Chapter 3 HW Solution

Size: px
Start display at page:

Download "Chapter 3 HW Solution"

Transcription

1 Chapter 3 HW Solution Problem 3.6: I placed an xy coordinate system at a convenient point (origin doesn t really matter). y 173 x The positions of both planes are given by r B = v B ti + 173j mi (1) r A = 1i + v A t(.77i +.77j) mi (2) The distance between A and B is the length (magnitude) of vector r AB, which is the vector from B to A (or the reverse; distance is the same). So we have r BA = r B r A (3) However, we re really interested in the magnitude of the vector r BA, denote that magnitude by length l: l(t) = r BA = (74t 1)i + ( 276t + 173)j mi (4) The magnitude (Euclidean norm) of a vector is simply the square root of the sum of the components squared, so l(t) = (74t 1) 2 + ( 276t + 173) 2 mi (5) Parts (a) and (b) of the problem should have been reversed: first you have to find the time, then you can find the distance. This is just a standard function minimization problem; e.g. take the first derivative and set it equal to zero. (b) The differentiation is simpler if you realize that when l(t) is at a minimum, so is [l(t)] 2. This removes the square root, and d [l(t)] 2 = d [ 81, 652t 2 11, 296t + 39, 929 ] = 163, 34t 11, 296 = (6) dt dt Solving (13) yields the time when the minimum separation occurs, which is If the planes leave at 6: p.m., then the time of minimum separation is t = 11, 296 =.675 hr = 4.52 min (7) 163, 34 t min = 6 : 4 : 31 p.m. (8) (a) To find the actual separation distance, substitute t min (expressed in fractional hours of (14)) into equation (12). The result I found was l min = mi (9) Although not required, I couldn t resist plotting separation distance vs time (MATLAB plot on next page); it seems to agree with my result. 1

2 Separation distance (mi) Time (min) (c) Although not required, you can also do this problem with ADAMS, you have to set up two bodies with the velocities of the planes, and a Point-to-Point measure for the distance between the two planes. You get the following plot: The minimum of the ADAMS plot occurs at t = 4.6 minutes, which is pretty close to the previous result. ADAMS separation distance is miles; again pretty close. The Problem 3.8: Do this analytically. Velocity of A along this line Velocity of B is known Points A and B are both on link 3, so they re related by the 2 pts on a body equation: v A = v B + ω 3 r BA (1) Velocity v B is known (along lower plane), the direction of velocity v A is known (along upper plane), and the angular velocity ω 3 is in the k direction (perpendicular to the plane). From the angles given, the upper plane is at angle of 2

3 15 from the horizontal. From inspection, block A is moving to the left, so we have v A ( cos 15 i sin 15 j) = 4i + ω 3 k.4( cos 3 i + sin 3 j) (11) Separating the i and j equations, there are i :.9659v a = 4.2ω 3 (12) j :.2588v a =.3463ω 3 (13) In matrix form, equations (12) (13) are Solving, we get [ ] [ ] va = ω 3 [ ] [ ] va m/s = ω rad/s [ ] 4 (14) (15) In terms of vectors, we have v A = v A ( cos 15 i sin 15 j), so v A = i j m/s ω 3 = k rad/s (16) (17) So link 3 is rotating CCW, which I think agrees with the sketch. And block A is sliding a little faster than block B (49 m/s compared with 4 m/s). Problem 3.9 In the 4-bar mechanism shown below, link 2 is driven at a constant angular velocity of ω 2 = 45 rad/s CCW. We want to find the angular velocities ω 3 and ω You will need the angles I found above in the analysis. You are to do this problem both analytically and using ADAMS. (a) Analytical Solution. This can be done using only 2 point on a body throughout. Start by finding the velocity of A: Next relate the velocities of A and B: v A = v O2 +ω 2 r O2A = 45k ( 2i j) = 155.9i 9j in/s (18) }{{} = v B = v A + ω 3 r AB (19) 3

4 where ω 3 = ω 3 k rad/s and r AB = 6.78i j in. Substituting for v A and evaluating, we get Now relate the velocities of B and O 4 : v B = ( ω 3 )i + ( ω 3 )j in/s (2) where ω 4 = ω 4 k rad/s and r BA = 5.22i j in. Evaluting this, we get Equate (2) and (22) to obtain v B = v O4 +ω 4 r BO4 (21) }{{} = v B = 1.81ω 4 i 5.22ω 4 j in/s (22) i : ω 3 = 1.81ω 4 (23) j : ω 3 = 5.22ω 4 (24) I like to express these in matrix form: I solved these with MATLAB to yield [ ] [ ] ω3 = ω 4 ω 3 = 1.42k rad/s ω 4 = 15.39k rad/s [ ] (25) (26) (27) So both angular velocities are CCW, and link 4 is much faster than link 3. I guess that looks okay. (b) ADAMSSolution. An ADAMS screenshot of the mechanism (at θ 2 = 12 ) is shown below. The velocity plot is shown on the next page. 4

5 Here s the velocity plot, with lines drawn at 12. The results at the angle agree with the analytical. 2. ADAMS Analysis of Problem 3.9 Angular Velocity of Links 3 & Angular Velocity (rad/sec) Link 3 Angular Velocity (rad/s) Link 4 Angular Velocity (rad/s) Angle (deg) Problem 3.11 (ADAMS Only). A screenshot of my linkage in the initial position is shown below: 5

6 The velocity plot for this problem is shown below. Note that the velocity of point C is quite large near the limits of motion (typical). 8 Velocity of Point C and Angular Velocity of Link Velocity (ft/sec) Velocity of C (X-component) Velocity of C (Y component) Omega 3 (rad/sec) Angular Velocity (rad/sec) Angle (deg) Problem 3.15: A position analysis using the loop closure equation shows that r AO4 = mm (28) Angle of AB with horizontal = , (29) and both these values will be needed. The figure is shown below, with those numerical values mm n n (a) Analytical Velocity: For the analytical velocity analysis, you ll need to use both the 2 points on a body and the one point moving on a body equations. Find the velocity of A using points O 2 (stationary) and A and the two points on a body relationship: So the velocity of A is known. v A = ω 2 r O2A = 225i 3897j mm/s (3) 6

7 Next find the velocity of A again, but now you relate links 3 and 4. You know the path of A relative to body 4. For this situation use the one point moving on a body equation, with A as the point, and 4 as the body, therefore written as follows: v A = v A4 + 4 v A (31) Consider equation (31) very carefully!! Point A 4 is point A in the figure. However...point A 4 is a point that is coincident with A, but FIXED TO BODY 4. You may think of it as a hypothetical extension of body 4 up to point A. The path of A 4 is a circular arc centered at O 4. Therefore, the velocity v A4 is tangential to that circle, and hence perpendicular to AB. So we know the direction of v A4, but not its magnitude. Finally, term 4 v A is the velocity of A relative to body 4. I visualize this by mentally fixing body 4, then examining the motion of A. All right, let s solve the problem. Referring to equation (31), we know velocity v A, it s given in equation (3). Next express v A4 as an unknown magnitude in a known direction. This can either be done using v A4 multiplied by the direction of the velocity, or using ω 4 and the cross product. Since the problem statement asks for the angular velocities of 3 and 4 (they re equal), I ll do that: v A4 = ω 4 r O4A = ω 4 k ( i j) = 37.51ω 4 i ω 4 j (32) Now express 4 v A as an unknown magnitude in a known direction: 4 v A = 4 v A (cos(11.17 i sin(11.17 j) = 4 v A (.9811i.1937j) (33) }{{} along AB Substituting into (31) and separating the i and j components, we get Angular velocities: Solving (34) and (35), we get results So the angular velocity vector of links 3 and 4 is i : 37.5ω v A3/4 = 225 (34) j : ω v A3/4 = 3897 (35) ω 4 = ω 3 = 22 rad/s (36) v A3/4 = 1453 mm/s (37) ω 3 = ω 4 = 22 k rad/s (CCW) (38) Velocity of point B: Knowing ω 3 we can relate the velocity of B to the velocity of A: v B = v A + ω 3 r AB = v A + 22k (392.42i 77.49j) = 545.3i j mm/s =.5453i j m/s = m/s (39) (4) (41) I expressed the last result for v B in polar form; this may be easier to visualize. (b) ADAMS Analysis. The path of Point B is shown at right. The yellow bar across the center is simply the initial position of link 3. What is NOT shown in this plot is the speed (magnitude of velocity) of point B as it moves along the path. In particular, the y velocity is quite large as θ 2 is near zero. Hopefully this will be shown in the velocity plots on the next page. 7

8 The plot of the velocity of point B appears below; the y velocity is large near θ 2 =. 15 Velocity of Point B 1 5 Velocity (m/sec) X Velocity of B (m/s) Y Velocity of B (m/s) Link 2 Angle (deg) At θ 2 = 15 the values for the velocity components are (v B ) x =.546 m/s (v B ) y = m/s (42) (43) which agree quite well with the analytical solution. The plot of ω 3 (same as ω 4 ) is: 25. Angular Velocity of Links 3 & 4 Same for both links. Angular Velocity (rad/sec) Link 2 Angle (deg) At θ 2 = 15 the value of the angular velocity is which also agrees well. ω 3 = ω 4 = rad/s (44) 8

Chapter 5 HW Solution

Chapter 5 HW Solution ME 314 Chapter 5 HW March 6, 1 Chapter 5 HW Solution Problem 5.: The reciprocating flat-face follower motion is a rise of in with SHM in 18 of cam rotation, followed by a return with SHM in the remaining

More information

Chapter 5 Introduction to Trigonometric Functions

Chapter 5 Introduction to Trigonometric Functions Chapter 5 Introduction to Trigonometric Functions 5.1 Angles Section Exercises Verbal 1. Draw an angle in standard position. Label the vertex, initial side, and terminal side. 2. Explain why there are

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Normal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N

Normal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N Normal Force W = mg cos(θ) Normal force F N = mg cos(θ) Note there is no weight force parallel/down the include. The car is not pressing on anything causing a force in that direction. If there were a person

More information

Forces on a banked airplane that travels in uniform circular motion.

Forces on a banked airplane that travels in uniform circular motion. Question (60) Forces on a banked airplane that travels in uniform circular motion. A propeller-driven airplane of mass 680 kg is turning in a horizontal circle with a constant speed of 280 km/h. Its bank

More information

Exam 1 January 31, 2012

Exam 1 January 31, 2012 Exam 1 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Newton s Laws & Equations of 09/27/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 In uniform circular motion (constant speed), what is the direction

More information

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ). Section 1.1 Direction Fields Key Terms/Ideas: Mathematical model Geometric behavior of solutions without solving the model using calculus Graphical description using direction fields Equilibrium solution

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

1 (20 pts) Nyquist Exercise

1 (20 pts) Nyquist Exercise EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of Factoring Review for Algebra II The saddest thing about not doing well in Algebra II is that almost any math teacher can tell you going into it what s going to trip you up. One of the first things they

More information

MATH H53 : Mid-Term-1

MATH H53 : Mid-Term-1 MATH H53 : Mid-Term-1 22nd September, 215 Name: You have 8 minutes to answer the questions. Use of calculators or study materials including textbooks, notes etc. is not permitted. Answer the questions

More information

3. ANALYTICAL KINEMATICS

3. ANALYTICAL KINEMATICS In planar mechanisms, kinematic analysis can be performed either analytically or graphically In this course we first discuss analytical kinematic analysis nalytical kinematics is based on projecting the

More information

9/4/2017. Motion: Acceleration

9/4/2017. Motion: Acceleration Velocity Velocity (m/s) Position Velocity Position 9/4/217 Motion: Acceleration Summary Last : Find your clicker! Scalars: Distance, Speed Vectors: Position velocity Speed = Distance covered/time taken

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

5.3 GRAPHICAL VELOCITY ANALYSIS Instant Center Method

5.3 GRAPHICAL VELOCITY ANALYSIS Instant Center Method ME GRHL VELOTY NLYSS GRHL VELOTY NLYSS nstant enter Method nstant center of velocities is a simple graphical method for performing velocity analysis on mechanisms The method provides visual understanding

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

More information

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

Description: Using conservation of energy, find the final velocity of a yo yo as it unwinds under the influence of gravity. Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES Today s Objectives: Students will be able to: 1. Analyze the kinetics of a particle using cylindrical coordinates. EQUATIONS OF MOTION: CYLINDRICAL COORDINATES In-Class Activities: Check Homework Reading

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Section 1.6 Inverse Functions

Section 1.6 Inverse Functions 0 Chapter 1 Section 1.6 Inverse Functions A fashion designer is travelling to Milan for a fashion show. He asks his assistant, Betty, what 7 degrees Fahrenheit is in Celsius, and after a quick search on

More information

= constant of gravitation is G = N m 2 kg 2. Your goal is to find the radius of the orbit of a geostationary satellite.

= constant of gravitation is G = N m 2 kg 2. Your goal is to find the radius of the orbit of a geostationary satellite. Problem 1 Earth and a Geostationary Satellite (10 points) The earth is spinning about its axis with a period of 3 hours 56 minutes and 4 seconds. The equatorial radius of the earth is 6.38 10 6 m. The

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. alculus III Preface Here are my online notes for my alculus III course that I teach here at Lamar University. espite the fact that these are my class notes, they should be accessible to anyone wanting

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Introduction Earlier we defined acceleration as being the change in velocity with time: = Until now we have only talked about changes in the magnitude of the acceleration: the speeding

More information

Spacetime Diagrams Lab Exercise

Spacetime Diagrams Lab Exercise Spacetime Diagrams Lab Exercise The spacetime diagram (also known as a Minkowski diagram) is a tool that can used to graphically describe complex problems in special relativity. In many cases, with a properly

More information

Sequences & Functions

Sequences & Functions Ch. 5 Sec. 1 Sequences & Functions Skip Counting to Arithmetic Sequences When you skipped counted as a child, you were introduced to arithmetic sequences. Example 1: 2, 4, 6, 8, adding 2 Example 2: 10,

More information

Notes on multivariable calculus

Notes on multivariable calculus Notes on multivariable calculus Jonathan Wise February 2, 2010 1 Review of trigonometry Trigonometry is essentially the study of the relationship between polar coordinates and Cartesian coordinates in

More information

CALCULATING MAGNETIC FIELDS & THE BIOT-SAVART LAW. Purdue University Physics 241 Lecture 15 Brendan Sullivan

CALCULATING MAGNETIC FIELDS & THE BIOT-SAVART LAW. Purdue University Physics 241 Lecture 15 Brendan Sullivan CALCULATING MAGNETIC FIELDS & THE BIOT-SAVAT LAW Purdue University Physics 41 Lecture 15 Brendan Sullivan Introduction Brendan Sullivan, PHYS89, sullivb@purdue.edu Office Hours: By Appointment Just stop

More information

2.5 The Fundamental Theorem of Algebra.

2.5 The Fundamental Theorem of Algebra. 2.5. THE FUNDAMENTAL THEOREM OF ALGEBRA. 79 2.5 The Fundamental Theorem of Algebra. We ve seen formulas for the (complex) roots of quadratic, cubic and quartic polynomials. It is then reasonable to ask:

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta

MTH 277 Test 4 review sheet Chapter , 14.7, 14.8 Chalmeta MTH 77 Test 4 review sheet Chapter 13.1-13.4, 14.7, 14.8 Chalmeta Multiple Choice 1. Let r(t) = 3 sin t i + 3 cos t j + αt k. What value of α gives an arc length of 5 from t = 0 to t = 1? (a) 6 (b) 5 (c)

More information

Multiple Choice -- TEST III

Multiple Choice -- TEST III Multiple Choice Test III--Classical Mechanics Multiple Choice -- TEST III 1) n atomic particle whose mass is 210 atomic mass units collides with a stationary atomic particle B whose mass is 12 atomic mass

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

Chapter 3 Motion in two or three dimensions

Chapter 3 Motion in two or three dimensions Chapter 3 Motion in two or three dimensions Lecture by Dr. Hebin Li Announcements As requested by the Disability Resource Center: In this class there is a student who is a client of Disability Resource

More information

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation

More information

Calculus: Preparation Problem Solutions

Calculus: Preparation Problem Solutions Calculus: Preparation Problem Solutions 1. If f(t) = 4e 0.75t, for what t does f(t) = 0.5? Leave your answer in terms of a logarithm and fractions. Solution The equation implied by this question is and

More information

The Plane of Complex Numbers

The Plane of Complex Numbers The Plane of Complex Numbers In this chapter we ll introduce the complex numbers as a plane of numbers. Each complex number will be identified by a number on a real axis and a number on an imaginary axis.

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) = ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.

More information

MAT1193 1f. Linear functions (most closely related to section 1.4) But for now, we introduce the most important equation in this class:

MAT1193 1f. Linear functions (most closely related to section 1.4) But for now, we introduce the most important equation in this class: MAT1193 1f. Linear functions (most closely related to section 1.4) Linear functions are some of the simplest functions we ll consider. They have special properties and play an important role in many areas

More information

CALCULUS III. Paul Dawkins

CALCULUS III. Paul Dawkins CALCULUS III Paul Dawkins Table of Contents Preface... iii Outline... iv Three Dimensional Space... Introduction... The -D Coordinate System... Equations of Lines... 9 Equations of Planes... 5 Quadric

More information

MTH 133: Plane Trigonometry

MTH 133: Plane Trigonometry MTH 133: Plane Trigonometry Radian Measure, Arc Length, and Area Angular and Linear Velocity Thomas W. Judson Department of Mathematics & Statistics Stephen F. Austin State University Fall 2017 Plane Trigonometry

More information

Cams. 774 l Theory of Machines

Cams. 774 l Theory of Machines 774 l Theory of Machines 0 Fea eatur tures es 1. Introduction.. Classification of Followers. 3. Classification of Cams. 4. Terms used in Radial cams. 5. Motion of the Follower. 6. Displacement, Velocity

More information

Lagrange Multipliers

Lagrange Multipliers Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each

More information

Chapter 5 HW Solution

Chapter 5 HW Solution Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, time-invariant system. Let s see, I

More information

2. Relative and Circular Motion

2. Relative and Circular Motion 2. Relative and Circular Motion A) Overview We will begin with a discussion of relative motion in one dimension. We will describe this motion in terms of displacement and velocity vectors which will allow

More information

The common oscillating lawn sprinkler has a hollow curved sprinkler arm, with a

The common oscillating lawn sprinkler has a hollow curved sprinkler arm, with a Design of an Oscillating Sprinkler Bart Braden Northern Kentucky University Highland Heights, KY 41076 Mathematics Magazine, January 1985, Volume 58, Number 1, pp. 9 38. The common oscillating lawn sprinkler

More information

Conditional Probability, Independence and Bayes Theorem Class 3, Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, Jeremy Orloff and Jonathan Bloom Conditional Probability, Independence and Bayes Theorem Class 3, 18.05 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence of events. 2.

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

General Physics 1 Lab - PHY 2048L Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date. Part 1: Projectile Motion

General Physics 1 Lab - PHY 2048L Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date. Part 1: Projectile Motion General Physics 1 Lab - PHY 2048L Name Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date Author: Harsh Jain / PhET Source: Part 1: Projectile Motion http://phet.colorado.edu/en/simulation/projectile-motion

More information

CHAPTER 11 Vector-Valued Functions

CHAPTER 11 Vector-Valued Functions CHAPTER Vector-Valued Functions Section. Vector-Valued Functions...................... 9 Section. Differentiation and Integration of Vector-Valued Functions.... Section. Velocit and Acceleration.....................

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES

8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES 8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES What is the standard form equation for a circle? Why do you use the distance formula when writing the equation of a circle? What general equation of a circle is

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

More information

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During

More information

Guidelines for implicit differentiation

Guidelines for implicit differentiation Guidelines for implicit differentiation Given an equation with x s and y s scattered, to differentiate we use implicit differentiation. Some informal guidelines to differentiate an equation containing

More information

Physics 211 Week 4. Work and Kinetic Energy: Block on Incline (Solutions)

Physics 211 Week 4. Work and Kinetic Energy: Block on Incline (Solutions) Physics 211 Week 4 Work and Kinetic Energy: Block on Incline (Solutions) A block of mass 3 kg is moved up an incline that makes an angle of 37 o with the horizontal under the action of a constant horizontal

More information

TAYLOR POLYNOMIALS DARYL DEFORD

TAYLOR POLYNOMIALS DARYL DEFORD TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really

More information

t = g = 10 m/s 2 = 2 s T = 2π g

t = g = 10 m/s 2 = 2 s T = 2π g Annotated Answers to the 1984 AP Physics C Mechanics Multiple Choice 1. D. Torque is the rotational analogue of force; F net = ma corresponds to τ net = Iα. 2. C. The horizontal speed does not affect the

More information

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

The hitch in all of this is figuring out the two principal angles and which principal stress goes with which principal angle.

The hitch in all of this is figuring out the two principal angles and which principal stress goes with which principal angle. Mohr s Circle The stress basic transformation equations that we developed allowed us to determine the stresses acting on an element regardless of its orientation as long as we know the basic stresses σx,

More information

MATH 2250 Exam 1 Solutions

MATH 2250 Exam 1 Solutions MATH 2250 Exam 1 Solutions Name Answer every question on the exam there is no penalty for guessing. Calculators and similar aids are not allowed. There are a total of 60 points possible: 20 in Part 1,

More information

A) Yes B) No C) Impossible to tell from the information given.

A) Yes B) No C) Impossible to tell from the information given. Does escape speed depend on launch angle? That is, if a projectile is given an initial speed v o, is it more likely to escape an airless, non-rotating planet, if fired straight up than if fired at an angle?

More information

PES Physics 1 Practice Questions Exam 2. Name: Score: /...

PES Physics 1 Practice Questions Exam 2. Name: Score: /... Practice Questions Exam /page PES 0 003 - Physics Practice Questions Exam Name: Score: /... Instructions Time allowed for this is exam is hour 5 minutes... multiple choice (... points)... written problems

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse

Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse March 12, 2008 The University of Tulsa MEPS Lunch Meeting 1 / 40 Motivation The University of Tulsa MEPS Lunch

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

Bryn Mawr College Department of Physics Mathematics Readiness Examination for Introductory Physics

Bryn Mawr College Department of Physics Mathematics Readiness Examination for Introductory Physics Brn Mawr College Department of Phsics Mathematics Readiness Eamination for Introductor Phsics There are 7 questions and ou should do this eam in two and a half hours. Do not use an books, calculators,

More information

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without Chapter 10: Friction 10-1 Chapter 10 Friction A gem cannot be polished without friction, nor an individual perfected without trials. Lucius Annaeus Seneca (4 BC - 65 AD) 10.1 Overview When two bodies are

More information

conventions and notation

conventions and notation Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space

More information

A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT. Robert L. Foote. Math 225

A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT. Robert L. Foote. Math 225 A URL-FREE VETOR FIELD THAT IS NOT A GRADIENT Robert L. Foote Math 225 Recall our main theorem about vector fields. Theorem. Let R be an open region in E 2 and let F be a vector field on R. The following

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Lagging Pendulum. Martin Ga

Lagging Pendulum. Martin Ga 02 Lagging Pendulum Martin Ga 1 Task A pendulum consists of a strong thread and a bob. When the pivot of the pendulum starts moving along a horizontal circumference, the bob starts tracing a circle which

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6)

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) Today s Objectives: Students will be able to analyze the kinetics of a particle using cylindrical coordinates. APPLICATIONS The forces acting

More information

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i.

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i. 1. Section 5.8 (i) ( 3 + i)(14 i) ( 3)(14 i) + i(14 i) {( 3)14 ( 3)(i)} + i(14) i(i) ( 4 + 6i) + (14i + ) 40 + 0i. (ii) + 3i 1 4i ( + 3i)(1 + 4i) (1 4i)(1 + 4i) (( + 3i) + ( + 3i)(4i) 1 + 4 10 + 11i 10

More information

Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring (taken from Giancoli, 4 th edition) Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

More information

THE DIFFRACTION GRATING SPECTROMETER

THE DIFFRACTION GRATING SPECTROMETER Purpose Theory THE DIFFRACTION GRATING SPECTROMETER a. To study diffraction of light using a diffraction grating spectrometer b. To measure the wavelengths of certain lines in the spectrum of the mercury

More information

Calculating Moments of Inertia

Calculating Moments of Inertia OpenStax-CNX module: m58330 1 Calculating Moments of Inertia OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you

More information

Bryant Grigsby (Physics BSc) Vice President of Operations and New Product Introduction Lumenetix Scotts Valley, CA

Bryant Grigsby (Physics BSc) Vice President of Operations and New Product Introduction Lumenetix Scotts Valley, CA PHYSICIST PROFILE Bryant Grigsby (Physics BSc) Vice President of Operations and New Product Introduction Lumenetix Scotts Valley, CA Bryant first considered a business major but found it lacking in technical

More information

Stewart - Calculus 8e Chapter 2 Form A. 1. Differentiate. 2. Find the limit. 3. Differentiate.

Stewart - Calculus 8e Chapter 2 Form A. 1. Differentiate. 2. Find the limit. 3. Differentiate. Stewart - Calculus 8e Chapter 2 Form A Multivariable Calculus 8th Edition Stewart TEST BANK Full clear download at: https://testbankreal.com/download/multivariable-calculus-8th-editionstewart-test-bank/

More information

Venus Project Book, the Galileo Project, GEAR

Venus Project Book, the Galileo Project, GEAR 1 Venus Project Book, the Galileo Project, GEAR Jeffrey La Favre November, 2013 Updated March 31, 2016 You have already learned about Galileo and his telescope. Recall that he built his first telescopes

More information

When using interval notation use instead of open circles, and use instead of solid dots.

When using interval notation use instead of open circles, and use instead of solid dots. P.1 Real Numbers PreCalculus P.1 REAL NUMBERS Learning Targets for P1 1. Describe an interval on the number line using inequalities. Describe an interval on the number line using interval notation (closed

More information

The Cross Product of Two Vectors

The Cross Product of Two Vectors The Cross roduct of Two Vectors In proving some statements involving surface integrals, there will be a need to approximate areas of segments of the surface by areas of parallelograms. Therefore it is

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

We introduce one more operation on sets, perhaps the most important

We introduce one more operation on sets, perhaps the most important 11. The power set Please accept my resignation. I don t want to belong to any club that will accept me as a member. Groucho Marx We introduce one more operation on sets, perhaps the most important one:

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane A roller coaster doing a loop-the-loop is a dramatic example of circular motion. But why doesn t the car fall off the track when it s upside down at the top of

More information

Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion

Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion Chapter 4 Oscillatory Motion 4.1 The Important Stuff 4.1.1 Simple Harmonic Motion In this chapter we consider systems which have a motion which repeats itself in time, that is, it is periodic. In particular

More information

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics Lecture 17 Chapter 10 Physics I 11.13.2013 otational Motion Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

MITOCW 18. Quiz Review From Optional Problem Set 8

MITOCW 18. Quiz Review From Optional Problem Set 8 MITOCW 18. Quiz Review From Optional Problem Set 8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

Downloaded from 3. Motion in a straight line. Study of motion of objects along a straight line is known as rectilinear motion.

Downloaded from  3. Motion in a straight line. Study of motion of objects along a straight line is known as rectilinear motion. 3. Motion in a straight line IMPORTANT POINTS Study of motion of objects along a straight line is known as rectilinear motion. If a body does not change its position with time it is said to be at rest.

More information

11. The Series RLC Resonance Circuit

11. The Series RLC Resonance Circuit Electronicsab.nb. The Series RC Resonance Circuit Introduction Thus far we have studied a circuit involving a () series resistor R and capacitor C circuit as well as a () series resistor R and inductor

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information