PURE TRACTION PROBLEM SIAM J. NUMER. ANAL. c 1998 Society for Industrial Applied Mathematics Vol. 35, No. 1, pp. 320 335, February 1998 016 FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) FOR PLANAR LINEAR ELASTICITY: PURE TRACTION

More information

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS PETER CONSTANTIN, MARTA LEWICKA AND LENYA RYZHIK Abstract. We consider systems of reactive Boussinesq equations in two

More information

Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-laplacian type

Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-laplacian type Nonlinear Analysis 7 29 536 546 www.elsevier.com/locate/na Multilicity of weak solutions for a class of nonuniformly ellitic equations of -Lalacian tye Hoang Quoc Toan, Quô c-anh Ngô Deartment of Mathematics,

More information

Epiconvergence and ε-subgradients of Convex Functions

Epiconvergence and ε-subgradients of Convex Functions Journal of Convex Analysis Volume 1 (1994), No.1, 87 100 Epiconvergence and ε-subgradients of Convex Functions Andrei Verona Department of Mathematics, California State University Los Angeles, CA 90032,

More information

THE PRIMITIVE EQUATIONS ON THE LARGE SCALE OCEAN UNDER THE SMALL DEPTH HYPOTHESIS

THE PRIMITIVE EQUATIONS ON THE LARGE SCALE OCEAN UNDER THE SMALL DEPTH HYPOTHESIS DISCREE AND CONINUOUS Website: http://aimsciences.org DYNAMICAL SYSEMS Volume 9, Number, January 00 pp. 97 HE PRIMIIVE EQUAIONS ON HE LARGE SCALE OCEAN UNDER HE SMALL DEPH HYPOHESIS Changbing Hu, Roger

More information

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS Abdelhafid Younsi To cite this version: Abdelhafid Younsi. ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS. 4 pages. 212. HAL Id:

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

Navier-Stokes equations in thin domains with Navier friction boundary conditions

Navier-Stokes equations in thin domains with Navier friction boundary conditions Navier-Stokes equations in thin domains with Navier friction boundary conditions Luan Thach Hoang Department of Mathematics and Statistics, Texas Tech University www.math.umn.edu/ lhoang/ luan.hoang@ttu.edu

More information

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations G. Seregin, V. Šverák Dedicated to Vsevolod Alexeevich Solonnikov Abstract We prove two sufficient conditions for local regularity

More information

A VARIATIONAL INEQUALITY RELATED TO AN ELLIPTIC OPERATOR

A VARIATIONAL INEQUALITY RELATED TO AN ELLIPTIC OPERATOR Proyecciones Vol. 19, N o 2, pp. 105-112, August 2000 Universidad Católica del Norte Antofagasta - Chile A VARIATIONAL INEQUALITY RELATED TO AN ELLIPTIC OPERATOR A. WANDERLEY Universidade do Estado do

More information

Theory of PDE Homework 2

Theory of PDE Homework 2 Theory of PDE Homework 2 Adrienne Sands April 18, 2017 In the following exercises we assume the coefficients of the various PDE are smooth and satisfy the uniform ellipticity condition. R n is always an

More information

Nonlinear elliptic systems with exponential nonlinearities

Nonlinear elliptic systems with exponential nonlinearities 22-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 9, 22, pp 139 147. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

ON SINGULAR PERTURBATION OF THE STOKES PROBLEM

ON SINGULAR PERTURBATION OF THE STOKES PROBLEM NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING BANACH CENTER PUBLICATIONS, VOLUME 9 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 994 ON SINGULAR PERTURBATION OF THE STOKES PROBLEM G. M.

More information

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping.

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping. Minimization Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping. 1 Minimization A Topological Result. Let S be a topological

More information

Finite Element Methods for Maxwell Equations

Finite Element Methods for Maxwell Equations CHAPTER 8 Finite Element Methods for Maxwell Equations The Maxwell equations comprise four first-order partial differential equations linking the fundamental electromagnetic quantities, the electric field

More information

CONTROLLABILITY OF NONLINEAR DISCRETE SYSTEMS

CONTROLLABILITY OF NONLINEAR DISCRETE SYSTEMS Int. J. Appl. Math. Comput. Sci., 2002, Vol.2, No.2, 73 80 CONTROLLABILITY OF NONLINEAR DISCRETE SYSTEMS JERZY KLAMKA Institute of Automatic Control, Silesian University of Technology ul. Akademicka 6,

More information

1. Introduction Since the pioneering work by Leray [3] in 1934, there have been several studies on solutions of Navier-Stokes equations

1. Introduction Since the pioneering work by Leray [3] in 1934, there have been several studies on solutions of Navier-Stokes equations Math. Res. Lett. 13 (6, no. 3, 455 461 c International Press 6 NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS : THE FUJITA-KATO SCHEME Sylvie Monniaux Abstract. Navier-Stokes equations are investigated in

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information

The second grade fluid and averaged Euler equations with Navier-slip boundary conditions

The second grade fluid and averaged Euler equations with Navier-slip boundary conditions INSTITTE OF PHYSICS PBLISHING Nonlinearity 16 (3) 1119 1149 NONLINEARITY PII: S951-7715(3)3897-8 The second grade fluid and averaged Euler equations with Navier-slip boundary conditions Adriana Valentina

More information

On some nonlinear parabolic equation involving variable exponents

On some nonlinear parabolic equation involving variable exponents On some nonlinear parabolic equation involving variable exponents Goro Akagi (Kobe University, Japan) Based on a joint work with Giulio Schimperna (Pavia Univ., Italy) Workshop DIMO-2013 Diffuse Interface

More information

A RADON NIKODYM THEOREM IN THE NON-ARCHIMEDEAN SETTING

A RADON NIKODYM THEOREM IN THE NON-ARCHIMEDEAN SETTING Proyecciones Vol. 20, N o 3, pp. 263-279, December 2001. Universidad Católica del Norte Antofagasta - Chile A RADON NIKODYM THEOREM IN THE NON-ARCHIMEDEAN SETTING MIRTA MORAGA Universidad de Magallanes,

More information

On a Class of Multidimensional Optimal Transportation Problems

On a Class of Multidimensional Optimal Transportation Problems Journal of Convex Analysis Volume 10 (2003), No. 2, 517 529 On a Class of Multidimensional Optimal Transportation Problems G. Carlier Université Bordeaux 1, MAB, UMR CNRS 5466, France and Université Bordeaux

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATION WITH SPECIAL SLIP BOUNDARY CONDITION

VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATION WITH SPECIAL SLIP BOUNDARY CONDITION Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 169, pp. 1 13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS (II) Luan Thach Hoang. IMA Preprint Series #2406.

INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS (II) Luan Thach Hoang. IMA Preprint Series #2406. INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS II By Luan Thach Hoang IMA Preprint Series #2406 August 2012 INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF

More information

OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L 1 COST FUNCTIONAL

OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L 1 COST FUNCTIONAL OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L 1 COST FUNCTIONAL EDUARDO CASAS, ROLAND HERZOG, AND GERD WACHSMUTH Abstract. Semilinear elliptic optimal control

More information

ON THE ASYMPTOTIC BEHAVIOR OF ELLIPTIC PROBLEMS IN PERIODICALLY PERFORATED DOMAINS WITH MIXED-TYPE BOUNDARY CONDITIONS

ON THE ASYMPTOTIC BEHAVIOR OF ELLIPTIC PROBLEMS IN PERIODICALLY PERFORATED DOMAINS WITH MIXED-TYPE BOUNDARY CONDITIONS Bulletin of the Transilvania University of Braşov Series III: Mathematics, Informatics, Physics, Vol 5(54) 01, Special Issue: Proceedings of the Seventh Congress of Romanian Mathematicians, 73-8, published

More information

ATTRACTORS FOR NON-COMPACT SEMIGROUPS VIA ENERGY EQUATIONS. March 29, Contents

ATTRACTORS FOR NON-COMPACT SEMIGROUPS VIA ENERGY EQUATIONS. March 29, Contents ATTRACTORS FOR NON-COMPACT SEMIGROUPS VIA ENERGY EQUATIONS Ioana Moise 1,2, Ricardo Rosa 1,3 and Xiaoming Wang 4 March 29, 1998 Abstract. The energy equation approach used to prove the existence of the

More information

Mean Field Games on networks

Mean Field Games on networks Mean Field Games on networks Claudio Marchi Università di Padova joint works with: S. Cacace (Rome) and F. Camilli (Rome) C. Marchi (Univ. of Padova) Mean Field Games on networks Roma, June 14 th, 2017

More information

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA SPENCER HUGHES In these notes we prove that for any given smooth function on the boundary of

More information

New phenomena for the null controllability of parabolic systems: Minim

New phenomena for the null controllability of parabolic systems: Minim New phenomena for the null controllability of parabolic systems F.Ammar Khodja, M. González-Burgos & L. de Teresa Aix-Marseille Université, CNRS, Centrale Marseille, l2m, UMR 7373, Marseille, France assia.benabdallah@univ-amu.fr

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains

Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains Ilaria FRAGALÀ Filippo GAZZOLA Dipartimento di Matematica del Politecnico - Piazza L. da Vinci - 20133

More information

Error estimates for the finite-element approximation of a semilinear elliptic control problem

Error estimates for the finite-element approximation of a semilinear elliptic control problem Error estimates for the finite-element approximation of a semilinear elliptic control problem by Eduardo Casas 1 and Fredi röltzsch 2 1 Departamento de Matemática Aplicada y Ciencias de la Computación

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Parameter Dependent Quasi-Linear Parabolic Equations

Parameter Dependent Quasi-Linear Parabolic Equations CADERNOS DE MATEMÁTICA 4, 39 33 October (23) ARTIGO NÚMERO SMA#79 Parameter Dependent Quasi-Linear Parabolic Equations Cláudia Buttarello Gentile Departamento de Matemática, Universidade Federal de São

More information

Continuous Sets and Non-Attaining Functionals in Reflexive Banach Spaces

Continuous Sets and Non-Attaining Functionals in Reflexive Banach Spaces Laboratoire d Arithmétique, Calcul formel et d Optimisation UMR CNRS 6090 Continuous Sets and Non-Attaining Functionals in Reflexive Banach Spaces Emil Ernst Michel Théra Rapport de recherche n 2004-04

More information

Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems

Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems F. Bachinger U. Langer J. Schöberl April 2004 Abstract This work provides a complete analysis of eddy current problems, ranging from

More information

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN XIAN LIAO Abstract. In this work we will show the global existence of the strong solutions of the inhomogeneous

More information

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0 FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM If M is a linear subspace of a normal linear space X and if F is a bounded linear functional on M then F can be extended to M + [x 0 ] without changing its norm.

More information

A variation on the infsup condition

A variation on the infsup condition Cinquième foire européenne aux éléments finis Centre International de Rencontres Mathématiques Marseille Luminy, 17-19 mai 2007 A variation on the infsup condition François Dubois CNAM Paris and University

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics ON A HYBRID FAMILY OF SUMMATION INTEGRAL TYPE OPERATORS VIJAY GUPTA AND ESRA ERKUŞ School of Applied Sciences Netaji Subhas Institute of Technology

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Stochastic

More information

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity Minimal periods of semilinear evolution equations with Lipschitz nonlinearity James C. Robinson a Alejandro Vidal-López b a Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. b Departamento

More information

TOPICS IN MATHEMATICAL AND COMPUTATIONAL FLUID DYNAMICS

TOPICS IN MATHEMATICAL AND COMPUTATIONAL FLUID DYNAMICS TOPICS IN MATHEMATICAL AND COMPUTATIONAL FLUID DYNAMICS Lecture Notes by Prof. Dr. Siddhartha Mishra and Dr. Franziska Weber October 4, 216 1 Contents 1 Fundamental Equations of Fluid Dynamics 4 1.1 Eulerian

More information