Null-controllability of the heat equation in unbounded domains

Size: px
Start display at page:

Download "Null-controllability of the heat equation in unbounded domains"

Transcription

1 Chapter 1 Null-controllability of the heat equation in unbounded domains Sorin Micu Facultatea de Matematică-Informatică, Universitatea din Craiova Al. I. Cuza 13, Craiova, 1100 Romania sd micu@yahoo.com Enrique Zuazua Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma Cantoblanco, 28049, Madrid Spain enrique.zuazua@uam.es 1.1 Description of the problem Let Ω be a smooth domain of R n with n 1. Given T > 0 and Γ 0 Ω, an open non-empty subset of the boundary of Ω, we consider the linear heat equation: u t u = 0 in Q u = v1 Σ0 on Σ u(x, 0) = u 0 (x) in Ω, (1.1) where Q = Ω (0, T ), Σ = Ω (0, T ) and Σ 0 = Γ 0 (0, T ) and where 1 Σ0 denotes the characteristic function of the subset Σ 0 of Σ. 1

2 2CHAPTER 1. NULL-CONTROLLABILITY OF THE HEAT EQUATION In (1.1), v L 2 (Σ) is a boundary control that acts on the system through the subset Σ 0 of the boundary and u = u(x, t) is the state. System (1.1) is said to be null-controllable at time T if for any u 0 L 2 (Ω) there exists a control v L 2 (Σ 0 ) such that the solution of (1.1) satisfies u(x, T ) = 0 in Ω. (1.2) This article is concerned with the null-controllability problem of (1.1) when the domain Ω is unbounded. 1.2 Motivation and history of the problem We begin with the following well-known result Theorem 1 When Ω is a bounded domain of class C 2 system (1.1) is nullcontrollable for any T > 0. We refer to D.L. Russell [12] for some particular examples treated by means of moment problems and Fourier series and to A. Fursikov and O. Yu. Imanuvilov [3] and G. Lebeau and L. Robbiano [7] for the general result covering any bounded smooth domain Ω and open, non-empty subset Γ 0 of Ω. Both the approaches of [3] and [7] are based on the use of Carleman inequalities. However, in many relevant problems the domain Ω is unbounded. We address the following question: If Ω is an unbounded domain, is system (1.1) null-controllable for some T > 0?. None of the approaches mentioned above apply in this situation. In fact, very particular cases being excepted (see the following section), there exist no results on the null-controllability of the heat equation (1.1) when Ω is unbounded. The approach described in [6] and [9] is also worth mentioning. In this articles it is proved that, for any T > 0, the heat equation has a fundamental solution which is C away from the origin and with support in the strip 0 t T. This fundamental solution, of course, grows very fast as x goes to infinity. As a consequence of this, a boundary controllability result may be immediately obtained in any domain Ω with controls distributed all along its boundary. Note however that, when the domain is unbounded, the solutions and controls obtained in this way grow too fast as x and therefore, these are not solutions in the classical sense. In fact, in the frame of unbounded domains, one has to be very careful in defining

3 1.3. AVAILABLE RESULTS 3 the class of admissible controlled solutions. When imposing, for instance, the classical integrability conditions at infinity, one is imposing additional restrictions that may determine the answer to the controllability problem. This is indeed the case, as we shall explain. There is a weaker notion of controllability property. It is the so called approximate controllability property. System (1.1) is said to be approximately controllable in time T if for any u 0 L 2 (Ω) the set of reachable states, R(T ; u 0 ) = {u(t ) : u solution of (1.1) with v L 2 (Σ 0 )}, is dense in L 2 (Ω). With the aid of classical backward uniqueness results for the heat equation (see, for instance, J.L. Lions and E. Malgrange [8] and J.M. Ghidaglia [4]), it can be seen that null-controllability implies approximate controllability. The approximate control problem for the semi-linear heat equation in general unbounded domains was addressed in [13] where an approximation method was developed. The domain Ω was approximated by bounded domains (essentially by Ω B R, B R being the ball of radius R) and the approximate control in the unbounded domain Ω was obtained as limit of the approximate control on the approximating bounded domain Ω B R. But this approach does not apply in the context of the null-control problem. However, taking into account that approximate controllability holds, it is natural to analyze whether null-controllability holds as well. In [1] it was proved that the null-controllability property holds even in unbounded domains if the control is supported in a subdomain that only leaves a bounded set uncontrolled. Obviously, this result is very close to the case in which the domain Ω is bounded and does not answer to the main issue under consideration of whether heat processes are null-controllable in unbounded domains. 1.3 Available results To our knowledge, in the context of unbounded domains Ω and the boundary control problem, only the particular case of the half-space has been considered: Ω = R n + = {x = (x, x n ) : x R n 1, x n > 0} Γ 0 = Ω = R n 1 = {(x, 0) : x R n 1 } (1.3) (see [10] for n = 1 and [11] for n > 1). According to the results in [10] and [11], the situation is completely different to the case of bounded domains. In fact a simple argument shows that the null controllability result which holds for the case Ω bounded is

4 4CHAPTER 1. NULL-CONTROLLABILITY OF THE HEAT EQUATION no longer true. Indeed, the null-controllability of (1.1) with initial data in L 2 ( R n +) and boundary control in L 2 (Σ) is equivalent to an observability inequality for the adjoint system { ϕt + ϕ = 0 on Q (1.4) ϕ = 0 on Σ. More precisely, it is equivalent to the existence of a positive constant C > 0 such that ϕ(0) 2 L 2 (R n ) C ϕ 2 + x n dx dt (1.5) holds for every smooth solution of (1.4). When Ω is bounded, Carleman inequalities provide the estimate (1.5) and, consequently, null-controllability holds (see for instance [3]). In the case of a half-space, by using a translation argument, it is easy to see that (1.5) does not hold (see [11]). In the case of bounded domains, by using Fourier series expansion, the control problem may be reduced to a moment problem. However, Fourier series cannot be used directly in R n +. Nevertheless, it was observed by M. Escobedo and O. Kavian in [2] that, on suitable similarity variables and at the appropriate scale, solutions of the heat equation on conical domains may be indeed developed in Fourier series on a weighted L 2 space. This idea was used in [10] and [11] to study the null-controllability property when Ω is given by (1.3). Firstly, we use similarity variables and weighted Sobolev spaces to develop the solutions in Fourier series. A sequence of one-dimensional controlled systems like those studied in [10] is obtained. Each of these systems is equivalent to a moment problem of the following type: given S > 0 and (a n ) n 1 (depending on the Fourier coefficients of the initial data u 0 ) find f L 2 (0, S) such that S 0 Σ f(s)e ns ds = a n, n 1. (1.6) This moment problem turns out to be critical since it concerns the family of real exponential functions {e λns } n 1 with λ n = n, in which the usual summability condition on the inverses of the exponents, n 1 1 λ n <, does not hold. It was proved that, if the sequence (a n ) n 1 has the property that, for any δ > 0, there exists C δ > 0 such that a n C δ e δn, n 1, (1.7)

5 1.4. OPEN PROBLEMS 5 problem (1.6) has a solution if and only if a n = 0 for all n 1. Since (a n ) n 1 depend on the Fourier coeficients of the initial data, the following negative controllability result for the one-dimensional systems is obtained: Theorem 2 When Ω is the half line, there is no non-trivial initial datum u 0 belonging to a negative Sobolev space which is null-controllable in finite time with L 2 boundary controls. This negative result was complemented by showing that there exist initial data with exponentially growing Fourier coefficients for which nullcontrollability holds in finite time with L 2 controls. We mention that in [10] and [11] we are dealing with solutions defined in the sense of transposition, and therefore, the solutions in [6] and [9] that grow and oscillate very fast at infinity are excluded. 1.4 Open problems As we have already mentioned, the null-controllability property of (1.1) when Ω is unbounded and different from a half-line or half-space is still open. The approach based on the use of the similarity variables may still be used in general conical domains. But, due to the lack of orthogonality of the traces of the normal derivatives of the eigenfunctions, the corresponding moment problem is more complex and remains to be solved. When Ω is a general unbounded domain, the similarity transformation does not seem to be of any help since the domain one gets after transformation depends on time. Therefore, a completely different approach seems to be needed when Ω is not conical. However, one may still expect a bad behaviour of the null-control problem. Indeed, assume for instance that Ω contains R n +. If one is able to control to zero in Ω an initial data u 0 by means of a boundary control acting on Ω (0, T ), then, by restriction, one is able to control the initial data u 0 R n + with the control being the restriction of the solution in the larger domain Ω (0, T ) to R n 1 (0, T ). A careful development of this argument and of the result it may lead to remains to be done. Acknowledgements: The first author was partially supported by Grant PB of DGES (Spain) and Grant A3/2002 of CNCSIS (Romania). The second author was partially supported by Grant PB of DGES (Spain) and the TMR network of the EU Homogenization and Multiple Scales (HMS2000).

6 6CHAPTER 1. NULL-CONTROLLABILITY OF THE HEAT EQUATION

7 Bibliography [1] V. Cabanillas, S. de Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Applications, 110 (2) (2001), [2] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. TMA, 11 (1987), [3] A. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes Series #34, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University, [4] J.M. Ghidaglia, Some backward uniqueness results, Nonlinear Anal. TMA, 10 (1986), [5] O. Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, G. Chen et al. eds., Marcel-Dekker, 2000, pp [6] B.F. Jones, Jr., A fundamental solution of the heat equation which is supported in a strip, J. Math. Anal. Appl., 60 (1977), [7] G. Lebeau and L. Robbiano, Contrôle exact de l équation de la chaleur, Comm. P.D.E., 20 (1995), [8] J.L. Lions and E. Malgrange, Sur l unicité rétrograde dans les problèmes mixtes paraboliques, Math. Scan., 8 (1960), [9] W. Littman, Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients, Annali Scuola Norm. Sup. Pisa, Serie IV, 3 (1978), [10] S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half-line, Trans. AMS, 353 (2001), [11] S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half-space, Portugalia Matematica, 58 (2001),

8 8 BIBLIOGRAPHY [12] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Rev., 20 (1978), [13] L. de Teresa and E. Zuazua, Approximate controllability of the heat equation in unbounded domains, Nonlinear Anal. TMA, 37 (1999),

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition F. Ammar Khodja Clermont-Ferrand, June 2011 GOAL: 1 Show the important differences between scalar and non

More information

The heat equation. Paris-Sud, Orsay, December 06

The heat equation. Paris-Sud, Orsay, December 06 Paris-Sud, Orsay, December 06 The heat equation Enrique Zuazua Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es http://www.uam.es/enrique.zuazua Plan: 3.- The heat equation: 3.1 Preliminaries

More information

Control, Stabilization and Numerics for Partial Differential Equations

Control, Stabilization and Numerics for Partial Differential Equations Paris-Sud, Orsay, December 06 Control, Stabilization and Numerics for Partial Differential Equations Enrique Zuazua Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es http://www.uam.es/enrique.zuazua

More information

Controllability results for cascade systems of m coupled parabolic PDEs by one control force

Controllability results for cascade systems of m coupled parabolic PDEs by one control force Portugal. Math. (N.S.) Vol. xx, Fasc., x, xxx xxx Portugaliae Mathematica c European Mathematical Society Controllability results for cascade systems of m coupled parabolic PDEs by one control force Manuel

More information

Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction

Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction International Series of Numerical Mathematics, Vol. 154, 445 455 c 2006 Birkhäuser Verlag Basel/Switzerland Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction

More information

IDENTIFICATION OF THE CLASS OF INITIAL DATA FOR THE INSENSITIZING CONTROL OF THE HEAT EQUATION. Luz de Teresa. Enrique Zuazua

IDENTIFICATION OF THE CLASS OF INITIAL DATA FOR THE INSENSITIZING CONTROL OF THE HEAT EQUATION. Luz de Teresa. Enrique Zuazua COMMUNICATIONS ON 1.3934/cpaa.29.8.1 PURE AND APPLIED ANALYSIS Volume 8, Number 1, January 29 pp. IDENTIFICATION OF THE CLASS OF INITIAL DATA FOR THE INSENSITIZING CONTROL OF THE HEAT EQUATION Luz de Teresa

More information

Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control

Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control Outline Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control IMDEA-Matemáticas & Universidad Autónoma de Madrid Spain enrique.zuazua@uam.es Analysis and control

More information

A Bang-Bang Principle of Time Optimal Internal Controls of the Heat Equation

A Bang-Bang Principle of Time Optimal Internal Controls of the Heat Equation arxiv:math/6137v1 [math.oc] 9 Dec 6 A Bang-Bang Principle of Time Optimal Internal Controls of the Heat Equation Gengsheng Wang School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, 437,

More information

1 Introduction. Controllability and observability

1 Introduction. Controllability and observability Matemática Contemporânea, Vol 31, 00-00 c 2006, Sociedade Brasileira de Matemática REMARKS ON THE CONTROLLABILITY OF SOME PARABOLIC EQUATIONS AND SYSTEMS E. Fernández-Cara Abstract This paper is devoted

More information

New phenomena for the null controllability of parabolic systems: Minim

New phenomena for the null controllability of parabolic systems: Minim New phenomena for the null controllability of parabolic systems F.Ammar Khodja, M. González-Burgos & L. de Teresa Aix-Marseille Université, CNRS, Centrale Marseille, l2m, UMR 7373, Marseille, France assia.benabdallah@univ-amu.fr

More information

Observability and measurable sets

Observability and measurable sets Observability and measurable sets Luis Escauriaza UPV/EHU Luis Escauriaza (UPV/EHU) Observability and measurable sets 1 / 41 Overview Interior: Given T > 0 and D Ω (0, T ), to find N = N(Ω, D, T ) > 0

More information

Switching, sparse and averaged control

Switching, sparse and averaged control Switching, sparse and averaged control Enrique Zuazua Ikerbasque & BCAM Basque Center for Applied Mathematics Bilbao - Basque Country- Spain zuazua@bcamath.org http://www.bcamath.org/zuazua/ WG-BCAM, February

More information

Hardy inequalities, heat kernels and wave propagation

Hardy inequalities, heat kernels and wave propagation Outline Hardy inequalities, heat kernels and wave propagation Basque Center for Applied Mathematics (BCAM) Bilbao, Basque Country, Spain zuazua@bcamath.org http://www.bcamath.org/zuazua/ Third Brazilian

More information

Weak Controllability and the New Choice of Actuators

Weak Controllability and the New Choice of Actuators Global Journal of Pure and Applied Mathematics ISSN 973-1768 Volume 14, Number 2 (218), pp 325 33 c Research India Publications http://wwwripublicationcom/gjpamhtm Weak Controllability and the New Choice

More information

Minimal time issues for the observability of Grushin-type equations

Minimal time issues for the observability of Grushin-type equations Intro Proofs Further Minimal time issues for the observability of Grushin-type equations Karine Beauchard (1) Jérémi Dardé (2) (2) (1) ENS Rennes (2) Institut de Mathématiques de Toulouse GT Contrôle LJLL

More information

ON THE CONTROLLABILITY OF A FRACTIONAL ORDER PARABOLIC EQUATION

ON THE CONTROLLABILITY OF A FRACTIONAL ORDER PARABOLIC EQUATION SIAM J. CONTROL OPTIM. Vol. 44, No. 6, pp. 195 197 c 6 Society for Industrial and Applied Mathematics ON THE CONTROLLABILITY OF A FRACTIONAL ORDER PARABOLIC EQUATION SORIN MICU AND ENRIQUE ZUAZUA Abstract.

More information

Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain

Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain Nicolás Carreño Université Pierre et Marie Curie-Paris 6 UMR 7598 Laboratoire

More information

Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs

Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla joint work with A. MÜNCH Lab. Mathématiques,

More information

Controllability of linear PDEs (I): The wave equation

Controllability of linear PDEs (I): The wave equation Controllability of linear PDEs (I): The wave equation M. González-Burgos IMUS, Universidad de Sevilla Doc Course, Course 2, Sevilla, 2018 Contents 1 Introduction. Statement of the problem 2 Distributed

More information

On the optimality of some observability inequalities for plate systems with potentials

On the optimality of some observability inequalities for plate systems with potentials On the optimality of some observability inequalities for plate systems with potentials Xiaoyu Fu, Xu Zhang and Enrique Zuazua 3 School of Mathematics, Sichuan University, Chengdu, China Yangtze Center

More information

arxiv: v3 [math.ap] 1 Sep 2017

arxiv: v3 [math.ap] 1 Sep 2017 arxiv:1603.0685v3 [math.ap] 1 Sep 017 UNIQUE CONTINUATION FOR THE SCHRÖDINGER EQUATION WITH GRADIENT TERM YOUNGWOO KOH AND IHYEOK SEO Abstract. We obtain a unique continuation result for the differential

More information

Carleman estimates for the Euler Bernoulli plate operator

Carleman estimates for the Euler Bernoulli plate operator Electronic Journal of Differential Equations, Vol. 000(000), No. 53, pp. 1 13. ISSN: 107-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information

Some new results related to the null controllability of the 1 d heat equation

Some new results related to the null controllability of the 1 d heat equation Some new results related to the null controllability of the 1 d heat equation Antonio LÓPEZ and Enrique ZUAZUA Departamento de Matemática Aplicada Universidad Complutense 284 Madrid. Spain bantonio@sunma4.mat.ucm.es

More information

On the bang-bang property of time optimal controls for infinite dimensional linear systems

On the bang-bang property of time optimal controls for infinite dimensional linear systems On the bang-bang property of time optimal controls for infinite dimensional linear systems Marius Tucsnak Université de Lorraine Paris, 6 janvier 2012 Notation and problem statement (I) Notation: X (the

More information

Numerical control and inverse problems and Carleman estimates

Numerical control and inverse problems and Carleman estimates Numerical control and inverse problems and Carleman estimates Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla from some joint works with A. MÜNCH Lab. Mathématiques, Univ. Blaise Pascal, C-F 2,

More information

CURRICULUM VITAE OF LOUIS TEBOU (January 25, 2010)

CURRICULUM VITAE OF LOUIS TEBOU (January 25, 2010) CURRICULUM VITAE OF LOUIS TEBOU (January 25, 2010) ADDRESS Department of Mathematics, Florida International University University Park, Miami, FL 33199, USA. Tel: 1(305) 348 2939 Fax: 1(305) 348 6158 Email:

More information

Stabilization and Controllability for the Transmission Wave Equation

Stabilization and Controllability for the Transmission Wave Equation 1900 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 12, DECEMBER 2001 Stabilization Controllability for the Transmission Wave Equation Weijiu Liu Abstract In this paper, we address the problem of

More information

Optimal and Approximate Control of Finite-Difference Approximation Schemes for the 1D Wave Equation

Optimal and Approximate Control of Finite-Difference Approximation Schemes for the 1D Wave Equation Optimal and Approximate Control of Finite-Difference Approximation Schemes for the 1D Wave Equation May 21, 2004 Enrique Zuazua 1 Departmento de Matemáticas Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es

More information

Insensitizing controls for the Boussinesq system with no control on the temperature equation

Insensitizing controls for the Boussinesq system with no control on the temperature equation Insensitizing controls for the Boussinesq system with no control on the temperature equation N. Carreño Departamento de Matemática Universidad Técnica Federico Santa María Casilla 110-V, Valparaíso, Chile.

More information

Infinite dimensional controllability

Infinite dimensional controllability Infinite dimensional controllability Olivier Glass Contents 0 Glossary 1 1 Definition of the subject and its importance 1 2 Introduction 2 3 First definitions and examples 2 4 Linear systems 6 5 Nonlinear

More information

UNIQUE CONTINUATION ESTIMATES FOR THE LAPLACIAN AND THE HEAT EQUATION ON NON-COMPACT MANIFOLDS

UNIQUE CONTINUATION ESTIMATES FOR THE LAPLACIAN AND THE HEAT EQUATION ON NON-COMPACT MANIFOLDS UNIQUE CONTINUATION ESTIMATES FOR THE LAPLACIAN AND THE HEAT EQUATION ON NON-COMPACT MANIFOLDS LUC MILLER Abstract This article concerns some quantitative versions of unique continuation known as observability

More information

ROBUST NULL CONTROLLABILITY FOR HEAT EQUATIONS WITH UNKNOWN SWITCHING CONTROL MODE

ROBUST NULL CONTROLLABILITY FOR HEAT EQUATIONS WITH UNKNOWN SWITCHING CONTROL MODE DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume 34, Number 10, October 014 doi:10.3934/dcds.014.34.xx pp. X XX ROBUST NULL CONTROLLABILITY FOR HEAT EQUATIONS WITH UNKNOWN SWITCHING CONTROL MODE Qi Lü

More information

AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS. To the memory of our friend and colleague Fuensanta Andreu

AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS. To the memory of our friend and colleague Fuensanta Andreu AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS JUAN J. MANFREDI, MIKKO PARVIAINEN, AND JULIO D. ROSSI Abstract. We characterize p-harmonic functions in terms of an asymptotic mean value

More information

ASYMPTOTIC BEHAVIOR OF THE KORTEWEG-DE VRIES EQUATION POSED IN A QUARTER PLANE

ASYMPTOTIC BEHAVIOR OF THE KORTEWEG-DE VRIES EQUATION POSED IN A QUARTER PLANE ASYMPTOTIC BEHAVIOR OF THE KORTEWEG-DE VRIES EQUATION POSED IN A QUARTER PLANE F. LINARES AND A. F. PAZOTO Abstract. The purpose of this work is to study the exponential stabilization of the Korteweg-de

More information

AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS

AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS AN ASYMPTOTIC MEAN VALUE CHARACTERIZATION FOR p-harmonic FUNCTIONS JUAN J. MANFREDI, MIKKO PARVIAINEN, AND JULIO D. ROSSI Abstract. We characterize p-harmonic functions in terms of an asymptotic mean value

More information

arxiv: v1 [math.ap] 11 Jun 2007

arxiv: v1 [math.ap] 11 Jun 2007 Inverse Conductivity Problem for a Parabolic Equation using a Carleman Estimate with One Observation arxiv:0706.1422v1 [math.ap 11 Jun 2007 November 15, 2018 Patricia Gaitan Laboratoire d Analyse, Topologie,

More information

COMPARISON PRINCIPLES FOR CONSTRAINED SUBHARMONICS PH.D. COURSE - SPRING 2019 UNIVERSITÀ DI MILANO

COMPARISON PRINCIPLES FOR CONSTRAINED SUBHARMONICS PH.D. COURSE - SPRING 2019 UNIVERSITÀ DI MILANO COMPARISON PRINCIPLES FOR CONSTRAINED SUBHARMONICS PH.D. COURSE - SPRING 2019 UNIVERSITÀ DI MILANO KEVIN R. PAYNE 1. Introduction Constant coefficient differential inequalities and inclusions, constraint

More information

Conservative Control Systems Described by the Schrödinger Equation

Conservative Control Systems Described by the Schrödinger Equation Conservative Control Systems Described by the Schrödinger Equation Salah E. Rebiai Abstract An important subclass of well-posed linear systems is formed by the conservative systems. A conservative system

More information

BLOW-UP FOR PARABOLIC AND HYPERBOLIC PROBLEMS WITH VARIABLE EXPONENTS. 1. Introduction In this paper we will study the following parabolic problem

BLOW-UP FOR PARABOLIC AND HYPERBOLIC PROBLEMS WITH VARIABLE EXPONENTS. 1. Introduction In this paper we will study the following parabolic problem BLOW-UP FOR PARABOLIC AND HYPERBOLIC PROBLEMS WITH VARIABLE EXPONENTS JUAN PABLO PINASCO Abstract. In this paper we study the blow up problem for positive solutions of parabolic and hyperbolic problems

More information

Decay Rates for Dissipative Wave equations

Decay Rates for Dissipative Wave equations Published in Ricerche di Matematica 48 (1999), 61 75. Decay Rates for Dissipative Wave equations Wei-Jiu Liu Department of Applied Mechanics and Engineering Sciences University of California at San Diego

More information

Nonlinear elliptic systems with exponential nonlinearities

Nonlinear elliptic systems with exponential nonlinearities 22-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 9, 22, pp 139 147. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

arxiv:math/ v2 [math.ap] 3 Oct 2006

arxiv:math/ v2 [math.ap] 3 Oct 2006 THE TAYLOR SERIES OF THE GAUSSIAN KERNEL arxiv:math/0606035v2 [math.ap] 3 Oct 2006 L. ESCAURIAZA From some people one can learn more than mathematics Abstract. We describe a formula for the Taylor series

More information

Introduction to Exact Controllability and Observability; Variational Approach and Hilbert Uniqueness Method 1

Introduction to Exact Controllability and Observability; Variational Approach and Hilbert Uniqueness Method 1 Introduction to Exact Controllability and Observability; Variational Approach and Hilbert Uniqueness Method 1 A. K. Nandakumaran 2 We plan to discuss the following topics in these lectures 1. A brief introduction

More information

Nonexistence of solutions for quasilinear elliptic equations with p-growth in the gradient

Nonexistence of solutions for quasilinear elliptic equations with p-growth in the gradient Electronic Journal of Differential Equations, Vol. 2002(2002), No. 54, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Nonexistence

More information

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Hongjun Gao Institute of Applied Physics and Computational Mathematics 188 Beijing, China To Fu Ma Departamento de Matemática

More information

Strong Stabilization of the System of Linear Elasticity by a Dirichlet Boundary Feedback

Strong Stabilization of the System of Linear Elasticity by a Dirichlet Boundary Feedback To appear in IMA J. Appl. Math. Strong Stabilization of the System of Linear Elasticity by a Dirichlet Boundary Feedback Wei-Jiu Liu and Miroslav Krstić Department of AMES University of California at San

More information

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1.

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1. A strong comparison result for viscosity solutions to Hamilton-Jacobi-Bellman equations with Dirichlet condition on a non-smooth boundary and application to parabolic problems Sébastien Chaumont a a Institut

More information

Abstract In this paper, we consider bang-bang property for a kind of timevarying. time optimal control problem of null controllable heat equation.

Abstract In this paper, we consider bang-bang property for a kind of timevarying. time optimal control problem of null controllable heat equation. JOTA manuscript No. (will be inserted by the editor) The Bang-Bang Property of Time-Varying Optimal Time Control for Null Controllable Heat Equation Dong-Hui Yang Bao-Zhu Guo Weihua Gui Chunhua Yang Received:

More information

Two-parameter regularization method for determining the heat source

Two-parameter regularization method for determining the heat source Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 8 (017), pp. 3937-3950 Research India Publications http://www.ripublication.com Two-parameter regularization method for

More information

A quantitative Fattorini-Hautus test: the minimal null control time problem in the parabolic setting

A quantitative Fattorini-Hautus test: the minimal null control time problem in the parabolic setting A quantitative Fattorini-Hautus test: the minimal null control time problem in the parabolic setting Morgan MORANCEY I2M, Aix-Marseille Université August 2017 "Controllability of parabolic equations :

More information

Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur.

Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur. Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur. Luc Miller Université Paris Ouest Nanterre La Défense, France Pde s, Dispersion, Scattering

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

Global unbounded solutions of the Fujita equation in the intermediate range

Global unbounded solutions of the Fujita equation in the intermediate range Global unbounded solutions of the Fujita equation in the intermediate range Peter Poláčik School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Eiji Yanagida Department of Mathematics,

More information

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity Minimal periods of semilinear evolution equations with Lipschitz nonlinearity James C. Robinson a Alejandro Vidal-López b a Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. b Departamento

More information

arxiv: v1 [math.oc] 23 Aug 2017

arxiv: v1 [math.oc] 23 Aug 2017 . OBSERVABILITY INEQUALITIES ON MEASURABLE SETS FOR THE STOKES SYSTEM AND APPLICATIONS FELIPE W. CHAVES-SILVA, DIEGO A. SOUZA, AND CAN ZHANG arxiv:1708.07165v1 [math.oc] 23 Aug 2017 Abstract. In this paper,

More information

The effect of Group Velocity in the numerical analysis of control problems for the wave equation

The effect of Group Velocity in the numerical analysis of control problems for the wave equation The effect of Group Velocity in the numerical analysis of control problems for the wave equation Fabricio Macià École Normale Supérieure, D.M.A., 45 rue d Ulm, 753 Paris cedex 5, France. Abstract. In this

More information

Topology of the set of singularities of a solution of the Hamilton-Jacobi Equation

Topology of the set of singularities of a solution of the Hamilton-Jacobi Equation Topology of the set of singularities of a solution of the Hamilton-Jacobi Equation Albert Fathi IAS Princeton March 15, 2016 In this lecture, a singularity for a locally Lipschitz real valued function

More information

Optimal Control Approaches for Some Geometric Optimization Problems

Optimal Control Approaches for Some Geometric Optimization Problems Optimal Control Approaches for Some Geometric Optimization Problems Dan Tiba Abstract This work is a survey on optimal control methods applied to shape optimization problems. The unknown character of the

More information

Simultaneous vs. non simultaneous blow-up

Simultaneous vs. non simultaneous blow-up Simultaneous vs. non simultaneous blow-up Juan Pablo Pinasco and Julio D. Rossi Departamento de Matemática, F.C.E y N., UBA (428) Buenos Aires, Argentina. Abstract In this paper we study the possibility

More information

TOPICS IN NONLINEAR ANALYSIS AND APPLICATIONS. Dipartimento di Matematica e Applicazioni Università di Milano Bicocca March 15-16, 2017

TOPICS IN NONLINEAR ANALYSIS AND APPLICATIONS. Dipartimento di Matematica e Applicazioni Università di Milano Bicocca March 15-16, 2017 TOPICS IN NONLINEAR ANALYSIS AND APPLICATIONS Dipartimento di Matematica e Applicazioni Università di Milano Bicocca March 15-16, 2017 Abstracts of the talks Spectral stability under removal of small capacity

More information

SOME REMARKS ON KRASNOSELSKII S FIXED POINT THEOREM

SOME REMARKS ON KRASNOSELSKII S FIXED POINT THEOREM Fixed Point Theory, Volume 4, No. 1, 2003, 3-13 http://www.math.ubbcluj.ro/ nodeacj/journal.htm SOME REMARKS ON KRASNOSELSKII S FIXED POINT THEOREM CEZAR AVRAMESCU AND CRISTIAN VLADIMIRESCU Department

More information

U.M.R du C.N.R.S. F PALAISEAU CEDEX Fax : 33 (0) Tél : 33 (0)

U.M.R du C.N.R.S. F PALAISEAU CEDEX Fax : 33 (0) Tél : 33 (0) SEMINAIRE Equations aux D érivées P artielles 1997-199 Antonio López and Enrique Zuazua Some new results related to the null controllability of the 1 d heat equation Séminaire É. D. P. (1997-199), Exposé

More information

Numerics for the Control of Partial Differential

Numerics for the Control of Partial Differential Springer-Verlag Berlin Heidelberg 2015 Björn Engquist Encyclopedia of Applied and Computational Mathematics 10.1007/978-3-540-70529-1_362 Numerics for the Control of Partial Differential Equations Enrique

More information

arxiv: v1 [math.na] 9 Feb 2013

arxiv: v1 [math.na] 9 Feb 2013 STRENGTHENED CAUCHY-SCHWARZ AND HÖLDER INEQUALITIES arxiv:1302.2254v1 [math.na] 9 Feb 2013 J. M. ALDAZ Abstract. We present some identities related to the Cauchy-Schwarz inequality in complex inner product

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Exponential Energy Decay for the Kadomtsev-Petviashvili (KP-II) equation

Exponential Energy Decay for the Kadomtsev-Petviashvili (KP-II) equation São Paulo Journal of Mathematical Sciences 5, (11), 135 148 Exponential Energy Decay for the Kadomtsev-Petviashvili (KP-II) equation Diogo A. Gomes Department of Mathematics, CAMGSD, IST 149 1 Av. Rovisco

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS EXISTECE AD REGULARITY RESULTS FOR SOME OLIEAR PARABOLIC EUATIOS Lucio BOCCARDO 1 Andrea DALL AGLIO 2 Thierry GALLOUËT3 Luigi ORSIA 1 Abstract We prove summability results for the solutions of nonlinear

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

and finally, any second order divergence form elliptic operator

and finally, any second order divergence form elliptic operator Supporting Information: Mathematical proofs Preliminaries Let be an arbitrary bounded open set in R n and let L be any elliptic differential operator associated to a symmetric positive bilinear form B

More information

Singular Perturbation on a Subdomain*

Singular Perturbation on a Subdomain* JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 937 997 ARTICLE NO. AY97544 Singular Perturbation on a Subdomain* G. Aguilar Departamento de Matematica Aplicada, Centro Politecnico Superior, Uniersidad

More information

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM JENICĂ CRÎNGANU We derive existence results for operator equations having the form J ϕu = N f u, by using

More information

Sharp observability estimates for heat equations

Sharp observability estimates for heat equations Archive for Rational Mechanics and Analysis manuscript No. (will be inserted by the editor Sylvain Ervedoza Enrique Zuazua Sharp observability estimates for heat equations Abstract he goal of this article

More information

Periodic solutions for a weakly dissipated hybrid system

Periodic solutions for a weakly dissipated hybrid system Periodic solutions for a weakly dissipated hybrid system Nicolae Cindea, Sorin Micu, Ademir Pazoto To cite this version: Nicolae Cindea, Sorin Micu, Ademir Pazoto. Periodic solutions for a weakly dissipated

More information

A Nonlinear PDE in Mathematical Finance

A Nonlinear PDE in Mathematical Finance A Nonlinear PDE in Mathematical Finance Sergio Polidoro Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127 Bologna (Italy) polidoro@dm.unibo.it Summary. We study a non

More information

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth E. DiBenedetto 1 U. Gianazza 2 C. Klaus 1 1 Vanderbilt University, USA 2 Università

More information

Simultaneous vs. non simultaneous blow-up

Simultaneous vs. non simultaneous blow-up Simultaneous vs. non simultaneous blow-up Juan Pablo Pinasco and Julio D. Rossi Departamento de Matemática, F..E y N., UBA (428) Buenos Aires, Argentina. Abstract In this paper we study the possibility

More information

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES Electronic Journal of Differential Equations, Vol. 2008(2008), No. 76, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) ELLIPTIC

More information

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics.

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics. ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS Author(s) Hoshino, Gaku; Ozawa, Tohru Citation Osaka Journal of Mathematics. 51(3) Issue 014-07 Date Text Version publisher

More information

Existence of minimizers for the pure displacement problem in nonlinear elasticity

Existence of minimizers for the pure displacement problem in nonlinear elasticity Existence of minimizers for the pure displacement problem in nonlinear elasticity Cristinel Mardare Université Pierre et Marie Curie - Paris 6, Laboratoire Jacques-Louis Lions, Paris, F-75005 France Abstract

More information

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Ricardo G. Durán and Ariel L. Lombardi Abstract. The classical error analysis for the Raviart-Thomas interpolation

More information

arxiv: v1 [math.ca] 18 Jun 2017

arxiv: v1 [math.ca] 18 Jun 2017 RADIAL BIHARMOIC k HESSIA EQUATIOS: THE CRITICAL DIMESIO CARLOS ESCUDERO, PEDRO J. TORRES arxiv:176.5684v1 [math.ca] 18 Jun 217 ABSTRACT. This work is devoted to the study of radial solutions to the elliptic

More information

On Behaviors of the Energy of Solutions for Some Damped Nonlinear Hyperbolic Equations with p-laplacian Soufiane Mokeddem

On Behaviors of the Energy of Solutions for Some Damped Nonlinear Hyperbolic Equations with p-laplacian Soufiane Mokeddem International Journal of Advanced Research in Mathematics ubmitted: 16-8-4 IN: 97-613, Vol. 6, pp 13- Revised: 16-9-7 doi:1.185/www.scipress.com/ijarm.6.13 Accepted: 16-9-8 16 cipress Ltd., witzerland

More information

arxiv: v3 [math.oc] 19 Apr 2018

arxiv: v3 [math.oc] 19 Apr 2018 CONTROLLABILITY UNDER POSITIVITY CONSTRAINTS OF SEMILINEAR HEAT EQUATIONS arxiv:1711.07678v3 [math.oc] 19 Apr 2018 Dario Pighin Departamento de Matemáticas, Universidad Autónoma de Madrid 28049 Madrid,

More information

Nonlinear stabilization via a linear observability

Nonlinear stabilization via a linear observability via a linear observability Kaïs Ammari Department of Mathematics University of Monastir Joint work with Fathia Alabau-Boussouira Collocated feedback stabilization Outline 1 Introduction and main result

More information

A NOTE ON THE EXISTENCE OF TWO NONTRIVIAL SOLUTIONS OF A RESONANCE PROBLEM

A NOTE ON THE EXISTENCE OF TWO NONTRIVIAL SOLUTIONS OF A RESONANCE PROBLEM PORTUGALIAE MATHEMATICA Vol. 51 Fasc. 4 1994 A NOTE ON THE EXISTENCE OF TWO NONTRIVIAL SOLUTIONS OF A RESONANCE PROBLEM To Fu Ma* Abstract: We study the existence of two nontrivial solutions for an elliptic

More information

Inner product on B -algebras of operators on a free Banach space over the Levi-Civita field

Inner product on B -algebras of operators on a free Banach space over the Levi-Civita field Available online at wwwsciencedirectcom ScienceDirect Indagationes Mathematicae 26 (215) 191 25 wwwelseviercom/locate/indag Inner product on B -algebras of operators on a free Banach space over the Levi-Civita

More information

Asymptotic Analysis of the Approximate Control for Parabolic Equations with Periodic Interface

Asymptotic Analysis of the Approximate Control for Parabolic Equations with Periodic Interface Asymptotic Analysis of the Approximate Control for Parabolic Equations with Periodic Interface Patrizia Donato Université de Rouen International Workshop on Calculus of Variations and its Applications

More information

Mixed exterior Laplace s problem

Mixed exterior Laplace s problem Mixed exterior Laplace s problem Chérif Amrouche, Florian Bonzom Laboratoire de mathématiques appliquées, CNRS UMR 5142, Université de Pau et des Pays de l Adour, IPRA, Avenue de l Université, 64000 Pau

More information

doi: /j.jde

doi: /j.jde doi: 10.1016/j.jde.016.08.019 On Second Order Hyperbolic Equations with Coefficients Degenerating at Infinity and the Loss of Derivatives and Decays Tamotu Kinoshita Institute of Mathematics, University

More information

Evolution problems involving the fractional Laplace operator: HUM control and Fourier analysis

Evolution problems involving the fractional Laplace operator: HUM control and Fourier analysis Evolution problems involving the fractional Laplace operator: HUM control and Fourier analysis Umberto Biccari joint work with Enrique Zuazua BCAM - Basque Center for Applied Mathematics NUMERIWAVES group

More information

c 2018 Society for Industrial and Applied Mathematics

c 2018 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 56, No. 2, pp. 1222 1252 c 218 Society for Industrial and Applied Mathematics STEADY-STATE AND PERIODIC EXPONENTIAL TURNPIKE PROPERTY FOR OPTIMAL CONTROL PROBLEMS IN HILBERT

More information

Parameter Dependent Quasi-Linear Parabolic Equations

Parameter Dependent Quasi-Linear Parabolic Equations CADERNOS DE MATEMÁTICA 4, 39 33 October (23) ARTIGO NÚMERO SMA#79 Parameter Dependent Quasi-Linear Parabolic Equations Cláudia Buttarello Gentile Departamento de Matemática, Universidade Federal de São

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

Inverse problems in lithospheric flexure and viscoelasticity

Inverse problems in lithospheric flexure and viscoelasticity Inverse problems in lithospheric flexure and viscoelasticity Axel Osses in coll with M. de Buhan (CNRS, France), E. Contreras (Geophysics Department, Chile), B. Palacios (DIM, Chile) DIM - Departamento

More information

Elliptic Kirchhoff equations

Elliptic Kirchhoff equations Elliptic Kirchhoff equations David ARCOYA Universidad de Granada Sevilla, 8-IX-2015 Workshop on Recent Advances in PDEs: Analysis, Numerics and Control In honor of Enrique Fernández-Cara for his 60th birthday

More information

Strong uniqueness for second order elliptic operators with Gevrey coefficients

Strong uniqueness for second order elliptic operators with Gevrey coefficients Strong uniqueness for second order elliptic operators with Gevrey coefficients Ferruccio Colombini, Cataldo Grammatico, Daniel Tataru Abstract We consider here the problem of strong unique continuation

More information

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true 3 ohn Nirenberg inequality, Part I A function ϕ L () belongs to the space BMO() if sup ϕ(s) ϕ I I I < for all subintervals I If the same is true for the dyadic subintervals I D only, we will write ϕ BMO

More information

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction SHARP BOUNDARY TRACE INEQUALITIES GILES AUCHMUTY Abstract. This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region R N. The inequalities bound (semi-)norms

More information