Chapter 3 HW Solution

Size: px
Start display at page:

Download "Chapter 3 HW Solution"

Transcription

1 Chapter 3 HW Solution Problem 3.6: I placed an xy coordinate system at a convenient point (origin doesn t really matter). y 173 x The positions of both planes are given by r B = v B ti + 173j mi (1) r A = 1i + v A t(.77i +.77j) mi (2) The distance between A and B is the length (magnitude) of vector r AB, which is the vector from B to A (or the reverse; distance is the same). So we have r BA = r B r A (3) However, we re really interested in the magnitude of the vector r BA, denote that magnitude by length l: l(t) = r BA = (74t 1)i + ( 276t + 173)j mi (4) The magnitude (Euclidean norm) of a vector is simply the square root of the sum of the components squared, so l(t) = (74t 1) 2 + ( 276t + 173) 2 mi (5) Parts (a) and (b) of the problem should have been reversed: first you have to find the time, then you can find the distance. This is just a standard function minimization problem; e.g. take the first derivative and set it equal to zero. (b) The differentiation is simpler if you realize that when l(t) is at a minimum, so is [l(t)] 2. This removes the square root, and d [l(t)] 2 = d [ 81, 652t 2 11, 296t + 39, 929 ] = 163, 34t 11, 296 = (6) dt dt Solving (13) yields the time when the minimum separation occurs, which is If the planes leave at 6: p.m., then the time of minimum separation is t = 11, 296 =.675 hr = 4.52 min (7) 163, 34 t min = 6 : 4 : 31 p.m. (8) (a) To find the actual separation distance, substitute t min (expressed in fractional hours of (14)) into equation (12). The result I found was l min = mi (9) Although not required, I couldn t resist plotting separation distance vs time (MATLAB plot on next page); it seems to agree with my result. 1

2 Separation distance (mi) Time (min) (c) Although not required, you can also do this problem with ADAMS, you have to set up two bodies with the velocities of the planes, and a Point-to-Point measure for the distance between the two planes. You get the following plot: The minimum of the ADAMS plot occurs at t = 4.6 minutes, which is pretty close to the previous result. ADAMS separation distance is miles; again pretty close. The Problem 3.8: Do this analytically. Velocity of A along this line Velocity of B is known Points A and B are both on link 3, so they re related by the 2 pts on a body equation: v A = v B + ω 3 r BA (1) Velocity v B is known (along lower plane), the direction of velocity v A is known (along upper plane), and the angular velocity ω 3 is in the k direction (perpendicular to the plane). From the angles given, the upper plane is at angle of 2

3 15 from the horizontal. From inspection, block A is moving to the left, so we have v A ( cos 15 i sin 15 j) = 4i + ω 3 k.4( cos 3 i + sin 3 j) (11) Separating the i and j equations, there are i :.9659v a = 4.2ω 3 (12) j :.2588v a =.3463ω 3 (13) In matrix form, equations (12) (13) are Solving, we get [ ] [ ] va = ω 3 [ ] [ ] va m/s = ω rad/s [ ] 4 (14) (15) In terms of vectors, we have v A = v A ( cos 15 i sin 15 j), so v A = i j m/s ω 3 = k rad/s (16) (17) So link 3 is rotating CCW, which I think agrees with the sketch. And block A is sliding a little faster than block B (49 m/s compared with 4 m/s). Problem 3.9 In the 4-bar mechanism shown below, link 2 is driven at a constant angular velocity of ω 2 = 45 rad/s CCW. We want to find the angular velocities ω 3 and ω You will need the angles I found above in the analysis. You are to do this problem both analytically and using ADAMS. (a) Analytical Solution. This can be done using only 2 point on a body throughout. Start by finding the velocity of A: Next relate the velocities of A and B: v A = v O2 +ω 2 r O2A = 45k ( 2i j) = 155.9i 9j in/s (18) }{{} = v B = v A + ω 3 r AB (19) 3

4 where ω 3 = ω 3 k rad/s and r AB = 6.78i j in. Substituting for v A and evaluating, we get Now relate the velocities of B and O 4 : v B = ( ω 3 )i + ( ω 3 )j in/s (2) where ω 4 = ω 4 k rad/s and r BA = 5.22i j in. Evaluting this, we get Equate (2) and (22) to obtain v B = v O4 +ω 4 r BO4 (21) }{{} = v B = 1.81ω 4 i 5.22ω 4 j in/s (22) i : ω 3 = 1.81ω 4 (23) j : ω 3 = 5.22ω 4 (24) I like to express these in matrix form: I solved these with MATLAB to yield [ ] [ ] ω3 = ω 4 ω 3 = 1.42k rad/s ω 4 = 15.39k rad/s [ ] (25) (26) (27) So both angular velocities are CCW, and link 4 is much faster than link 3. I guess that looks okay. (b) ADAMSSolution. An ADAMS screenshot of the mechanism (at θ 2 = 12 ) is shown below. The velocity plot is shown on the next page. 4

5 Here s the velocity plot, with lines drawn at 12. The results at the angle agree with the analytical. 2. ADAMS Analysis of Problem 3.9 Angular Velocity of Links 3 & Angular Velocity (rad/sec) Link 3 Angular Velocity (rad/s) Link 4 Angular Velocity (rad/s) Angle (deg) Problem 3.11 (ADAMS Only). A screenshot of my linkage in the initial position is shown below: 5

6 The velocity plot for this problem is shown below. Note that the velocity of point C is quite large near the limits of motion (typical). 8 Velocity of Point C and Angular Velocity of Link Velocity (ft/sec) Velocity of C (X-component) Velocity of C (Y component) Omega 3 (rad/sec) Angular Velocity (rad/sec) Angle (deg) Problem 3.15: A position analysis using the loop closure equation shows that r AO4 = mm (28) Angle of AB with horizontal = , (29) and both these values will be needed. The figure is shown below, with those numerical values mm n n (a) Analytical Velocity: For the analytical velocity analysis, you ll need to use both the 2 points on a body and the one point moving on a body equations. Find the velocity of A using points O 2 (stationary) and A and the two points on a body relationship: So the velocity of A is known. v A = ω 2 r O2A = 225i 3897j mm/s (3) 6

7 Next find the velocity of A again, but now you relate links 3 and 4. You know the path of A relative to body 4. For this situation use the one point moving on a body equation, with A as the point, and 4 as the body, therefore written as follows: v A = v A4 + 4 v A (31) Consider equation (31) very carefully!! Point A 4 is point A in the figure. However...point A 4 is a point that is coincident with A, but FIXED TO BODY 4. You may think of it as a hypothetical extension of body 4 up to point A. The path of A 4 is a circular arc centered at O 4. Therefore, the velocity v A4 is tangential to that circle, and hence perpendicular to AB. So we know the direction of v A4, but not its magnitude. Finally, term 4 v A is the velocity of A relative to body 4. I visualize this by mentally fixing body 4, then examining the motion of A. All right, let s solve the problem. Referring to equation (31), we know velocity v A, it s given in equation (3). Next express v A4 as an unknown magnitude in a known direction. This can either be done using v A4 multiplied by the direction of the velocity, or using ω 4 and the cross product. Since the problem statement asks for the angular velocities of 3 and 4 (they re equal), I ll do that: v A4 = ω 4 r O4A = ω 4 k ( i j) = 37.51ω 4 i ω 4 j (32) Now express 4 v A as an unknown magnitude in a known direction: 4 v A = 4 v A (cos(11.17 i sin(11.17 j) = 4 v A (.9811i.1937j) (33) }{{} along AB Substituting into (31) and separating the i and j components, we get Angular velocities: Solving (34) and (35), we get results So the angular velocity vector of links 3 and 4 is i : 37.5ω v A3/4 = 225 (34) j : ω v A3/4 = 3897 (35) ω 4 = ω 3 = 22 rad/s (36) v A3/4 = 1453 mm/s (37) ω 3 = ω 4 = 22 k rad/s (CCW) (38) Velocity of point B: Knowing ω 3 we can relate the velocity of B to the velocity of A: v B = v A + ω 3 r AB = v A + 22k (392.42i 77.49j) = 545.3i j mm/s =.5453i j m/s = m/s (39) (4) (41) I expressed the last result for v B in polar form; this may be easier to visualize. (b) ADAMS Analysis. The path of Point B is shown at right. The yellow bar across the center is simply the initial position of link 3. What is NOT shown in this plot is the speed (magnitude of velocity) of point B as it moves along the path. In particular, the y velocity is quite large as θ 2 is near zero. Hopefully this will be shown in the velocity plots on the next page. 7

8 The plot of the velocity of point B appears below; the y velocity is large near θ 2 =. 15 Velocity of Point B 1 5 Velocity (m/sec) X Velocity of B (m/s) Y Velocity of B (m/s) Link 2 Angle (deg) At θ 2 = 15 the values for the velocity components are (v B ) x =.546 m/s (v B ) y = m/s (42) (43) which agree quite well with the analytical solution. The plot of ω 3 (same as ω 4 ) is: 25. Angular Velocity of Links 3 & 4 Same for both links. Angular Velocity (rad/sec) Link 2 Angle (deg) At θ 2 = 15 the value of the angular velocity is which also agrees well. ω 3 = ω 4 = rad/s (44) 8

Chapter 5 HW Solution

Chapter 5 HW Solution ME 314 Chapter 5 HW March 6, 1 Chapter 5 HW Solution Problem 5.: The reciprocating flat-face follower motion is a rise of in with SHM in 18 of cam rotation, followed by a return with SHM in the remaining

More information

ENGR DYNAMICS. Rigid-body Lecture 4. Relative motion analysis: acceleration. Acknowledgements

ENGR DYNAMICS. Rigid-body Lecture 4. Relative motion analysis: acceleration. Acknowledgements ENGR 2030 -DYNAMICS Rigid-body Lecture 4 Relative motion analysis: acceleration Acknowledgements These lecture slides were provided by, and are the copyright of, Prentice Hall (*) as part of the online

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Motion Part 4: Projectile Motion

Motion Part 4: Projectile Motion Motion Part 4: Projectile Motion Last modified: 28/03/2017 CONTENTS Projectile Motion Uniform Motion Equations Projectile Motion Equations Trajectory How to Approach Problems Example 1 Example 2 Example

More information

Exam 1 September 11, 2013

Exam 1 September 11, 2013 Exam 1 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use an approved calculator during the exam. Usage of mobile phones and other

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

Mechanics Cycle 1 Chapter 12. Chapter 12. Forces Causing Curved Motion

Mechanics Cycle 1 Chapter 12. Chapter 12. Forces Causing Curved Motion Chapter 1 Forces Causing Curved Motion A Force Must be Applied to Change Direction Coordinates, Angles, Angular Velocity, and Angular Acceleration Centripetal Acceleration and Tangential Acceleration Along

More information

PLANAR RIGID BODY MOTION: TRANSLATION &

PLANAR RIGID BODY MOTION: TRANSLATION & PLANAR RIGID BODY MOTION: TRANSLATION & Today s Objectives : ROTATION Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

Chapter 5 Introduction to Trigonometric Functions

Chapter 5 Introduction to Trigonometric Functions Chapter 5 Introduction to Trigonometric Functions 5.1 Angles Section Exercises Verbal 1. Draw an angle in standard position. Label the vertex, initial side, and terminal side. 2. Explain why there are

More information

Mathematics 123.3: Solutions to Lab Assignment #1

Mathematics 123.3: Solutions to Lab Assignment #1 Mathematics 123.3: Solutions to Lab Assignment #1 2x 2 1 if x= 1/2 (A12) 1 2x 2 = 1 2x 2 if 1/2

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other. However,

More information

Planar Rigid Body Kinematics Homework

Planar Rigid Body Kinematics Homework Chapter 2: Planar Rigid ody Kinematics Homework Chapter 2 Planar Rigid ody Kinematics Homework Freeform c 2018 2-1 Chapter 2: Planar Rigid ody Kinematics Homework 2-2 Freeform c 2018 Chapter 2: Planar

More information

EXAM 1. OPEN BOOK AND CLOSED NOTES.

EXAM 1. OPEN BOOK AND CLOSED NOTES. ME 35 - Machine Design I Summer Semester 013 Name of Student Lab Section Number EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, June 6th, 013 Use the blank paper provided for your solutions. Write on one

More information

Planar Rigid Body Kinematics Homework

Planar Rigid Body Kinematics Homework Chapter 2 Planar Rigid ody Kinematics Homework Freeform c 2016 2-1 2-2 Freeform c 2016 Homework 2. Given: The pulley shown below freely rotates about point C and interacts with two rubber belts (one horizontal,

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 23: Ch.16, Sec.7

CEE 271: Applied Mechanics II, Dynamics Lecture 23: Ch.16, Sec.7 1 / 26 CEE 271: Applied Mechanics II, Dynamics Lecture 23: Ch.16, Sec.7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, Nov. 8, 2012 2 / 26 RELATIVE MOTION

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Chapter 3 Velocity Analysis

Chapter 3 Velocity Analysis Chapter 3 Velocity nalysis The position of point with respect to 0, Fig 1 may be defined mathematically in either polar or Cartesian form. Two scalar quantities, the length R and the angle θ with respect

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Kinematics of Mechanisms 6 Acceleration

Kinematics of Mechanisms 6 Acceleration Kinematics of Mechanisms 6 Acceleration Latifah Nurahmi Latifah.nurahmi@gmail.com Room C.250 Acceleration analysis Acceleration analysis: Determine the manner in which certain points on the mechanism are

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Chapter 3. Radian Measure and Dynamic Trigonometry

Chapter 3. Radian Measure and Dynamic Trigonometry Chapter 3 Radian Measure and Dynamic Trigonometry 1 Chapter 3 Topics Angle Measure in Radians Length, Velocity and Area of a Circular sector Unit Circle Trig and Real Numbers 2 Chapter 3.1 Angle Measure

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

When the ball reaches the break in the circle, which path will it follow?

When the ball reaches the break in the circle, which path will it follow? Checking Understanding: Circular Motion Dynamics When the ball reaches the break in the circle, which path will it follow? Slide 6-21 Answer When the ball reaches the break in the circle, which path will

More information

Review of Engineering Dynamics

Review of Engineering Dynamics Review of Engineering Dynamics Part 1: Kinematics of Particles and Rigid Bodies by James Doane, PhD, PE Contents 1.0 Course Overview... 4.0 Basic Introductory Concepts... 4.1 Introduction... 4.1.1 Vectors

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Angles and Applications

Angles and Applications CHAPTER 1 Angles and Applications 1.1 Introduction Trigonometry is the branch of mathematics concerned with the measurement of the parts, sides, and angles of a triangle. Plane trigonometry, which is the

More information

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response. University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 5-8 pm NAME: 1.

More information

ME Machine Design I. EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, September 30th, 2009

ME Machine Design I. EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, September 30th, 2009 ME - Machine Design I Fall Semester 009 Name Lab. Div. EXAM. OPEN BOOK AND CLOSED NOTES. Wednesday, September 0th, 009 Please use the blank paper provided for your solutions. Write on one side of the paper

More information

F A C U L T Y O F E D U C A T I O N. Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group

F A C U L T Y O F E D U C A T I O N. Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

More information

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Lesson 6.2 Before we look at the unit circle with respect to the trigonometric functions, we need to get some

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Q 100 OA = 30 AB = 80 BQ = 100 BC = rpm. All dimensions are in mm

Q 100 OA = 30 AB = 80 BQ = 100 BC = rpm. All dimensions are in mm rolem 6: A toggle mechanism is shown in figure along with the diagrams of the links in mm. find the velocities of the points B and C and the angular velocities of links AB, BQ and BC. The crank rotates

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How

More information

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by.

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by. Chapter 6. Trigonometric Functions of Angles 6.1 Angle Measure Radian Measure 1 radians = 180º Therefore, o 180 π 1 rad =, or π 1º = 180 rad Angle Measure Conversions π 1. To convert degrees to radians,

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination Monday February 24, 2014; 7:00 pm 8:30 pm

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination Monday February 24, 2014; 7:00 pm 8:30 pm Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination Monday February 4, 014; 7:00 pm 8:30 pm 1. No notes or textbooks allowed.. Formula sheets are included (may

More information

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion Lecture 10 Goals: Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapters 8 & 9, due 3/4, Wednesday) For Tuesday: Finish reading Chapter 8, start Chapter 9. Physics 207: Lecture

More information

Section 5-7 : Green's Theorem

Section 5-7 : Green's Theorem Section 5-7 : Green's Theorem In this section we are going to investigate the relationship between certain kinds of line integrals (on closed paths) and double integrals. Let s start off with a simple

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Normal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N

Normal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N Normal Force W = mg cos(θ) Normal force F N = mg cos(θ) Note there is no weight force parallel/down the include. The car is not pressing on anything causing a force in that direction. If there were a person

More information

Forces on a banked airplane that travels in uniform circular motion.

Forces on a banked airplane that travels in uniform circular motion. Question (60) Forces on a banked airplane that travels in uniform circular motion. A propeller-driven airplane of mass 680 kg is turning in a horizontal circle with a constant speed of 280 km/h. Its bank

More information

Chapter 5. Section 5.1. Section ( x ) ( y ) 7. ( x ) ( y ) (0, 3 + 5) and (0, 3 5)

Chapter 5. Section 5.1. Section ( x ) ( y ) 7. ( x ) ( y ) (0, 3 + 5) and (0, 3 5) 9 Chapter Section.. 0. ( x ) ( y ). ( x 7 ) + ( y+ ) = 9 7. ( x ) ( y ) 8 + + 0 = 8 + 8 = 9.. (0, + ) and (0, ). (.60786, 7.6887). (-.07,.8) 7. 9.87 miles Section. 70 0 -.. 00. 0 7. 9.. 8 9.. miles 7.

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if Unit Speed Curves Recall that a curve Α is said to be a unit speed curve if The reason that we like unit speed curves that the parameter t is equal to arc length; i.e. the value of t tells us how far along

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Engineering Mechanics Prof. Siva Kumar Department of Civil Engineering Indian Institute of Technology, Madras Statics - 5.2

Engineering Mechanics Prof. Siva Kumar Department of Civil Engineering Indian Institute of Technology, Madras Statics - 5.2 Engineering Mechanics Prof. Siva Kumar Department of Civil Engineering Indian Institute of Technology, Madras Statics - 5.2 Now what we want to do is given a surface which is let s assume the surface is

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

Exam 1 January 31, 2012

Exam 1 January 31, 2012 Exam 1 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Math 3c Solutions: Exam 2 Fall 2017

Math 3c Solutions: Exam 2 Fall 2017 Math 3c Solutions: Exam Fall 07. 0 points) The graph of a smooth vector-valued function is shown below except that your irresponsible teacher forgot to include the orientation!) Several points are indicated

More information

Chapter 1: Trigonometric Functions 1. Find (a) the complement and (b) the supplement of 61. Show all work and / or support your answer.

Chapter 1: Trigonometric Functions 1. Find (a) the complement and (b) the supplement of 61. Show all work and / or support your answer. Trig Exam Review F07 O Brien Trigonometry Exam Review: Chapters,, To adequately prepare for the exam, try to work these review problems using only the trigonometry knowledge which you have internalized

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Module 10 - Lecture 24 Kinematics of a particle moving on a curve Today,

More information

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 7 Gauss s Law Good morning. Today, I want to discuss two or three

More information

Final Exam December 15, 2014

Final Exam December 15, 2014 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use the ME approved calculator only during the exam. Usage of mobile phones

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010 ME 35 - Machine Design I Spring Semester 010 Name of Student Lab. Div. Number EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 010 Please use the blank paper provided for your solutions. Write

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Example 1 Give the degree measure of the angle shown on the circle.

Example 1 Give the degree measure of the angle shown on the circle. Section 5. Angles 307 Section 5. Angles Because many applications involving circles also involve q rotation of the circle, it is natural to introduce a measure for the rotation, or angle, between two rays

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Exam 2, Phy 2049, Spring Solutions:

Exam 2, Phy 2049, Spring Solutions: Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have

More information

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ). Section 1.1 Direction Fields Key Terms/Ideas: Mathematical model Geometric behavior of solutions without solving the model using calculus Graphical description using direction fields Equilibrium solution

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. The diagram above shows the sector OA of a circle with centre O, radius 9 cm and angle 0.7 radians. Find the length of the arc A. Find the area of the sector OA. The line AC shown in the diagram above

More information

MATH H53 : Mid-Term-1

MATH H53 : Mid-Term-1 MATH H53 : Mid-Term-1 22nd September, 215 Name: You have 8 minutes to answer the questions. Use of calculators or study materials including textbooks, notes etc. is not permitted. Answer the questions

More information

Introduction to Mechanics Unit Conversions Order of Magnitude

Introduction to Mechanics Unit Conversions Order of Magnitude Introduction to Mechanics Unit Conversions Order of Magnitude Lana Sheridan De Anza College Sept 28, 2017 Last time symbols for scaling units scientific notation precision and accuracy dimensional analysis

More information

1 (20 pts) Nyquist Exercise

1 (20 pts) Nyquist Exercise EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

More information

5.1 Angles and Their Measurements

5.1 Angles and Their Measurements Graduate T.A. Department of Mathematics Dnamical Sstems and Chaos San Diego State Universit November 8, 2011 A ra is the set of points which are part of a line which is finite in one direction, but infinite

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

Forces Part 1: Newton s Laws

Forces Part 1: Newton s Laws Forces Part 1: Newton s Laws Last modified: 13/12/2017 Forces Introduction Inertia & Newton s First Law Mass & Momentum Change in Momentum & Force Newton s Second Law Example 1 Newton s Third Law Common

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

Section 4.1: Related Rates

Section 4.1: Related Rates 1 Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 67 # 1-19 odd, 3, 5, 9 In a related rates problem, we want to compute the rate of change of one quantity in terms of the

More information

Problem Goldstein 2-12

Problem Goldstein 2-12 Problem Goldstein -1 The Rolling Constraint: A small circular hoop of radius r and mass m hoop rolls without slipping on a stationary cylinder of radius R. The only external force is that of gravity. Let

More information

Biot-Savart. The equation is this:

Biot-Savart. The equation is this: Biot-Savart When a wire carries a current, this current produces a magnetic field in the vicinity of the wire. One way of determining the strength and direction of this field is with the Law of Biot-Savart.

More information

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/ Name (print): Lab (circle): W8 Th8 Th11 Th2 F8 Trigonometric Identities ( cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos θ π ) 2 Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees)

More information

Physics 2514 Lecture 22

Physics 2514 Lecture 22 Physics 2514 Lecture 22 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/15 Information Information needed for the exam Exam will be in the same format as the practice

More information

In physics, motion in circles is just as important as motion along lines, but there are all

In physics, motion in circles is just as important as motion along lines, but there are all Chapter 6 Round and Round: Circular Motion In This Chapter Converting angles Handling period and frequency Working with angular frequency Using angular acceleration In physics, motion in circles is just

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

CURVILINEAR MOTION: CYLINDRICAL COMPONENTS

CURVILINEAR MOTION: CYLINDRICAL COMPONENTS CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Today s Objectives: Students will be able to: 1 Determine velocity and acceleration components using cylindrical coordinates In-Class Activities: Check Homework

More information

3. ANALYTICAL KINEMATICS

3. ANALYTICAL KINEMATICS In planar mechanisms, kinematic analysis can be performed either analytically or graphically In this course we first discuss analytical kinematic analysis nalytical kinematics is based on projecting the

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

Chapter 8: Dynamics in a plane

Chapter 8: Dynamics in a plane 8.1 Dynamics in 2 Dimensions p. 210-212 Chapter 8: Dynamics in a plane 8.2 Velocity and Acceleration in uniform circular motion (a review of sec. 4.6) p. 212-214 8.3 Dynamics of Uniform Circular Motion

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers.

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers. 2 VECTORS, POINTS, and LINEAR ALGEBRA. At first glance, vectors seem to be very simple. It is easy enough to draw vector arrows, and the operations (vector addition, dot product, etc.) are also easy to

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information