Questions on Gravity and Orbits MS

Size: px
Start display at page:

Download "Questions on Gravity and Orbits MS"

Transcription

1 Questions on Gravity and Orbits MS 1. Using the usual symbols write down an equation for (i) Newton s law of gravitation M1M F G R (ii) Coulomb s law Q1Q F K R State one difference and one similarity between gravitational and electric fields. Difference Gravitational fields are attractive but electric fields can be attractive or repulsive ( marks) Similarity Both have an range A speck of dust has a mass of kg and carries a charge equal to that of one electron. Near to the arth s surface it experiences a uniform downward electric field of strength 100 N C -1 and a uniform gravitational field of strength 9.8 N kg -1. Draw a free-body force diagram for the speck of dust. Label the forces clearly. lectric force ( marks) Gravitational force Calculate the magnitude and direction of the resultant force on the speck of dust. lectric force 100 N C C N Weight N Net force is upward Force N (6 marks) [Total 10 marks] PhysicsAndMathsTutor.com 1

2 . The diagram (not to scale) shows a satellite of mass m, in circular orbit at speed v s around the arth, mass M. The satellite is at a height h above the arth s surface and the radius of the arth is R. υ s Satellite h arth R Using the symbols above write down an expression for the centripetal force needed to maintain the satellite in this orbit. m v s s F () R + h Write down an expression for the gravitational field strength in the region of the satellite. GM g ( R + h) () State an appropriate unit for this quantity. N kg -1 Use your two expressions to show that the greater the height of the satellite above the arth, the smaller will be its orbital speed. m v GM m s s R + h s ( R + h) v s GM R + h Greater h Þ smaller v s since G, M constant xplain why, if a satellite slows down in its orbit, it nevertheless gradually spirals in towards the arth s surface. GM ms m v s s As it slows > ( R + h) R + h The spare gravitational force not needed to provide the centripetal acceleration pulls the satellite nearer to the arth ( marks) (3 marks) (3 marks) ( marks) [Total 10 marks] PhysicsAndMathsTutor.com

3 3. Forces (i) F GM m/r 1 (ii) F GM M m/r 1 Distance R M M m GM m GM mm R r OR 1 R M OR r M m R r 81 R 7 1 ( m) R m vidence that equating forces has occurred 1 Correct substitution 1 Correct answer 1 [5] 4. Gravitational attraction of arth on Moon Gm1m Use S, ie r Orbital speed of the Moon GMm 1 ( 60R) mυ r GMm r Use of r 60R, ie Nm kg 6 10 kg Rearrangement ie υ m 100 m s 1 4 Orbit period πr π Time /ω υ T 6 π Calculation: m s Divide by Using 100m/s: (7 7.4) days Using 1000m/s: (7.8 8) days 4 4 [9] PhysicsAndMathsTutor.com 3

4 5. Word equation: Force proportional to product of masses and inversely proportional to (distance / separation) squared [No force 0/] OR G mass 1 mass F (distance ) [or (separation) instead of bottom line] Calculation of force: From Newton s law OR idea that force weight mg planet F 11 N m kg ( [Substitution in correct equation only] OR 6 ) m 3 kg 1 kg 3 G kg g mars 6 ( ) m 3.7 N Smaller 3 xplanation of reasoning: g is less, but ρ is similar/same [so R is less] [ nd mark is consequential on first mark] [7] 6. Base units of G: kg 1 m 3 s quation homogeneity: Correct substitution of units of G, r 3 (m 3 ), M (kg) 1 leading to S and linked to T [Allow e.c.f. of their base unit answer into substitution mark] 3 Use of relationship to find mass of the arth Any two from: Adding Converting km to m h to s ( 43 00) Answer M 5.8 (4) 10 4 kg 1 [6] PhysicsAndMathsTutor.com 4

5 7. xpression for gravitational force F GMm/r 1 Derived expression Reasoning step must be clear, e,g, mg GMm/r so g GM/r Sun's gravitational field strength g N m kg kg / ( m) (N kg -1 ) [no u.e.] Diagram (i) Jupiter marked closest to arth (ii) (Labelled) arrows towards Jupiter and Sun (radially) Maximum percentage change / % 0.005% 1 Maximum value of the ratio Use of g M/r Hence g Venus/ g jupiter 15 / [OR 9/16] Comment.g. reference to % change caused by Jupiter (combined with effect caused by Venus) OR g of (all) planets is very small compared with g of Sun 1 [11] 8. Show that: F GMm/r (N) Calculation: a F/M m s 1 xplanation: Planet exerts gravitational force on star Planet revolves around star, so direction of force changes with time Diagram showing force (or effect of force on star due to planet) 3 PhysicsAndMathsTutor.com 5

6 Speed of star: Using υ π r/ T and a υ / r r υt/π so a πυ / T so υ at / π π [allow ecf for a] 45.4 m s 1 3 Calculation: λ λ υ/c / m [Accept λ for maximum marks] [11] 9. Formula F GMm/r 1 Show that tan θ MR / M e r Horizontally Tsinθ F mountain and vertically Tcosθ mg [OR vector diagram showing forces and θ] Dividing equations [OR from vector diag.]: tanθ F mountain mg and F mountain GMm r and mg GM e m R so tan θ GMm/r GM e m/r 4 Value for gravitational constant, G Volume 4/3πR 3 4/3π ( m) (m 3 ) M e Vρ m kg m (kg) G gr M e 3gR 4πR 3 ρ 3g 4πRρ m s 6 4π m kg m N m kg 3 Reason for inaccuracy Any one from: Maskelyne s density is incorrect arth/mountain not uniform density (centre of) mass of mountain not known mountain is not spherical difficult to determine vertical / measure very small θ arth not a perfect sphere / point mass 1 arth s core Much denser than mountain 1 [10] PhysicsAndMathsTutor.com 6

7 10. Minimum mass for comet Volume 4/3π ( / ) 3 m 3 ( m 3 ) Use of mass density volume 500 kg m 3 4/3 π ( / ) 3 m kg 3 Jupiter s gravitational field strength g GM/r N m kg, kg / ( ) N kg 1 3 xplanation Any two from: Jupiter s force/field strength different on the two sides of the comet difference sufficient to pull comet apart Jupiter s force larger than (cohesive) force between particles of comet Max Difference and similarity between gravitational and electric fields Difference: e.g. gravitational fields only attractive, electrical can be attractive or repulsive, gravitational fields due to mass, electrical due to charge, cannot shield g-field, can shield field Similarity: e.g. follow equivalent mathematical formulae, both obey inverse square law [10] 11. Definitions: An electric field is a region where charged objects experience a force ( F/Q) 1 A gravitational field is a region where masses experience a force(g F/m) 1 Similarities: Both fields obey an inverse square law OR inverse square equations quoted Both fields are radial for point objects / spherical distributions Both fields have an infinite range / field strength approaches zero a long way from source max Differences: lectric forces can be attractive or repulsive but gravitational forces are always attractive lectric forces are (much) stronger than gravitational forces OR comparison of size of coupling constants in the two force equations lectric forces only act on charged particles but gravitational forces act on all matter lectric forces can be shielded (e.g. by use of a Faraday cage) but gravitational forces cannot max 3 [6] PhysicsAndMathsTutor.com 7

8 1. Magnitude of gravitational force on Cassini F GMm/r 1 xpression g F/m so g GM/r Maximum acceleration Appreciation that acceleration g-field Addition of orbital height to radius of Venus g G kg / ( ) 7.97 m s 3 ffect of acceleration on velocity of Cassini Any from: Acceleration is at right angles to direction of motion Speed unchanged (Velocity changed since) direction changed Max [8] PhysicsAndMathsTutor.com 8

Newton s Gravitational Law

Newton s Gravitational Law 1 Newton s Gravitational Law Gravity exists because bodies have masses. Newton s Gravitational Law states that the force of attraction between two point masses is directly proportional to the product of

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information

Solved examples of Gravitation

Solved examples of Gravitation Solved examples of Gravitation Example 1 The time period of Moon around the Earth is n times that of Earth around the Sun. If the ratio of the distance of the Earth from the Sun to that of the distance

More information

the increase in the potential energy of a 1200 kg satellite when it is raised from the surface of the Earth into a circular orbit of radius 3R.

the increase in the potential energy of a 1200 kg satellite when it is raised from the surface of the Earth into a circular orbit of radius 3R. 1 (a) The graph shows how the gravitational potential varies with distance in the region above the surface of the Earth. R is the radius of the Earth, which is 6400 km. At the surface of the Earth, the

More information

Circular_Gravitation_P2 [64 marks]

Circular_Gravitation_P2 [64 marks] Circular_Gravitation_P2 [64 marks] A small ball of mass m is moving in a horizontal circle on the inside surface of a frictionless hemispherical bowl. The normal reaction force N makes an angle θ to the

More information

AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Steve Smith Tuition: Physics Notes

Steve Smith Tuition: Physics Notes Steve Smith Tuition: Physics Notes E = mc 2 F = GMm sin θ m = mλ d hν = φ + 1 2 mv2 Static Fields IV: Gravity Examples Contents 1 Gravitational Field Equations 3 1.1 adial Gravitational Field Equations.................................

More information

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant.

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Universal Law of Gravitation in words (b) A satellite of mass (m) moves in orbit of a planet with mass (M).

More information

PSI AP Physics C Universal Gravity Multiple Choice Questions

PSI AP Physics C Universal Gravity Multiple Choice Questions PSI AP Physics C Universal Gravity Multiple Choice Questions 1. Who determined the value of the gravitational constant (G)? (A) Newton (B) Galileo (C) Einstein (D) Schrödinger (E) Cavendish 2. Who came

More information

PSI AP Physics 1 Gravitation

PSI AP Physics 1 Gravitation PSI AP Physics 1 Gravitation Multiple Choice 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B)

More information

Circular Motion. Gravitation

Circular Motion. Gravitation Circular Motion Gravitation Circular Motion Uniform circular motion is motion in a circle at constant speed. Centripetal force is the force that keeps an object moving in a circle. Centripetal acceleration,

More information

Gravity and Coulomb s Law

Gravity and Coulomb s Law AP PHYSICS 1 Gravity and Coulomb s Law 016 EDITION Click on the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright 016 National

More information

Topic 6 Circular Motion and Gravitation

Topic 6 Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation Exam-Style Questions 1 a) Calculate the angular velocity of a person standing on the Earth s surface at sea level. b) The summit of Mount Everest is 8848m above

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

CHAPTER 10 GRAVITATION

CHAPTER 10 GRAVITATION CHAPTER 10 GRAVITATION Earth attracts everything towards it by an unseen force of attraction. This force of attraction is known as gravitation or gravitation pull. Universal Law of Gravitation:- Every

More information

Kepler s first law (law of elliptical orbit):- A planet moves round the sun in an elliptical orbit with sun situated at one of its foci.

Kepler s first law (law of elliptical orbit):- A planet moves round the sun in an elliptical orbit with sun situated at one of its foci. Gravitation:- Kepler s first law (law of elliptical orbit):- A planet moves round the sun in an elliptical orbit with sun situated at one of its foci. Kepler s second law (law of ars eal velocities):-

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

Chapter 5 Review : Circular Motion; Gravitation

Chapter 5 Review : Circular Motion; Gravitation Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration

More information

CH 8. Universal Gravitation Planetary and Satellite Motion

CH 8. Universal Gravitation Planetary and Satellite Motion CH 8 Universal Gravitation Planetary and Satellite Motion Sir Isaac Newton UNIVERSAL GRAVITATION Newton: Universal Gravitation Newton concluded that earthly objects and heavenly objects obey the same physical

More information

Gravitational Fields

Gravitational Fields Gravitational Fields although Earth and the Moon do not touch, they still exert forces on each other Michael Faraday developed the idea of a field to explain action at a distance a field is defined as

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation e = c/a A note about eccentricity For a circle c = 0 à e = 0 a Orbit Examples Mercury has the highest eccentricity of any planet (a) e Mercury = 0.21 Halley s comet has an orbit

More information

7 - GRAVITATION Page 1 ( Answers at the end of all questions )

7 - GRAVITATION Page 1 ( Answers at the end of all questions ) 7 - GRAVITATION Page 1 1 ) The change in the value of g at a height h above the surface of the earth is the same as at a depth d below the surface of earth. When both d and h are much smaller than the

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Topic 6: Circular motion and gravitation 6.2 Newton s law of gravitation

Topic 6: Circular motion and gravitation 6.2 Newton s law of gravitation Topic 6: Circular motion and gravitation 6.2 Newton s law of gravitation Essential idea: The Newtonian idea of gravitational force acting between two spherical bodies and the laws of mechanics create a

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

AP Physics C Textbook Problems

AP Physics C Textbook Problems AP Physics C Textbook Problems Chapter 13 Pages 412 416 HW-16: 03. A 200-kg object and a 500-kg object are separated by 0.400 m. Find the net gravitational force exerted by these objects on a 50.0-kg object

More information

Physics 1100: Uniform Circular Motion & Gravity

Physics 1100: Uniform Circular Motion & Gravity Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Physics 1100: Uniform Circular Motion & Gravity 1. In the diagram below, an object travels over a hill, down a valley, and around a loop the loop at constant

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Physics 23 Notes Chapter 5

Physics 23 Notes Chapter 5 Physics 23 Notes Chapter 5 Dr. Alward Circular Motion Example A: An object is moving in a circular path of radius r = 1.2 m, and is completing 0.40 revolutions per second. What is the object s centripetal

More information

A 1.6 N kg 1. B 5.0 N kg 1. C 10 N kg 1. D 20 N kg 1. Two stars of mass M and 4M are at a distance d between their centres.

A 1.6 N kg 1. B 5.0 N kg 1. C 10 N kg 1. D 20 N kg 1. Two stars of mass M and 4M are at a distance d between their centres. 1 planet has a radius half the Earth s radius and a mass a quarter of the Earth s mass. What is the approximate gravitational field strength on the surface of the planet? 1.6 N kg 1 5.0 N kg 1 10 N kg

More information

PHYS 101 Previous Exam Problems. Gravitation

PHYS 101 Previous Exam Problems. Gravitation PHYS 101 Previous Exam Problems CHAPTER 13 Gravitation Newton s law of gravitation Shell theorem Variation of g Potential energy & work Escape speed Conservation of energy Kepler s laws - planets Orbits

More information

Gravitation. One mark questions.

Gravitation. One mark questions. One mark questions. Gravitation. 01. What is the ratio of force of attraction between two bodies kept in air and the same distance apart in water? Ans- 1:1, because gravitational force is independent of

More information

Wiley Plus Reminder! Assignment 1

Wiley Plus Reminder! Assignment 1 Wiley Plus Reminder! Assignment 1 6 problems from chapters and 3 Kinematics Due Monday October 5 Before 11 pm! Chapter 4: Forces and Newton s Laws Force, mass and Newton s three laws of motion Newton s

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct

More information

Practice Problem Solutions

Practice Problem Solutions Chapter 14 Fields and Forces Practice Problem Solutions Student Textbook page 638 1. Conceptualize the Problem - Force, charge and distance are related by Coulomb s law. The electrostatic force, F, between

More information

Question 8.1: the following: (a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting

More information

Part I Multiple Choice (4 points. ea.)

Part I Multiple Choice (4 points. ea.) ach xam usually consists of 10 ultiple choice questions which are conceptual in nature. They are often based upon the assigned thought questions from the homework. There are also 4 problems in each exam,

More information

Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field (2)

Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field (2) PhysicsAndMathsTutor.com 1 Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field............. (2) (b) Use the following data to calculate the gravitational potential

More information

Downloaded from

Downloaded from Chapter 8 (Gravitation) Multiple Choice Questions Single Correct Answer Type Q1. The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

CHAPTER 10 TEST REVIEW

CHAPTER 10 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 10 TEST REVIEW 1. A spacecraft travels away from Earth in a straight line with its motors shut

More information

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

D. 2πmv 2 (Total 1 mark)

D. 2πmv 2 (Total 1 mark) 1. A particle of mass m is moving with constant speed v in uniform circular motion. What is the total work done by the centripetal force during one revolution? A. Zero B. 2 mv 2 C. mv 2 D. 2πmv 2 2. A

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that

More information

Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?

Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means? Question 8.1: the following: You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it

More information

PH 2213 : Chapter 06 Homework Solutions. Problem 6.08 :

PH 2213 : Chapter 06 Homework Solutions. Problem 6.08 : PH 2213 : Chapter 06 Homework Solutions Problem 6.08 : Every few hundred years most of the planets line up on the same side of the Sun. Calculate the total force on the Earth due to Venus, Jupiter, and

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Questions Chapter 13 Gravitation

Questions Chapter 13 Gravitation Questions Chapter 13 Gravitation 13-1 Newton's Law of Gravitation 13-2 Gravitation and Principle of Superposition 13-3 Gravitation Near Earth's Surface 13-4 Gravitation Inside Earth 13-5 Gravitational

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Comments: Q1 to Q3 to be worked through with tutor. Q4 to Q6 to be worked through independently.

Comments: Q1 to Q3 to be worked through with tutor. Q4 to Q6 to be worked through independently. OCR A-Level Physics A Newtonian World & Astrophysics 5.2 Time: 68 minutes Marks: 68 Comments: Q1 to Q3 to be worked through with tutor. Q4 to Q6 to be worked through independently. Page 1 of 1 1 (a) Fig.

More information

Universal gravitation

Universal gravitation Universal gravitation Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman February 22, 2017 W. Freeman Universal gravitation February 22, 2017 1 / 14 Announcements Extra homework help

More information

Configuration A. Configuration B. Figure 1

Configuration A. Configuration B. Figure 1 1 (a) Define gravitational field strength at a point in a gravitational field. (1) (b) Tides vary in height with the relative positions of the Earth, the Sun and the moon which change as the Earth and

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Newton s Law of Universal Gravitation (attraction between. Gravitation field strength surrounding the Earth g E

Newton s Law of Universal Gravitation (attraction between. Gravitation field strength surrounding the Earth g E VISUAL PHYSICS ONLINE MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: FORCES Newton s Law of Universal Gravitation (attraction between Gm1m two masses) F F r Gravitational field strength g F m GM Gravitation

More information

PHYSICS 12 NAME: Gravitation

PHYSICS 12 NAME: Gravitation NAME: Gravitation 1. The gravitational force of attraction between the Sun and an asteroid travelling in an orbit of radius 4.14x10 11 m is 4.62 x 10 17 N. What is the mass of the asteroid? 2. A certain

More information

/////// ///////////// Module ONE /////////////// ///////// Space

/////// ///////////// Module ONE /////////////// ///////// Space // // / / / / //// / ////// / /// / / // ///// ////// ////// Module ONE Space 1 Gravity Knowledge and understanding When you have finished this chapter, you should be able to: define weight as the force

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: Gravity 15-2 1 Current assignments HW#15 due Monday, 12/12 Final Exam, Thursday, Dec. 15 th, 3-5pm in 104N. Two sheets of handwritten notes and a calculator

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Gravitational & Electric Fields

Gravitational & Electric Fields Gravitational & Electric Fields Jessica Wade (jess.wade@kcl.ac.uk) www.makingphysicsfun.com Department of Physics & Centre for Plastic Electronics, Imperial College London Faculty of Natural & Mathematical

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

Chapter 6. Force and motion II

Chapter 6. Force and motion II Chapter 6. Force and motion II Friction Static friction Sliding (Kinetic) friction Circular motion Physics, Page 1 Summary of last lecture Newton s First Law: The motion of an object does not change unless

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation 13.2 Newton s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G =6.67 x10 11 Nm 2 /kg 2

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field (2)

Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field (2) PhysicsAndMathsTutor.com 1 Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field............. Use the following data to calculate the gravitational potential

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force.

Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force. Lesson 9: Universal Gravitation and Circular Motion Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force.

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

Lecture 9 Chapter 13 Gravitation. Gravitation

Lecture 9 Chapter 13 Gravitation. Gravitation Lecture 9 Chapter 13 Gravitation Gravitation UNIVERSAL GRAVITATION For any two masses in the universe: F = Gm 1m 2 r 2 G = a constant evaluated by Henry Cavendish +F -F m 1 m 2 r Two people pass in a hall.

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

6.1 Newtonian Gravitation

6.1 Newtonian Gravitation 6.1 Newtonian Gravitation Early in the formation of our galaxy, tiny gravitational effects between particles began to draw matter together into slightly denser configurations. Those, in turn, exerted even

More information

Slide 1 / The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank Christian Huygens

Slide 1 / The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank Christian Huygens Slide 1 / 22 1 The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank hristian Huygens Slide 2 / 22 2 Two objects with equal masses of 1 kg each are separated

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity Welcome back to Physics 211 Today s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 211 Spring 2014 Lecture 14-1 1 Gravity Before 1687, large amount of data collected

More information

Lesson 36: Satellites

Lesson 36: Satellites Lesson 36: Satellites In our modern world the world satellite almost always means a human made object launched into orbit around the Earth for TV or phone communications. This definition of satellites

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 5

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 5 CHAPTE 5 1. The centripetal acceleration is a = v /r = (500 m/s) /(6.00 10 3 m)(9.80 m/s /g) = 4.5g up.. (a) The centripetal acceleration is a = v /r = (1.35 m/s) /(1.0 m) = 1.5 m/s toward the center.

More information

[2] Explain why values of gravitational potential near to an isolated mass are all negative [3]

[2] Explain why values of gravitational potential near to an isolated mass are all negative [3] 1 (a) Define gravitational potential.... [2] (b) Explain why values of gravitational potential near to an isolated mass are all negative.... [3] (c) The Earth may be assumed to be an isolated sphere of

More information

Question 1. GRAVITATION UNIT H.W. ANS KEY

Question 1. GRAVITATION UNIT H.W. ANS KEY Question 1. GRAVITATION UNIT H.W. ANS KEY Question 2. Question 3. Question 4. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as

More information

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously.

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. 5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. The applied forces may cancel so the net force is zero; in such a case,

More information

Acceleration in Uniform Circular Motion

Acceleration in Uniform Circular Motion Acceleration in Uniform Circular Motion The object in uniform circular motion has a constant speed, but its velocity is constantly changing directions, generating a centripetal acceleration: a c v r 2

More information

The spheres are now separated until the force of attraction is. What is the force of gravitational attraction between the satellite and the planet?

The spheres are now separated until the force of attraction is. What is the force of gravitational attraction between the satellite and the planet? Q1.Two identical uniform spheres each of radius R are placed in contact. The gravitational force between them is F. The spheres are now separated until the force of attraction is. What is the distance

More information

3 UCM & Gravity Student Physics Regents Date

3 UCM & Gravity Student Physics Regents Date Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by

More information

9.3 Worked Examples Circular Motion

9.3 Worked Examples Circular Motion 9.3 Worked Examples Circular Motion Example 9.1 Geosynchronous Orbit A geostationary satellite goes around the earth once every 3 hours 56 minutes and 4 seconds, (a sidereal day, shorter than the noon-to-noon

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration! Δv! aavg t 3. Going around urve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac. Slowing down v velocity and

More information

AP Physics C - Problem Drill 18: Gravitation and Circular Motion

AP Physics C - Problem Drill 18: Gravitation and Circular Motion AP Physics C - Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some

More information

Episode 403: Orbital motion

Episode 403: Orbital motion Episode 40: Orbital motion In this episode, students will learn how to combine concepts learned in the study of circular motion with Newton s Law of Universal Gravitation to understand the (circular) motion

More information

DEVIL CHAPTER 6 TEST REVIEW

DEVIL CHAPTER 6 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 51 DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 6 TEST REVIEW 1. A cyclist rides around a circular track at a uniform speed. Which of the following correctly gives

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

Phys 2101 Gabriela González

Phys 2101 Gabriela González Phys 2101 Gabriela González Newton s law : F = Gm 1 m 2 /r 2 Explains why apples fall, why the planets move around the Sun, sciencebulletins.amnh.org And in YouTube! Explains just as well as Newtons why

More information