Computing the maximum likelihood estimates: concentrated likelihood, EM-algorithm. Dmitry Pavlyuk

Size: px
Start display at page:

Download "Computing the maximum likelihood estimates: concentrated likelihood, EM-algorithm. Dmitry Pavlyuk"

Transcription

1 Computig the maximum likelihood estimates: cocetrated likelihood, EM-algorithm Dmitry Pavlyuk The Mathematical Semiar, Trasport ad Telecommuicatio Istitute, Riga,

2 Presetatio outlie 1. Basics of MLE 2. Pseudo-likelihood 3. Fiite Mixture Models 4. The Expectatio-Maximizatio algorithm 5. Numerical Example 2

3 1. Basics of MLE 3

4 The estimatio problem Let X (X (1), X (2),, X (d) ) is a multivariate (d-variate) radom variable with kow multivariate p.d.f. f(x, θ) of K ukow parameters θ (θ 1, θ 2,, θ K ), θ Θ. The problem is to estimate parameters θ o the base of the sample of size from X: x (x 1, x 2,, x ) x i (x i (1), xi (2),, xi (d) ) 4

5 Maximum likelihood estimator The likelihood fuctio L θ x represets probability of receivig the sample x give parameters θ. I case of idepedet observatios i the sample L θ x f x i, θ i1 The maximum likelihood estimator is (R. Fisher, 1912+): መθ mle argmax θ Θ if a maximum exists. L θ x 5

6 Maximum likelihood estimator For computatio purposes the log-likelihood fuctio is itroduced: l θ x ll θ x l i1 f x i, θ Good limitig statistical properties of መθ mle : - Cosistecy - Asymptotic efficiecy - Asymptotic ormality i1 lf x i, θ 6

7 Maximum likelihood estimator FOC : l θ x i1 lf x i, θ θ max l θ x θ k 0 for all k 1,,K Not all log-likelihood fuctios have aalytical derivatives! 7

8 MLE example: multivariate ormal For example, for the multivariate ormal variable: X~MVN μ, Σ θ mv μ, Σ f mv x, θ mv φ x, μ, Σ 1 2π d e 1 2 x μ T Σ 1 x μ detσ 2π d 2detΣ 1 2exp 1 2 x μ T Σ 1 x μ 8

9 MLE example: multivariate ormal The log-likelihood fuctio: l mv μ, Σ x lφ x i, μ, Σ i1 d 2 l 2π 2 l detσ 1 2 i1 x i μ T Σ 1 x i μ FOC: l mv μ, Σ x μ l mv μ, Σ x Σ 0 0 9

10 MLE example: multivariate ormal Matrix calculus (for symmetric A): B T AB B 2BT A l deta A A 1 10

11 MLE example: multivariate ormal l mv μ, Σ x i1 μ d 2 l 2π 2 l detσ 1 2 σ i1 x i μ T Σ 1 μ x i μ T Σ 1 x i μ Settig this to zero we obtai the pleasat result μƹ Σ 1 i1 x i xҧ 11

12 MLE example: multivariate ormal l mv μ, Σ x Σ d 2 l 2π 2 l detσ 1 2 σ i1 2 Σ i1 Σ Σ 1 x i μ x i μ T Σ 1 x i μ T Σ 1 x i μ Settig this to zero we obtai the result Σ 1 x i μ x i μ T i1 12

13 2. Pseudo-likelihood 13

14 Pseudo-likelihood There are a umber of suggestios for modifyig the likelihood fuctio to extract the evidece i the sample cocerig a parameter of iterest θ A whe θ (θ A, θ B ). The sample vector x is also trasformed ito 2 parts: x s s A, s B Such modificatios are geerally kow as pseudolikelihood fuctios: Coditioal likelihood Margial likelihood Cocetrated (profile) likelihood 14

15 Margial likelihood Margial likelihood fuctio: f X, θ f s,θ s A, s B, θ A, θ B f margial,a s A θ A f margial,b s B s A, θ A, θ B Maximum likelihood estimates for θ A are obtaied by maximizig the margial desity: f margial,a s A θ A Problems: Igorig some of the data Require aalytical forms of the fuctios 15

16 Coditioal likelihood Coditioal likelihood fuctio: f X, θ f s,θ s A, s B, θ A, θ B f coditioal,a s A s B, θ A f coditioal,b s B θ A, θ B Maximum likelihood estimates for θ A are obtaied by maximizig the coditioal desity: f coditioal,a s A s B, θ A Problems: Igorig some of data variability Require aalytical forms of the fuctios 16

17 Cocetrated likelihood Cocetrated likelihood fuctio: f X, θ f X, θ A, θ B f cocetrated X, θ A f cocetrated X, θ A, መθ B θ A Maximum likelihood estimates for θ A are obtaied by maximizig the cocetrated likelihood f cocetrated Problems: Severely biased Require መθ B θ A 17

18 Cocetrated likelihood l θ A, θ B x θa,θ B max Takig l θ A, θ B x θ B aalytically ad solvig l θ A, θ B x θ B 0 we obtai መθ B θ A ad move to cocetrated (profile) likelihood. 18

19 Cocetrated likelihood Σ μ 1 x i μ x i μ T i1 The cocetrated likelihood: l mv,cocetrated μ, Σ μ x d 2 l 2π 2 l det 1 i1 x i μ x i μ T 1 2 i1 x i μ T 1 i1 x i μ x i μ T 1 x i μ 19

20 Cocetrated likelihood l mv,cocetrated μ, Σ μ x 2 d l 2π + l det i1 x i μ x i μ T + d μ argmi μ l det i1 x i μ x i μ T This result is quite famous i ecoometrics! 20

21 3. Fiite Mixture Models 21

22 Gaussia mixture model Let we have a mixture of M multivariate radom variables (for example, ormal): X m ~MVN μ m, Σ m m 1,.., M with probability π m for every class. θ gmm μ 1,, μ m, Σ 1, Σ 2,, Σ m, π 1,, π m McLachla G., Peel D. (2000) Fiite Mixture Models, Willey Series i Probability ad Statistics, Joh Wiley & Sos, New York. 22

23 Gaussia mixture model d1: d2: 23

24 Gaussia mixture model Medical applicatios Schlattma P. (2009) Medical Applicatios of Fiite Mixture Models, Statistics for Biology ad Health, Spriger Fiacial applicatios Brigo, D.; Mercurio, F. (2002). Logormal-mixture dyamics ad calibratio to market volatility smiles Alexader, C. (2004). "Normal mixture diffusio with ucertai volatility: Modellig short- ad log-term smile effects" Image, speech, text recogitio Styliaou, Y. etc. (2005). GMM-Based Multimodal Biometric Verificatio Reyolds, D., Rose, R. (1995). Robust text-idepedet speaker idetificatio usig Gaussia mixture speaker models Permuter, H.; Fracos, J.; Jermy, I.H. (2003). Gaussia mixture models of texture ad colour for image database retrieval. 24

25 Gaussia mixture model Followig the law of complete probability, the likelihood fuctio is L gmm θ gmm x π m φ x i, μ m, Σ m M i1 m1 M l gmm θ gmm x ll gmm θ gmm x l π m φ x i, μ m, Σ m i1 m1 l π 1 φ x i, μ 1, Σ π m φ x i, μ m, Σ m i1 The logarithm of sum prevets aalytical derivatives! 25

26 4. The Expectatio-Maximizatio algorithm 26

27 EM-algorithm The expectatio-maximizatio (EM) algorithm is a geeral method for fidig maximum likelihood estimates whe there are missig values or latet variables. I the mixture model cotext, the missig data is represeted by a set of observatios of a discrete radom variable Z that idicates which mixture compoet geerated the observatio i. 1, if observatio i belogs to class m, z im ቊ 0, otherwise 27

28 EM-algorithm: GMM 1, if observatio i belogs to class m, z im ቊ 0, otherwise If Z {z im } is give, l gmm θ gmm x l π 1 φ x i, μ 1, Σ π m φ x i, μ m, Σ m trasformed to i1 M l gmm,complete θ gmm x, Z z i,m l π m φ x i, μ m, Σ m i1 m1 M i1 m1 z i,m lπ m + lφ x i, μ m, Σ m 28

29 EM-algorithm The EM iteratio icludes: a expectatio (E) step, which creates a fuctio for the expectatio of the log-likelihood evaluated usig the curret estimate for the parameters, ad a maximizatio (M) step, which computes parameters maximizig the expected log-likelihood foud o the E step. These parameter-estimates are the used to determie the distributio of the latet variables i the ext E step. 29

30 EM-algorithm: GMM (0) Assume θ gmm ad move to maximizatio of the expectatio of the log-likelihood fuctio: (0) E Z l gmm,complete θ gmm i1 M m1 E Z (0) z i,m θ gmm x, Z lπ m + lφ x i, μ m, Σ m 30

31 EM-algorithm: E-step (0) E Z z i,m x i, θ gmm (0) τ m x i, θ gmm 0 0 P z i,m 0 x i, θ gmm 0 P z i,m 1 x i, θ gmm P z 0 i,m 1 f x θ gmm, z i,m 1 0 f x i, Z θ gmm π m φ x i, μ m 0, Σ m 0 σm m 1 π m φ x i, μ 0 0 m, Σ m P z i,m 1 x i, θ gmm These values are called class resposibilities. 31

32 EM-algorithm: M-step (0) E Z l gmm,complete θ gmm i1 FOC: M m1 τ m (0) x i, θ gmm x, Z (0) E l gmm,complete θ gmm x, Z 0, μ m (0) E l gmm,complete θ gmm x, Z 0, Σ m (0) E l gmm,complete θ gmm x, Z 0 π m lπ m + lφ x i, μ m, Σ m 32

33 EM-algorithm: M-step (0) E Z l complete θ gmm i1 τ m μ m (0) x i, θ gmm x, Z i1 τ m x i μ m T Σ 1 0 (0) φ x i, μ m, Σ m x i, θ gmm μ m (1) μƹ gmm,m σ (0) i1 τ m x i, θ gmm σ (0) i1 τ m x i, θ gmm x i 33

34 EM-algorithm: M-step (0) E Z l complete θ gmm i1 τ m Σ m x, Z i1 τ m (0) x i, θ gmm 2 Σ m i1 (0) φ x i, μ m, Σ m x i, θ gmm Σ m Σ m 1 x i μ m x i μ m T Σ m 1 (1) Σ gmm,m σ (0) i1 τ m x i, θ gmm x i (0) μƹ gmm,m σ (0) i1 τ m x i, θ gmm (0) x i μ gmm,m T 34

35 EM-algorithm: M-step π j 1 i1 (0) E Z l complete θ gmm x, Z i1 τ m 1 π m i1 π m (0) lπ m x i, θ gmm π m τ m (0) x i, θ gmm (1) π gmm,m + λ σ m1 M π m 1 π m + λ 0 σ (0) i1 τ m x i, θ gmm 35

36 EM-algorithm 1. Iitialisatio Choose iitial values of θ (0) ad calculate the likelihood l θ (0) x, s0. 2. E-step Compute expectatio of specified parameterse Z 3. M-step Compute the ew estimates θ (s+1) 4. Covergece check Compute the ew likelihood ad if z i,m x i, θ (s) l θ (s+1) x l θ s x > precisio, the retur to step 2. 36

37 EM-algorithm Dempster, Laird, ad Rubi (1977) show that the likelihood fuctio l θ (s) x is ot decreased after a EM iteratio; that is for s 0,1,2,... l θ (s+1) x l θ (s) x See the proof i: McLachla G.J., Krisha T. (1997) The EM Algorithm ad Extesios, Wiley. 304 p. 37

38 5. Numerical Example 38

39 Numerical example DGP: d 2 Class π μ Σ (1, 1) (3, 4) Implemeted with R, script is available o the semiar web page. 39

40 Numerical example Sample size 1000 Iteratio Log-likelihood Plot

41 Numerical example Iteratio Log-likelihood Plot

42 Numerical example Iteratio Log-likelihood Plot

43 Numerical example Real values Estimates Class π μ Σ (1000) π em (1, 1) (3, 4) (1.033, 1.125) (3.592, 4.376) (1000) (1000) μƹ em Σ em

44 Problems with EM Local maxima partially solved with careful (repetitive) iitial values selectio Slow covergece (i some cases) Meta-algorithm should be adapted for every specific problem Sigularities ad over-fittig 44

45 After EM Next step: Variatioal Bayes treat all parameters θ as missig variables iterate over compoets of missig variables (icludig θ) ad recalculate its expectatio 45

46 Recommeded literature McLachla G., Krisha T. (2008) The EM Algorithm ad Extesios, Wiley Series i Probability ad Statistics, 2d Editio, p. McLachla G., Peel D. (2000) Fiite Mixture Models, Willey Series i Probability ad Statistics, Joh Wiley & Sos, New York Gelma A., Carli J., Ster H., Duso D., Vehtari A., Rubi D. Bayesia Data Aalysis, Third Editio (Chapma & Hall/CRC Texts i Statistical Sciece) 46

47 Thak you for your attetio! Questios are very appreciated Cotacts: phoe:

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm The Expectatio-Maximizatio (EM) Algorithm Readig Assigmets T. Mitchell, Machie Learig, McGraw-Hill, 997 (sectio 6.2, hard copy). S. Gog et al. Dyamic Visio: From Images to Face Recogitio, Imperial College

More information

Algorithms for Clustering

Algorithms for Clustering CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes. Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

More information

ADVANCED SOFTWARE ENGINEERING

ADVANCED SOFTWARE ENGINEERING ADVANCED SOFTWARE ENGINEERING COMP 3705 Exercise Usage-based Testig ad Reliability Versio 1.0-040406 Departmet of Computer Ssciece Sada Narayaappa, Aeliese Adrews Versio 1.1-050405 Departmet of Commuicatio

More information

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Probabilistic Unsupervised Learning

Probabilistic Unsupervised Learning HT2015: SC4 Statistical Data Miig ad Machie Learig Dio Sejdiovic Departmet of Statistics Oxford http://www.stats.ox.ac.u/~sejdiov/sdmml.html Probabilistic Methods Algorithmic approach: Data Probabilistic

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

Probabilistic Unsupervised Learning

Probabilistic Unsupervised Learning Statistical Data Miig ad Machie Learig Hilary Term 2016 Dio Sejdiovic Departmet of Statistics Oxford Slides ad other materials available at: http://www.stats.ox.ac.u/~sejdiov/sdmml Probabilistic Methods

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 9 Maximum Likelihood Estimatio 9.1 The Likelihood Fuctio The maximum likelihood estimator is the most widely used estimatio method. This chapter discusses the most importat cocepts behid maximum

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

Lecture Stat Maximum Likelihood Estimation

Lecture Stat Maximum Likelihood Estimation Lecture Stat 461-561 Maximum Likelihood Estimatio A.D. Jauary 2008 A.D. () Jauary 2008 1 / 63 Maximum Likelihood Estimatio Ivariace Cosistecy E ciecy Nuisace Parameters A.D. () Jauary 2008 2 / 63 Parametric

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Finite Mixtures of Multivariate Skew Laplace Distributions

Finite Mixtures of Multivariate Skew Laplace Distributions Fiite Mixtures of Multivariate Skew Laplace Distributios Fatma Zehra Doğru 1 *, Y. Murat Bulut 2 ad Olcay Arsla 3 1 Giresu Uiversity, Faculty of Arts ad Scieces, Departmet of Statistics, 28100 Giresu/Turkey.

More information

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy Sri Laka Joural of Applied Statistics, Vol (5-3) Modelig ad Estimatio of a Bivariate Pareto Distributio usig the Priciple of Maximum Etropy Jagathath Krisha K.M. * Ecoomics Research Divisio, CSIR-Cetral

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Lecture 9: September 19

Lecture 9: September 19 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical Last Time EM Clusterig Soft versio of K-meas clusterig Iput: m dimesioal objects X = {

More information

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution METRON - Iteratioal Joural of Statistics 004, vol. LXII,. 3, pp. 377-389 NAGI S. ABD-EL-HAKIM KHALAF S. SULTAN Maximum likelihood estimatio from record-breakig data for the geeralized Pareto distributio

More information

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution A Note o Box-Cox Quatile Regressio Estimatio of the Parameters of the Geeralized Pareto Distributio JM va Zyl Abstract: Makig use of the quatile equatio, Box-Cox regressio ad Laplace distributed disturbaces,

More information

The new class of Kummer beta generalized distributions

The new class of Kummer beta generalized distributions The ew class of Kummer beta geeralized distributios Rodrigo Rossetto Pescim 12 Clarice Garcia Borges Demétrio 1 Gauss Moutiho Cordeiro 3 Saralees Nadarajah 4 Edwi Moisés Marcos Ortega 1 1 Itroductio Geeralized

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Distributioal Similarity Models (cot.) Regia Barzilay EECS Departmet MIT October 19, 2004 Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

A Unified Approach on Fast Training of Feedforward and Recurrent Networks Using EM Algorithm

A Unified Approach on Fast Training of Feedforward and Recurrent Networks Using EM Algorithm 2270 IEEE TRASACTIOS O SIGAL PROCESSIG, VOL. 46, O. 8, AUGUST 1998 [12] Q. T. Zhag, K. M. Wog, P. C. Yip, ad J. P. Reilly, Statistical aalysis of the performace of iformatio criteria i the detectio of

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula Joural of Multivariate Aalysis 102 (2011) 1315 1319 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Superefficiet estimatio of the margials

More information

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data Proceedigs 59th ISI World Statistics Cogress, 5-30 August 013, Hog Kog (Sessio STS046) p.09 Kolmogorov-Smirov type Tests for Local Gaussiaity i High-Frequecy Data George Tauche, Duke Uiversity Viktor Todorov,

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

4.5 Multiple Imputation

4.5 Multiple Imputation 45 ultiple Imputatio Itroductio Assume a parametric model: y fy x; θ We are iterested i makig iferece about θ I Bayesia approach, we wat to make iferece about θ from fθ x, y = πθfy x, θ πθfy x, θdθ where

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Lecture 3: MLE and Regression

Lecture 3: MLE and Regression STAT/Q SCI 403: Itroductio to Resamplig Methods Sprig 207 Istructor: Ye-Chi Che Lecture 3: MLE ad Regressio 3. Parameters ad Distributios Some distributios are idexed by their uderlyig parameters. Thus,

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

More information

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes The 22 d Aual Meetig i Mathematics (AMM 207) Departmet of Mathematics, Faculty of Sciece Chiag Mai Uiversity, Chiag Mai, Thailad Compariso of Miimum Iitial Capital with Ivestmet ad -ivestmet Discrete Time

More information

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector Dimesio-free PAC-Bayesia bouds for the estimatio of the mea of a radom vector Olivier Catoi CREST CNRS UMR 9194 Uiversité Paris Saclay olivier.catoi@esae.fr Ilaria Giulii Laboratoire de Probabilités et

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

RAINFALL PREDICTION BY WAVELET DECOMPOSITION

RAINFALL PREDICTION BY WAVELET DECOMPOSITION RAIFALL PREDICTIO BY WAVELET DECOMPOSITIO A. W. JAYAWARDEA Departmet of Civil Egieerig, The Uiversit of Hog Kog, Hog Kog, Chia P. C. XU Academ of Mathematics ad Sstem Scieces, Chiese Academ of Scieces,

More information

GUIDELINES ON REPRESENTATIVE SAMPLING

GUIDELINES ON REPRESENTATIVE SAMPLING DRUGS WORKING GROUP VALIDATION OF THE GUIDELINES ON REPRESENTATIVE SAMPLING DOCUMENT TYPE : REF. CODE: ISSUE NO: ISSUE DATE: VALIDATION REPORT DWG-SGL-001 002 08 DECEMBER 2012 Ref code: DWG-SGL-001 Issue

More information

Asymptotic Properties of MLE in Stochastic. Differential Equations with Random Effects in. the Diffusion Coefficient

Asymptotic Properties of MLE in Stochastic. Differential Equations with Random Effects in. the Diffusion Coefficient Iteratioal Joural of Cotemporary Mathematical Scieces Vol. 1, 215, o. 6, 275-286 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijcms.215.563 Asymptotic Properties of MLE i Stochastic Differetial

More information

Assessment of extreme discharges of the Vltava River in Prague

Assessment of extreme discharges of the Vltava River in Prague Flood Recovery, Iovatio ad Respose I 05 Assessmet of extreme discharges of the Vltava River i Prague M. Holický, K. Jug & M. Sýkora Kloker Istitute, Czech Techical Uiversity i Prague, Czech Republic Abstract

More information

A New Class of Bivariate Distributions with Lindley Conditional Hazard Functions

A New Class of Bivariate Distributions with Lindley Conditional Hazard Functions ISSN 1684-8403 Joural of Statistics Volume 22, 2015. pp. 193-206 A New Class of Bivariate Distributios with Lidley Coditioal Hazard Fuctios Mohamed Gharib 1 ad Bahady Ibrahim Mohammed 2 Abstract I this

More information

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments LECTURE NOTES 9 Poit Estimatio Uder the hypothesis that the sample was geerated from some parametric statistical model, a atural way to uderstad the uderlyig populatio is by estimatig the parameters of

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Statistical Inference Based on Extremum Estimators

Statistical Inference Based on Extremum Estimators T. Rotheberg Fall, 2007 Statistical Iferece Based o Extremum Estimators Itroductio Suppose 0, the true value of a p-dimesioal parameter, is kow to lie i some subset S R p : Ofte we choose to estimate 0

More information

Numerical Method for Blasius Equation on an infinite Interval

Numerical Method for Blasius Equation on an infinite Interval Numerical Method for Blasius Equatio o a ifiite Iterval Alexader I. Zadori Omsk departmet of Sobolev Mathematics Istitute of Siberia Brach of Russia Academy of Scieces, Russia zadori@iitam.omsk.et.ru 1

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values of the secod half Biostatistics 6 - Statistical Iferece Lecture 6 Fial Exam & Practice Problems for the Fial Hyu Mi Kag Apil 3rd, 3 Hyu Mi Kag Biostatistics 6 - Lecture 6 Apil 3rd, 3 / 3 Rao-Blackwell

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1 MATH88T Maria Camero Cotets Basic cocepts of statistics Estimators, estimates ad samplig distributios 2 Ordiary least squares estimate 3 3 Maximum lielihood estimator 3 4 Bayesia estimatio Refereces 9

More information

SEMIPARAMETRIC SINGLE-INDEX MODELS. Joel L. Horowitz Department of Economics Northwestern University

SEMIPARAMETRIC SINGLE-INDEX MODELS. Joel L. Horowitz Department of Economics Northwestern University SEMIPARAMETRIC SINGLE-INDEX MODELS by Joel L. Horowitz Departmet of Ecoomics Northwester Uiversity INTRODUCTION Much of applied ecoometrics ad statistics ivolves estimatig a coditioal mea fuctio: E ( Y

More information

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan Mathematical ad Computatioal Applicatios, Vol. 9, No. 3, pp. 30-40, 04 DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS Muhammad Aslam Noor, Khalida Iayat Noor ad Asif Waheed

More information

A Note on Effi cient Conditional Simulation of Gaussian Distributions. April 2010

A Note on Effi cient Conditional Simulation of Gaussian Distributions. April 2010 A Note o Effi ciet Coditioal Simulatio of Gaussia Distributios A D D C S S, U B C, V, BC, C April 2010 A Cosider a multivariate Gaussia radom vector which ca be partitioed ito observed ad uobserved compoetswe

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

A proposed discrete distribution for the statistical modeling of

A proposed discrete distribution for the statistical modeling of It. Statistical Ist.: Proc. 58th World Statistical Cogress, 0, Dubli (Sessio CPS047) p.5059 A proposed discrete distributio for the statistical modelig of Likert data Kidd, Marti Cetre for Statistical

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall Iteratioal Mathematical Forum, Vol. 9, 04, o. 3, 465-475 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/imf.04.48 Similarity Solutios to Usteady Pseudoplastic Flow Near a Movig Wall W. Robi Egieerig

More information

International Journal of Mathematical Archive-5(7), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(7), 2014, Available online through  ISSN Iteratioal Joural of Mathematical Archive-5(7), 214, 11-117 Available olie through www.ijma.ifo ISSN 2229 546 USING SQUARED-LOG ERROR LOSS FUNCTION TO ESTIMATE THE SHAPE PARAMETER AND THE RELIABILITY FUNCTION

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

CHAPTER 4 BIVARIATE DISTRIBUTION EXTENSION

CHAPTER 4 BIVARIATE DISTRIBUTION EXTENSION CHAPTER 4 BIVARIATE DISTRIBUTION EXTENSION 4. Itroductio Numerous bivariate discrete distributios have bee defied ad studied (see Mardia, 97 ad Kocherlakota ad Kocherlakota, 99) based o various methods

More information

Estimation of Gumbel Parameters under Ranked Set Sampling

Estimation of Gumbel Parameters under Ranked Set Sampling Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article 11-2014 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, abuyaza_o@yahoo.com

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Fitting an ARIMA Process to Data

Fitting an ARIMA Process to Data Fittig a ARIMA Process to Data Bria Borchers April 6, 1 Now that we uderstad the theoretical behavior of ARIMA processes, we will cosider how to take a actual observed time series ad fit a ARIMA model

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

Kernel density estimator

Kernel density estimator Jauary, 07 NONPARAMETRIC ERNEL DENSITY ESTIMATION I this lecture, we discuss kerel estimatio of probability desity fuctios PDF Noparametric desity estimatio is oe of the cetral problems i statistics I

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

Some Examples on Gibbs Sampling and Metropolis-Hastings methods

Some Examples on Gibbs Sampling and Metropolis-Hastings methods Soe Exaples o Gibbs Saplig ad Metropolis-Hastigs ethods S420/620 Itroductio to Statistical Theory, Fall 2012 Gibbs Sapler Saple a ultidiesioal probability distributio fro coditioal desities. Suppose d

More information

Using the IML Procedure to Examine the Efficacy of a New Control Charting Technique

Using the IML Procedure to Examine the Efficacy of a New Control Charting Technique Paper 2894-2018 Usig the IML Procedure to Examie the Efficacy of a New Cotrol Chartig Techique Austi Brow, M.S., Uiversity of Norther Colorado; Bryce Whitehead, M.S., Uiversity of Norther Colorado ABSTRACT

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

1 Models for Matched Pairs

1 Models for Matched Pairs 1 Models for Matched Pairs Matched pairs occur whe we aalyse samples such that for each measuremet i oe of the samples there is a measuremet i the other sample that directly relates to the measuremet i

More information

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice 0//008 Liear Discrimiat Fuctios Jacob Hays Amit Pillay James DeFelice 5.8, 5.9, 5. Miimum Squared Error Previous methods oly worked o liear separable cases, by lookig at misclassified samples to correct

More information

Department of Mathematics

Department of Mathematics Departmet of Mathematics Ma 3/103 KC Border Itroductio to Probability ad Statistics Witer 2017 Lecture 19: Estimatio II Relevat textbook passages: Larse Marx [1]: Sectios 5.2 5.7 19.1 The method of momets

More information

November 2002 Course 4 solutions

November 2002 Course 4 solutions November Course 4 solutios Questio # Aswer: B φ ρ = = 5. φ φ ρ = φ + =. φ Solvig simultaeously gives: φ = 8. φ = 6. Questio # Aswer: C g = [(.45)] = [5.4] = 5; h= 5.4 5 =.4. ˆ π =.6 x +.4 x =.6(36) +.4(4)

More information

Axis Aligned Ellipsoid

Axis Aligned Ellipsoid Machie Learig for Data Sciece CS 4786) Lecture 6,7 & 8: Ellipsoidal Clusterig, Gaussia Mixture Models ad Geeral Mixture Models The text i black outlies high level ideas. The text i blue provides simple

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

MA Advanced Econometrics: Properties of Least Squares Estimators

MA Advanced Econometrics: Properties of Least Squares Estimators MA Advaced Ecoometrics: Properties of Least Squares Estimators Karl Whela School of Ecoomics, UCD February 5, 20 Karl Whela UCD Least Squares Estimators February 5, 20 / 5 Part I Least Squares: Some Fiite-Sample

More information

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov Microarray Ceter BIOSTATISTICS Lecture 5 Iterval Estimatios for Mea ad Proportio dr. Petr Nazarov 15-03-013 petr.azarov@crp-sate.lu Lecture 5. Iterval estimatio for mea ad proportio OUTLINE Iterval estimatios

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

A New Lifetime Distribution For Series System: Model, Properties and Application

A New Lifetime Distribution For Series System: Model, Properties and Application Joural of Moder Applied Statistical Methods Volume 7 Issue Article 3 08 A New Lifetime Distributio For Series System: Model, Properties ad Applicatio Adil Rashid Uiversity of Kashmir, Sriagar, Idia, adilstat@gmail.com

More information

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

More information

Paper SD-07. Key words: upper tolerance limit, order statistics, sample size, confidence, coverage, maximization

Paper SD-07. Key words: upper tolerance limit, order statistics, sample size, confidence, coverage, maximization SESUG 203 Paper SD-07 Maximizig Cofidece ad Coverage for a Noparametric Upper Tolerace Limit for a Fixed Number of Samples Deis J. Beal, Sciece Applicatios Iteratioal Corporatio, Oak Ridge, Teessee ABSTRACT

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

1 Hypothesis test of a mean vector

1 Hypothesis test of a mean vector THE UNIVERSITY OF CHICAGO Booth School of Busiess Busiess 41912, Sprig Quarter 2010, Mr Ruey S Tsay Lecture: Iferece about sample mea Key cocepts: 1 Hotellig s T 2 test 2 Likelihood ratio test 3 Various

More information

Linear Programming and the Simplex Method

Linear Programming and the Simplex Method Liear Programmig ad the Simplex ethod Abstract This article is a itroductio to Liear Programmig ad usig Simplex method for solvig LP problems i primal form. What is Liear Programmig? Liear Programmig is

More information

CS322: Network Analysis. Problem Set 2 - Fall 2009

CS322: Network Analysis. Problem Set 2 - Fall 2009 Due October 9 009 i class CS3: Network Aalysis Problem Set - Fall 009 If you have ay questios regardig the problems set, sed a email to the course assistats: simlac@staford.edu ad peleato@staford.edu.

More information

Machine Learning Assignment-1

Machine Learning Assignment-1 Uiversity of Utah, School Of Computig Machie Learig Assigmet-1 Chadramouli, Shridhara sdhara@cs.utah.edu 00873255) Sigla, Sumedha sumedha.sigla@utah.edu 00877456) September 10, 2013 1 Liear Regressio a)

More information