Chapter 3 HW Solution

 Merilyn Kennedy
 7 days ago
 Views:
Transcription
1 Chapter 3 HW Solution Problem 3.6: I placed an xy coordinate system at a convenient point (origin doesn t really matter). y 173 x The positions of both planes are given by r B = v B ti + 173j mi (1) r A = 1i + v A t(.77i +.77j) mi (2) The distance between A and B is the length (magnitude) of vector r AB, which is the vector from B to A (or the reverse; distance is the same). So we have r BA = r B r A (3) However, we re really interested in the magnitude of the vector r BA, denote that magnitude by length l: l(t) = r BA = (74t 1)i + ( 276t + 173)j mi (4) The magnitude (Euclidean norm) of a vector is simply the square root of the sum of the components squared, so l(t) = (74t 1) 2 + ( 276t + 173) 2 mi (5) Parts (a) and (b) of the problem should have been reversed: first you have to find the time, then you can find the distance. This is just a standard function minimization problem; e.g. take the first derivative and set it equal to zero. (b) The differentiation is simpler if you realize that when l(t) is at a minimum, so is [l(t)] 2. This removes the square root, and d [l(t)] 2 = d [ 81, 652t 2 11, 296t + 39, 929 ] = 163, 34t 11, 296 = (6) dt dt Solving (13) yields the time when the minimum separation occurs, which is If the planes leave at 6: p.m., then the time of minimum separation is t = 11, 296 =.675 hr = 4.52 min (7) 163, 34 t min = 6 : 4 : 31 p.m. (8) (a) To find the actual separation distance, substitute t min (expressed in fractional hours of (14)) into equation (12). The result I found was l min = mi (9) Although not required, I couldn t resist plotting separation distance vs time (MATLAB plot on next page); it seems to agree with my result. 1
2 Separation distance (mi) Time (min) (c) Although not required, you can also do this problem with ADAMS, you have to set up two bodies with the velocities of the planes, and a PointtoPoint measure for the distance between the two planes. You get the following plot: The minimum of the ADAMS plot occurs at t = 4.6 minutes, which is pretty close to the previous result. ADAMS separation distance is miles; again pretty close. The Problem 3.8: Do this analytically. Velocity of A along this line Velocity of B is known Points A and B are both on link 3, so they re related by the 2 pts on a body equation: v A = v B + ω 3 r BA (1) Velocity v B is known (along lower plane), the direction of velocity v A is known (along upper plane), and the angular velocity ω 3 is in the k direction (perpendicular to the plane). From the angles given, the upper plane is at angle of 2
3 15 from the horizontal. From inspection, block A is moving to the left, so we have v A ( cos 15 i sin 15 j) = 4i + ω 3 k.4( cos 3 i + sin 3 j) (11) Separating the i and j equations, there are i :.9659v a = 4.2ω 3 (12) j :.2588v a =.3463ω 3 (13) In matrix form, equations (12) (13) are Solving, we get [ ] [ ] va = ω 3 [ ] [ ] va m/s = ω rad/s [ ] 4 (14) (15) In terms of vectors, we have v A = v A ( cos 15 i sin 15 j), so v A = i j m/s ω 3 = k rad/s (16) (17) So link 3 is rotating CCW, which I think agrees with the sketch. And block A is sliding a little faster than block B (49 m/s compared with 4 m/s). Problem 3.9 In the 4bar mechanism shown below, link 2 is driven at a constant angular velocity of ω 2 = 45 rad/s CCW. We want to find the angular velocities ω 3 and ω You will need the angles I found above in the analysis. You are to do this problem both analytically and using ADAMS. (a) Analytical Solution. This can be done using only 2 point on a body throughout. Start by finding the velocity of A: Next relate the velocities of A and B: v A = v O2 +ω 2 r O2A = 45k ( 2i j) = 155.9i 9j in/s (18) }{{} = v B = v A + ω 3 r AB (19) 3
4 where ω 3 = ω 3 k rad/s and r AB = 6.78i j in. Substituting for v A and evaluating, we get Now relate the velocities of B and O 4 : v B = ( ω 3 )i + ( ω 3 )j in/s (2) where ω 4 = ω 4 k rad/s and r BA = 5.22i j in. Evaluting this, we get Equate (2) and (22) to obtain v B = v O4 +ω 4 r BO4 (21) }{{} = v B = 1.81ω 4 i 5.22ω 4 j in/s (22) i : ω 3 = 1.81ω 4 (23) j : ω 3 = 5.22ω 4 (24) I like to express these in matrix form: I solved these with MATLAB to yield [ ] [ ] ω3 = ω 4 ω 3 = 1.42k rad/s ω 4 = 15.39k rad/s [ ] (25) (26) (27) So both angular velocities are CCW, and link 4 is much faster than link 3. I guess that looks okay. (b) ADAMSSolution. An ADAMS screenshot of the mechanism (at θ 2 = 12 ) is shown below. The velocity plot is shown on the next page. 4
5 Here s the velocity plot, with lines drawn at 12. The results at the angle agree with the analytical. 2. ADAMS Analysis of Problem 3.9 Angular Velocity of Links 3 & Angular Velocity (rad/sec) Link 3 Angular Velocity (rad/s) Link 4 Angular Velocity (rad/s) Angle (deg) Problem 3.11 (ADAMS Only). A screenshot of my linkage in the initial position is shown below: 5
6 The velocity plot for this problem is shown below. Note that the velocity of point C is quite large near the limits of motion (typical). 8 Velocity of Point C and Angular Velocity of Link Velocity (ft/sec) Velocity of C (Xcomponent) Velocity of C (Y component) Omega 3 (rad/sec) Angular Velocity (rad/sec) Angle (deg) Problem 3.15: A position analysis using the loop closure equation shows that r AO4 = mm (28) Angle of AB with horizontal = , (29) and both these values will be needed. The figure is shown below, with those numerical values mm n n (a) Analytical Velocity: For the analytical velocity analysis, you ll need to use both the 2 points on a body and the one point moving on a body equations. Find the velocity of A using points O 2 (stationary) and A and the two points on a body relationship: So the velocity of A is known. v A = ω 2 r O2A = 225i 3897j mm/s (3) 6
7 Next find the velocity of A again, but now you relate links 3 and 4. You know the path of A relative to body 4. For this situation use the one point moving on a body equation, with A as the point, and 4 as the body, therefore written as follows: v A = v A4 + 4 v A (31) Consider equation (31) very carefully!! Point A 4 is point A in the figure. However...point A 4 is a point that is coincident with A, but FIXED TO BODY 4. You may think of it as a hypothetical extension of body 4 up to point A. The path of A 4 is a circular arc centered at O 4. Therefore, the velocity v A4 is tangential to that circle, and hence perpendicular to AB. So we know the direction of v A4, but not its magnitude. Finally, term 4 v A is the velocity of A relative to body 4. I visualize this by mentally fixing body 4, then examining the motion of A. All right, let s solve the problem. Referring to equation (31), we know velocity v A, it s given in equation (3). Next express v A4 as an unknown magnitude in a known direction. This can either be done using v A4 multiplied by the direction of the velocity, or using ω 4 and the cross product. Since the problem statement asks for the angular velocities of 3 and 4 (they re equal), I ll do that: v A4 = ω 4 r O4A = ω 4 k ( i j) = 37.51ω 4 i ω 4 j (32) Now express 4 v A as an unknown magnitude in a known direction: 4 v A = 4 v A (cos(11.17 i sin(11.17 j) = 4 v A (.9811i.1937j) (33) }{{} along AB Substituting into (31) and separating the i and j components, we get Angular velocities: Solving (34) and (35), we get results So the angular velocity vector of links 3 and 4 is i : 37.5ω v A3/4 = 225 (34) j : ω v A3/4 = 3897 (35) ω 4 = ω 3 = 22 rad/s (36) v A3/4 = 1453 mm/s (37) ω 3 = ω 4 = 22 k rad/s (CCW) (38) Velocity of point B: Knowing ω 3 we can relate the velocity of B to the velocity of A: v B = v A + ω 3 r AB = v A + 22k (392.42i 77.49j) = 545.3i j mm/s =.5453i j m/s = m/s (39) (4) (41) I expressed the last result for v B in polar form; this may be easier to visualize. (b) ADAMS Analysis. The path of Point B is shown at right. The yellow bar across the center is simply the initial position of link 3. What is NOT shown in this plot is the speed (magnitude of velocity) of point B as it moves along the path. In particular, the y velocity is quite large as θ 2 is near zero. Hopefully this will be shown in the velocity plots on the next page. 7
8 The plot of the velocity of point B appears below; the y velocity is large near θ 2 =. 15 Velocity of Point B 1 5 Velocity (m/sec) X Velocity of B (m/s) Y Velocity of B (m/s) Link 2 Angle (deg) At θ 2 = 15 the values for the velocity components are (v B ) x =.546 m/s (v B ) y = m/s (42) (43) which agree quite well with the analytical solution. The plot of ω 3 (same as ω 4 ) is: 25. Angular Velocity of Links 3 & 4 Same for both links. Angular Velocity (rad/sec) Link 2 Angle (deg) At θ 2 = 15 the value of the angular velocity is which also agrees well. ω 3 = ω 4 = rad/s (44) 8
Chapter 5 HW Solution
ME 314 Chapter 5 HW March 6, 1 Chapter 5 HW Solution Problem 5.: The reciprocating flatface follower motion is a rise of in with SHM in 18 of cam rotation, followed by a return with SHM in the remaining
More informationChapter 5 Introduction to Trigonometric Functions
Chapter 5 Introduction to Trigonometric Functions 5.1 Angles Section Exercises Verbal 1. Draw an angle in standard position. Label the vertex, initial side, and terminal side. 2. Explain why there are
More informationMOTION IN TWO OR THREE DIMENSIONS
MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position
More informationFORCE TABLE INTRODUCTION
FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar
More informationChapter 4. Motion in Two Dimensions
Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion
More informationNormal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N
Normal Force W = mg cos(θ) Normal force F N = mg cos(θ) Note there is no weight force parallel/down the include. The car is not pressing on anything causing a force in that direction. If there were a person
More informationForces on a banked airplane that travels in uniform circular motion.
Question (60) Forces on a banked airplane that travels in uniform circular motion. A propellerdriven airplane of mass 680 kg is turning in a horizontal circle with a constant speed of 280 km/h. Its bank
More informationExam 1 January 31, 2012
Exam 1 Instructions: You have 60 minutes to complete this exam. This is a closedbook, closednotes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic
More informationPhysics A  PHY 2048C
Physics A  PHY 2048C Newton s Laws & Equations of 09/27/2017 My Office Hours: Thursday 2:003:00 PM 212 Keen Building Warmup Questions 1 In uniform circular motion (constant speed), what is the direction
More informationIt is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).
Section 1.1 Direction Fields Key Terms/Ideas: Mathematical model Geometric behavior of solutions without solving the model using calculus Graphical description using direction fields Equilibrium solution
More informationContents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents
Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More informationChapter 4: Newton s Second Law F = m a. F = m a (4.2)
Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.
More information( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of
Factoring Review for Algebra II The saddest thing about not doing well in Algebra II is that almost any math teacher can tell you going into it what s going to trip you up. One of the first things they
More informationMATH H53 : MidTerm1
MATH H53 : MidTerm1 22nd September, 215 Name: You have 8 minutes to answer the questions. Use of calculators or study materials including textbooks, notes etc. is not permitted. Answer the questions
More information3. ANALYTICAL KINEMATICS
In planar mechanisms, kinematic analysis can be performed either analytically or graphically In this course we first discuss analytical kinematic analysis nalytical kinematics is based on projecting the
More information9/4/2017. Motion: Acceleration
Velocity Velocity (m/s) Position Velocity Position 9/4/217 Motion: Acceleration Summary Last : Find your clicker! Scalars: Distance, Speed Vectors: Position velocity Speed = Distance covered/time taken
More informationKinematics. Vector solutions. Vectors
Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2 directional motion Vector solutions Possible solution sets
More information5.3 GRAPHICAL VELOCITY ANALYSIS Instant Center Method
ME GRHL VELOTY NLYSS GRHL VELOTY NLYSS nstant enter Method nstant center of velocities is a simple graphical method for performing velocity analysis on mechanisms The method provides visual understanding
More informationIntroduction  Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim
Introduction  Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its
More information6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
More informationConservation of Angular Momentum
Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 79) will be at 6 PM, March 3, Lockett6
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationSlide 1 / 37. Rotational Motion
Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.
More informationEQUATIONS OF MOTION: CYLINDRICAL COORDINATES
Today s Objectives: Students will be able to: 1. Analyze the kinetics of a particle using cylindrical coordinates. EQUATIONS OF MOTION: CYLINDRICAL COORDINATES InClass Activities: Check Homework Reading
More informationGeneral Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,
More informationSection 1.6 Inverse Functions
0 Chapter 1 Section 1.6 Inverse Functions A fashion designer is travelling to Milan for a fashion show. He asks his assistant, Betty, what 7 degrees Fahrenheit is in Celsius, and after a quick search on
More information= constant of gravitation is G = N m 2 kg 2. Your goal is to find the radius of the orbit of a geostationary satellite.
Problem 1 Earth and a Geostationary Satellite (10 points) The earth is spinning about its axis with a period of 3 hours 56 minutes and 4 seconds. The equatorial radius of the earth is 6.38 10 6 m. The
More informationPreface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
alculus III Preface Here are my online notes for my alculus III course that I teach here at Lamar University. espite the fact that these are my class notes, they should be accessible to anyone wanting
More informationUniform Circular Motion
Uniform Circular Motion Introduction Earlier we defined acceleration as being the change in velocity with time: = Until now we have only talked about changes in the magnitude of the acceleration: the speeding
More informationSpacetime Diagrams Lab Exercise
Spacetime Diagrams Lab Exercise The spacetime diagram (also known as a Minkowski diagram) is a tool that can used to graphically describe complex problems in special relativity. In many cases, with a properly
More informationSequences & Functions
Ch. 5 Sec. 1 Sequences & Functions Skip Counting to Arithmetic Sequences When you skipped counted as a child, you were introduced to arithmetic sequences. Example 1: 2, 4, 6, 8, adding 2 Example 2: 10,
More informationNotes on multivariable calculus
Notes on multivariable calculus Jonathan Wise February 2, 2010 1 Review of trigonometry Trigonometry is essentially the study of the relationship between polar coordinates and Cartesian coordinates in
More informationCALCULATING MAGNETIC FIELDS & THE BIOTSAVART LAW. Purdue University Physics 241 Lecture 15 Brendan Sullivan
CALCULATING MAGNETIC FIELDS & THE BIOTSAVAT LAW Purdue University Physics 41 Lecture 15 Brendan Sullivan Introduction Brendan Sullivan, PHYS89, sullivb@purdue.edu Office Hours: By Appointment Just stop
More information2.5 The Fundamental Theorem of Algebra.
2.5. THE FUNDAMENTAL THEOREM OF ALGEBRA. 79 2.5 The Fundamental Theorem of Algebra. We ve seen formulas for the (complex) roots of quadratic, cubic and quartic polynomials. It is then reasonable to ask:
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationMTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta
MTH 77 Test 4 review sheet Chapter 13.113.4, 14.7, 14.8 Chalmeta Multiple Choice 1. Let r(t) = 3 sin t i + 3 cos t j + αt k. What value of α gives an arc length of 5 from t = 0 to t = 1? (a) 6 (b) 5 (c)
More informationMultiple Choice  TEST III
Multiple Choice Test IIIClassical Mechanics Multiple Choice  TEST III 1) n atomic particle whose mass is 210 atomic mass units collides with a stationary atomic particle B whose mass is 12 atomic mass
More informationSolutions for the Practice Final  Math 23B, 2016
olutions for the Practice Final  Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy
More informationChapter 3 Motion in two or three dimensions
Chapter 3 Motion in two or three dimensions Lecture by Dr. Hebin Li Announcements As requested by the Disability Resource Center: In this class there is a student who is a client of Disability Resource
More informationAlex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1
Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation
More informationCalculus: Preparation Problem Solutions
Calculus: Preparation Problem Solutions 1. If f(t) = 4e 0.75t, for what t does f(t) = 0.5? Leave your answer in terms of a logarithm and fractions. Solution The equation implied by this question is and
More informationThe Plane of Complex Numbers
The Plane of Complex Numbers In this chapter we ll introduce the complex numbers as a plane of numbers. Each complex number will be identified by a number on a real axis and a number on an imaginary axis.
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =
ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.
More informationMAT1193 1f. Linear functions (most closely related to section 1.4) But for now, we introduce the most important equation in this class:
MAT1193 1f. Linear functions (most closely related to section 1.4) Linear functions are some of the simplest functions we ll consider. They have special properties and play an important role in many areas
More informationCALCULUS III. Paul Dawkins
CALCULUS III Paul Dawkins Table of Contents Preface... iii Outline... iv Three Dimensional Space... Introduction... The D Coordinate System... Equations of Lines... 9 Equations of Planes... 5 Quadric
More informationMTH 133: Plane Trigonometry
MTH 133: Plane Trigonometry Radian Measure, Arc Length, and Area Angular and Linear Velocity Thomas W. Judson Department of Mathematics & Statistics Stephen F. Austin State University Fall 2017 Plane Trigonometry
More informationCams. 774 l Theory of Machines
774 l Theory of Machines 0 Fea eatur tures es 1. Introduction.. Classification of Followers. 3. Classification of Cams. 4. Terms used in Radial cams. 5. Motion of the Follower. 6. Displacement, Velocity
More informationLagrange Multipliers
Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each
More informationChapter 5 HW Solution
Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, timeinvariant system. Let s see, I
More information2. Relative and Circular Motion
2. Relative and Circular Motion A) Overview We will begin with a discussion of relative motion in one dimension. We will describe this motion in terms of displacement and velocity vectors which will allow
More informationThe common oscillating lawn sprinkler has a hollow curved sprinkler arm, with a
Design of an Oscillating Sprinkler Bart Braden Northern Kentucky University Highland Heights, KY 41076 Mathematics Magazine, January 1985, Volume 58, Number 1, pp. 9 38. The common oscillating lawn sprinkler
More informationConditional Probability, Independence and Bayes Theorem Class 3, Jeremy Orloff and Jonathan Bloom
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence of events. 2.
More informationMotion in Two or Three Dimensions
Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors
More informationGeneral Physics 1 Lab  PHY 2048L Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date. Part 1: Projectile Motion
General Physics 1 Lab  PHY 2048L Name Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date Author: Harsh Jain / PhET Source: Part 1: Projectile Motion http://phet.colorado.edu/en/simulation/projectilemotion
More informationCHAPTER 11 VectorValued Functions
CHAPTER VectorValued Functions Section. VectorValued Functions...................... 9 Section. Differentiation and Integration of VectorValued Functions.... Section. Velocit and Acceleration.....................
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More information8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES
8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES What is the standard form equation for a circle? Why do you use the distance formula when writing the equation of a circle? What general equation of a circle is
More informationPhysics A  PHY 2048C
Physics A  PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:003:00 PM 212 Keen Building Warmup Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment
More informationPractice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During
More informationGuidelines for implicit differentiation
Guidelines for implicit differentiation Given an equation with x s and y s scattered, to differentiate we use implicit differentiation. Some informal guidelines to differentiate an equation containing
More informationPhysics 211 Week 4. Work and Kinetic Energy: Block on Incline (Solutions)
Physics 211 Week 4 Work and Kinetic Energy: Block on Incline (Solutions) A block of mass 3 kg is moved up an incline that makes an angle of 37 o with the horizontal under the action of a constant horizontal
More informationTAYLOR POLYNOMIALS DARYL DEFORD
TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really
More informationt = g = 10 m/s 2 = 2 s T = 2π g
Annotated Answers to the 1984 AP Physics C Mechanics Multiple Choice 1. D. Torque is the rotational analogue of force; F net = ma corresponds to τ net = Iα. 2. C. The horizontal speed does not affect the
More informationVersion 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1
Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This printout should have 35 questions. Multiplechoice questions may continue on the next column or page find all choices before answering.
More informationThe hitch in all of this is figuring out the two principal angles and which principal stress goes with which principal angle.
Mohr s Circle The stress basic transformation equations that we developed allowed us to determine the stresses acting on an element regardless of its orientation as long as we know the basic stresses σx,
More informationMATH 2250 Exam 1 Solutions
MATH 2250 Exam 1 Solutions Name Answer every question on the exam there is no penalty for guessing. Calculators and similar aids are not allowed. There are a total of 60 points possible: 20 in Part 1,
More informationA) Yes B) No C) Impossible to tell from the information given.
Does escape speed depend on launch angle? That is, if a projectile is given an initial speed v o, is it more likely to escape an airless, nonrotating planet, if fired straight up than if fired at an angle?
More informationPES Physics 1 Practice Questions Exam 2. Name: Score: /...
Practice Questions Exam /page PES 0 003  Physics Practice Questions Exam Name: Score: /... Instructions Time allowed for this is exam is hour 5 minutes... multiple choice (... points)... written problems
More informationRotational & RigidBody Mechanics. Lectures 3+4
Rotational & RigidBody Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion  Definitions
More informationOvercoming the Limitations of Conservation of Linear Momentum by Including External Impulse
Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse March 12, 2008 The University of Tulsa MEPS Lunch Meeting 1 / 40 Motivation The University of Tulsa MEPS Lunch
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More informationVectors. Vector Practice Problems: Oddnumbered problems from
Vectors Vector Practice Problems: Oddnumbered problems from 3.13.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a
More informationBryn Mawr College Department of Physics Mathematics Readiness Examination for Introductory Physics
Brn Mawr College Department of Phsics Mathematics Readiness Eamination for Introductor Phsics There are 7 questions and ou should do this eam in two and a half hours. Do not use an books, calculators,
More informationChapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without
Chapter 10: Friction 101 Chapter 10 Friction A gem cannot be polished without friction, nor an individual perfected without trials. Lucius Annaeus Seneca (4 BC  65 AD) 10.1 Overview When two bodies are
More informationconventions and notation
Ph95a lecture notes, //0 The Bloch Equations A quick review of spin conventions and notation The quantum state of a spin particle is represented by a vector in a twodimensional complex Hilbert space
More informationA CURLFREE VECTOR FIELD THAT IS NOT A GRADIENT. Robert L. Foote. Math 225
A URLFREE VETOR FIELD THAT IS NOT A GRADIENT Robert L. Foote Math 225 Recall our main theorem about vector fields. Theorem. Let R be an open region in E 2 and let F be a vector field on R. The following
More informationACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations
ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its yintercept. In Euclidean geometry (where
More informationLagging Pendulum. Martin Ga
02 Lagging Pendulum Martin Ga 1 Task A pendulum consists of a strong thread and a bob. When the pivot of the pendulum starts moving along a horizontal circumference, the bob starts tracing a circle which
More informationEQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6)
EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) Today s Objectives: Students will be able to analyze the kinetics of a particle using cylindrical coordinates. APPLICATIONS The forces acting
More informationSection 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i.
1. Section 5.8 (i) ( 3 + i)(14 i) ( 3)(14 i) + i(14 i) {( 3)14 ( 3)(i)} + i(14) i(i) ( 4 + 6i) + (14i + ) 40 + 0i. (ii) + 3i 1 4i ( + 3i)(1 + 4i) (1 4i)(1 + 4i) (( + 3i) + ( + 3i)(4i) 1 + 4 10 + 11i 10
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More informationTHE DIFFRACTION GRATING SPECTROMETER
Purpose Theory THE DIFFRACTION GRATING SPECTROMETER a. To study diffraction of light using a diffraction grating spectrometer b. To measure the wavelengths of certain lines in the spectrum of the mercury
More informationCalculating Moments of Inertia
OpenStaxCNX module: m58330 1 Calculating Moments of Inertia OpenStax This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you
More informationBryant Grigsby (Physics BSc) Vice President of Operations and New Product Introduction Lumenetix Scotts Valley, CA
PHYSICIST PROFILE Bryant Grigsby (Physics BSc) Vice President of Operations and New Product Introduction Lumenetix Scotts Valley, CA Bryant first considered a business major but found it lacking in technical
More informationStewart  Calculus 8e Chapter 2 Form A. 1. Differentiate. 2. Find the limit. 3. Differentiate.
Stewart  Calculus 8e Chapter 2 Form A Multivariable Calculus 8th Edition Stewart TEST BANK Full clear download at: https://testbankreal.com/download/multivariablecalculus8theditionstewarttestbank/
More informationVenus Project Book, the Galileo Project, GEAR
1 Venus Project Book, the Galileo Project, GEAR Jeffrey La Favre November, 2013 Updated March 31, 2016 You have already learned about Galileo and his telescope. Recall that he built his first telescopes
More informationWhen using interval notation use instead of open circles, and use instead of solid dots.
P.1 Real Numbers PreCalculus P.1 REAL NUMBERS Learning Targets for P1 1. Describe an interval on the number line using inequalities. Describe an interval on the number line using interval notation (closed
More informationThe Cross Product of Two Vectors
The Cross roduct of Two Vectors In proving some statements involving surface integrals, there will be a need to approximate areas of segments of the surface by areas of parallelograms. Therefore it is
More informationPhys 270 Final Exam. Figure 1: Question 1
Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating
More informationWe introduce one more operation on sets, perhaps the most important
11. The power set Please accept my resignation. I don t want to belong to any club that will accept me as a member. Groucho Marx We introduce one more operation on sets, perhaps the most important one:
More informationChapter 8. Dynamics II: Motion in a Plane
Chapter 8. Dynamics II: Motion in a Plane A roller coaster doing a looptheloop is a dramatic example of circular motion. But why doesn t the car fall off the track when it s upside down at the top of
More informationChapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion
Chapter 4 Oscillatory Motion 4.1 The Important Stuff 4.1.1 Simple Harmonic Motion In this chapter we consider systems which have a motion which repeats itself in time, that is, it is periodic. In particular
More informationRotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics
Lecture 17 Chapter 10 Physics I 11.13.2013 otational Motion Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html
More informationMITOCW 18. Quiz Review From Optional Problem Set 8
MITOCW 18. Quiz Review From Optional Problem Set 8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational
More informationparticle p = m v F ext = d P = M d v cm dt
Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum
More informationDownloaded from 3. Motion in a straight line. Study of motion of objects along a straight line is known as rectilinear motion.
3. Motion in a straight line IMPORTANT POINTS Study of motion of objects along a straight line is known as rectilinear motion. If a body does not change its position with time it is said to be at rest.
More information11. The Series RLC Resonance Circuit
Electronicsab.nb. The Series RC Resonance Circuit Introduction Thus far we have studied a circuit involving a () series resistor R and capacitor C circuit as well as a () series resistor R and inductor
More information1.1. Rotational Kinematics Description Of Motion Of A Rotating Body
PHY 19 PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description
More information