ON THE SPEED OF A PLANAR RANDOM WALK AVOIDING ITS PAST CONVEX HULL. By Martin P.W. Zerner

Size: px
Start display at page:

Download "ON THE SPEED OF A PLANAR RANDOM WALK AVOIDING ITS PAST CONVEX HULL. By Martin P.W. Zerner"

Transcription

1 ON THE SPEED OF A PLANAR RANDOM WALK AVOIDING ITS PAST CONVEX HULL By Martn P.W. Zerner Abstract. We consder a random walk n R 2 whch takes steps unformly dstrbuted on the unt crcle centered around the walker s current poston but avods the convex hull of ts past postons. Ths model has been ntroduced and studed by Angel, Benjamn and Vrág. We show a large devaton estmate for the dstance of the walker from the orgn, whch mples that the walker has postve lm nf speed. 1. Introducton Angel, Benjamn and Vrág ntroduced and studed n [1] the followng model of a random walk (X n ) n 0 n R 2, whch they called the rancher. The walker starts at the orgn X 0 = 0. Suppose t has already taken n steps (n 0) and s currently at X n. Then ts next poston X n+1 s unformly dstrbuted on the unt crcle centered around X n but condtoned so that the straght lne segment X n, X n+1 from X n to X n+1 does not ntersect the convex hull K n of the past postons {X 0, X 1,..., X n }, see Fgure 1. Note that (X n ) n 0 s not Markovan snce n general one needs to know the whole hstory of the process n order to determne the transton probabltes for the next step. Ths makes ths model more dffcult to analyze than a Markovan random walk, a property t shares wth many other selfnteractng processes, see [1] and also [2] for references. We do not clam that ths model s of partcular mportance or that ts defnton s very natural. However, n the class of all self-nteractng processes t seems to be among the few models whch are at least partally analyzable and stll have some strkng propertes. Several such propertes have been conjectured by Angel, Benjamn and Vrág n [1]. Based on smulatons and heurstcs, the authors of [1] beleve 2000 Mathematcs Subject Classfcaton. 60K35. Secondary 60G50, 52A22. Key words: convex hull, large devatons, law of large numbers, random walk, self avodng, speed. Current address: Mathematsches Insttut, Unverstät Tübngen, Auf der Morgenstelle 10, D Tübngen, Germany. Emal: martn.zerner@mathematk.un-tuebngen.de. 1

2 2 RANDOM WALK AVOIDING ITS CONVEX HULL X2 X3 X =0 0 K 2 X 1 Fgure 1. Three steps of the walk. X 3 s unformly dstrbuted on the bold arc of the crcle wth radus 1, centered n X 2. e.g. that the drecton of the walk converges,.e. that X n / X n converges P -a.s. to a random drecton, see [1, Conjecture 1]. Moreover, f we denote by w n as a measure for transversal fluctuatons the maxmal dstance of a pont n K n from the lne X 0, X n, then Angel, Benjamn and Vrág conjecture that w n grows lke n 3/4, see [1, Conjecture 2]. As far as results are concerned, the only major rgorous result whch has been proved so far for ths model to the best of our knowledge s that the walk has postve lm sup speed,.e. there s a constant c > 0 such that P -a.s. lm sup X n /n > c as n, see [1, Theorem 1]. Here (Ω, F, P ) s the underlyng probablty space. The purpose of the present paper s to mprove ths result by showng the followng. Theorem 1. There s a constant c 1 > 0 such that 1 (1) lm sup n n log P [ X n c 1 n] < 0 and consequently, (2) lm nf n X n n c 1 P -a.s.. In partcular, (2) proves [1, Conjecture 4]. We expect but were not able to prove that the speed lm X n /n exsts and s P -a.s. constant, as conjectured n [1, Conjecture 5]. Let us now descrbe how the present artcle s organzed. The next secton ntroduces general notaton and gves a short overvew of the proof. In Secton 3 we ntroduce some sub- and supermartngales, whch enable us n Secton 4 to bound exponental moments of the tme t takes the dameter of the convex hull K n to ncrease. From ths we deduce n Secton 5 estmates

3 RANDOM WALK AVOIDING ITS CONVEX HULL 3 γ := ext tme from +1 after τ σ +1 := ext tme from Kτ +n X τ Z,n,n +n Y D R,n X τ γd τ dτ X k() Fgure 2. General notaton for the dameter of K n smlar to the ones clamed n Theorem 1 for X n and show how ths mples Theorem Notaton and outlne of proof We denote by d n the dameter of K n. Snce (K n ) n s an ncreasng sequence of sets, (d n ) n s non-decreasng. The ladder tmes τ at whch the process (d n ) n 0 strctly ncreases are defned recursvely by τ 0 := 0 and τ +1 := nf{n > τ : d n > d τ } ( 0). It follows from [1] that P -a.s. τ < for all 0. In Secton 4 we wll reprove ths fact by showng that the dfferences := τ +1 τ ( 0), between two successve fnte ladder tmes have some fnte exponental moments. Note that τ 1 = 1 snce d 0 = 0 and d 1 = 1 and observe that the τ s are stoppng tmes wth respect to the canoncal fltraton (F n ) n 0 generated by (X n ) n 0. Snce the dameter of a bounded convex set s the dstance between two of ts extremal ponts there s for all 1 wth τ < a (P -a.s. unque) 0 k() < τ such that d τ = X τ X k(), see Fgure 2. For x R 2 and r > 0 we denote by B(x, r) the closed dsk wth center x and radus r. If τ < then σ +1 := nf{n 0 X n / B(X τ, d τ ) B(X k(), d τ )}

4 4 RANDOM WALK AVOIDING ITS CONVEX HULL boundary of lens X k() X τ X τ+n Drft Fgure 3. Idealzed pcture, assumng d τ =. Whenever the walker crosses a wedge for the frst tme, whch occurs at a postve rate, t has n the next step a postve drft towards the boundary of the lens. s the ext tme of the walk from the large lens shaped regon shown n Fgure 2, whch we shall refer to as the lens created at tme τ. Observe that K τ s contaned n the lens created at tme τ. Moreover, (3) τ +1 σ +1 snce f σ +1 <, X σ+1 has a dstance from ether X τ or X k() greater than d τ. We have now ntroduced enough notaton to be able to outlne the dea of the proof of Theorem 1. Outlne of Proof. To show that ( X n ) n s growng at a postve rate we shall frst show that (d n ) n s dong so. To ths end we shall bound exponental moments of the s. Ths s the heart of the proof and done as follows. Suppose that d n s already qute large and that we have just reached a new ladder tme τ, at whch the dameter has ncreased. Due to (3) the dameter can stay constant only as long as the walk s hdng n the lens created at tme τ. However, there are two mechansms, correspondng to Lemmas 4 and 5, whch ensure that the walk cannot hde n the lens for too long. The frst one, descrbed n Lemma 4, works whle the walk s stll nsde a small ball around X τ, see Fgure 2. The radus of ths ball s chosen to be proportonal to d τ. Ths stuaton s depcted n an dealzed form n Fgure 3. In ths regme the followng happens: Whenever the walk crosses for the frst tme any of the wedge-shaped lnes shown n Fgure 3, t has a drft away from X k() towards the boundary of the lens. To see ths consder the two boundary lnes of the convex hull whch are emanatng from X τ+n n Fgure 3. Suppose we are to draw n Fgure 3 the lne gong from X τ+n to the left. In the pcture ths lne has slope 0,.e. t s parallel to X τ, X k(), but

5 RANDOM WALK AVOIDING ITS CONVEX HULL 5 of course t could have a dfferent slope. However, ths slope cannot be much smaller than 0 because X τ+n s close to X τ but far away from X k(). On the other hand, the lne emanatng from X τ+n to the rght must have n Fgure 3 a slope of at least 1. Together, these two lnes create a drft downwards and more mportantly to the rght towards the boundary of the lens. (If the left lne has a postve slope then the drft to the rght s even stronger.) So every tme the walker crosses for the frst tme such a helpful wedgeshaped lne t wll be pushed towards the next wedge-shaped lne. If the lttle ball around X τ was nfntely large ths would result n crossngs of the wedge-shaped lnes at a postve rate, whch would propel the walk out of the lens very fast,.e. ths mechansm alone would gve a fnte exponental moment of, see Lemma 4. However, snce the ball s sze s fnte and proportonal to d τ, the walk can escape from ths lttle ball before leavng the lense wth a probablty exponentally small n d τ. (Ths wll happen a fnte number of tmes.) Whenever ths occurs, we rely on the second mechansm, see Lemma 5. The lne X τ, X k(), whch s part of the convex hull, creates a postve drft out of the lens. Snce the dameter of the lens s of order d τ t wll take the walker a tme of order d τ to reach the boundary of the lens. In fact we shall show, see Lemma 5, that t s exponentally costly for the walk to stay n the lens for a tme longer than the order of d τ. Ths s enough to make sure that the walk s not slowed down too much by occasonally resstng the frst mechansm and gettng lost n the lens. To make ths dea precse we need to ntroduce more notaton. The pont Y := X τ + X k() ( 1) 2 wll serve as the center of K τ and the radus R,n := X τ +n Y ( 1, n 0) s the dstance of X τ +n from ths center. The orthogonal projecton of X τ +n onto the straght lne passng through X τ and X k() wll be called Z,n ( 1, n 0). The dstance of X τ +n from ths lne s denoted by D,n := X τ +n Z,n ( 1, n 0). For the followng defntons we assume, n 1 and τ + n < τ +1. In partcular, due to (3), we assume that at tme τ + n the walk has not yet left the lens created at tme τ. Ths mples that Z,n X τ, X k() and that X τ and X k() are stll boundary ponts of K τ +n, as shown n Fgures 2 and 4. Hence f we start n X τ +n and follow the two boundary lne segments emanatng from X τ +n we wll eventually reach X τ and X k(). The boundary lne segment whose contnuaton leads frst to K τ and then to X k() s called

6 6 RANDOM WALK AVOIDING ITS CONVEX HULL X τ X τ Y ϕ 1 ϕ 2 s 1,,n s X τ +n 2,,n Z,n ψ 1 ψ 2 s 1,,n X τ +n s2,,n X k() X k() Fgure 4. General notaton s 1,,n, whle the other lne segment startng n X τ +n s denoted by s 2,,n, see Fgure 4. The angle between s j,,n and X τ +n, Y s called ϕ j,,n [0, π] (j = 1, 2), see the left part of Fgure 4. Smlarly, the angle between s j,,n and X τ +n, Z,n s denoted by ψ j,,n [0, π] (j = 1, 2), see the rght part of Fgure 4. Occasonally, we wll dropped the subscrpts and n from ϕ and ψ. Snce K τ +n s convex, (4) ϕ 1 + ϕ 2 = ψ 1 + ψ 2 π. Furthermore, ϕ 1 ψ 1 s one of the angles n a rght angled trangle, namely the trangle wth vertces X τ +n, Y and Z,n. Hence, (5) ϕ 1 ψ 1 = ϕ 2 ψ 2 π/2. 3. Some sub- and supermartngales The followng result shows that for every 1, both (R,n ) n and (D,n ) n (1 n < τ +1 τ ) are submartngales. Lemma 2. For all, n 1, P -a.s. on {τ + n < τ +1 }, (6) (7) and E[R,n+1 R,n F τ +n] sn ϕ 1,,n + sn ϕ 2,,n 2π E[D,n+1 D,n F τ +n] sn ψ 1,,n + sn ψ 2,,n 2π sn ϕ 1,,n 2π sn ψ 1,,n 2π 0, 0 (8) E[D,n+1 D,n + R,n+1 R,n F τ +n] c 2 for some constant c 2 > 0.

7 X τ Xτ RANDOM WALK AVOIDING ITS CONVEX HULL 7 Z,n +n Y X τ +n X τ Z,n Fgure 5. The expected ncrement of R,n s small n the left fgure and large n the rght fgure. For D,n t s the other way round. Fgure 5 shows examples n whch the expected ncrements of R,n and D,n are close to 0, thus explanng, why we are not able to bound n (6) and (7) these expected ncrements ndvdually away from 0. Note however, that n both stuaton depcted n Fgure 5, f the expected ncrement of R,n or of D,n s small then the expected ncrement of the other quantty s large. Ths confrms that the expected ncrements of R,n and D,n cannot both be small at the same tme, see (8). Proof of Lemma 2. We fx, n 1 and drop them as subscrpts of ϕ j,,n and ψ j,,n (j = 1, 2). Then the followng statements hold on the event {τ + n < τ +1 }. Consder the angle between Y, X τ +n and X τ +n, X τ +n+1 whch ncludes s 2,,n. Ths angle s chosen unformly at random from the nterval [ϕ 2, 2π ϕ 1 ]. Hence we get by a change of bass argument usng Y, X τ +n for the frst bass vector, E[R,n+1 F τ +n] = 1 (2π ϕ 1 ) ϕ 2 1 2π ϕ 1 ϕ 2 2π ϕ1 ϕ 2 2π ϕ1 ϕ 2 1 R,n + 2π ϕ 1 ϕ 2 (R,n, 0) (cos ϕ, sn ϕ) dϕ R,n cos ϕ dϕ 2π ϕ1 ϕ 2 cos ϕ dϕ = R,n + sn ϕ 1 + sn ϕ 2 R,n + sn ϕ 1 + sn ϕ 2, 2π ϕ 1 ϕ 2 2π whch shows (6). Smlarly, (7) follows from E[D,n+1 F τ +n] = 1 (2π ψ 1 ) ψ 2 2π ψ1 ψ 2 D,n cos ψ dψ. For the proof of (8) we assume wthout loss of generalty ϕ 1 π/2. Indeed, otherwse ϕ 2 π/2 because of ϕ 1 + ϕ 2 π, see (4), and n the followng proof one only has to replace the subscrpt 1 by the subscrpt 2 and swap... Y......

8 8 RANDOM WALK AVOIDING ITS CONVEX HULL X τ and X k(). By (6) and (7), E[D,n+1 D,n + R,n+1 R,n F τ +n] sn ϕ 1 + sn ψ 1 (9). 2π We wll show that the rght sde of (9) s always greater than c 2 := (4π 2 ) 1. Assume that t s less than c 2. Then (10) sn ϕ 1, sn ψ 1 (2π) 1 and hence ϕ 1 (π/2) sn ϕ 1 1/4 by concavty of sn on [0, π/2]. Smlarly, (10) mples that ether ψ 1 1/4 or π ψ 1 1/4. Due to ϕ 1 ψ 1 π/2, see (5), the latter case s mpossble. Therefore, (11) ϕ 1 ψ 1 max{ ϕ 1, ψ 1 } 1/4. The angle α [0, π/2] between Z,n, X τ +n and X τ +n, X τ s less than or equal to ψ 1. Consequently, (12) sn ψ 1 sn α = X τ Z,n X τ X τ +n X τ Y Y Z,n d τ. However, snce Y, X τ +n K τ +n, (13) R,n = Y X τ +n d τ +n = d τ. Therefore, (12) sn ψ 1 d τ /2 Y Z,n d τ Y X τ +n = 1 2 sn ϕ 1 ψ 1 whch contradcts (10). We fx the constants (14) β := 1 + 4π 8 > 30 and γ := 1 2β < (11) = 1 4, Whenever τ < we denote the frst ext tme after τ from B(X τ, γd τ ) by γ +1 := nf{n > τ : X n X τ > γd τ } ( ), see Fgure 2. If 1 and n 0 then we shall call n good for f n = 0 or f (15) τ + n < τ +1 γ +1 and E[R,n+1 R,n F τ +n] 1 π 8 P -a.s.. Ths means, n 1 s good for f at tme τ + n the walker has not yet left the ntersecton of the small ball around X τ and the lens shown n Fgure 2 and, roughly speakng, feels a substantal centrfugal force pushng t away from the center Y. Good tmes help the walker to leave the lens shortly after τ and closely to the pont X τ. Next we ntroduce an Azuma type nequalty for a certan famly of supermartngales, whch wll help make ths dea more precse.

9 RANDOM WALK AVOIDING ITS CONVEX HULL 9 Lemma 3. There are constants c 3 > 0, c 4 > 0 and 1 c 5 < such that P -a.s. for all 1, n 0, where M,n := 1{τ + n < τ +1 } exp E [M,n F τ ] c 5 exp( c 4 n), ( c 3 n ) W,m m=1 and W,m := D,m 1 D,m + β(r,m 1 R,m ) + 4 1{m 1 s good for }. Proof. Fx 1. Frstly, we shall prove that for sutable c 4 > 0, (16) E [M,n+1 F τ +n] exp( c 4 )M,n P -a.s. for all n 1, thus showng that (M,n ) n 1 s an exponentally fast decreasng submartngale. Snce W,m s F τ +m-measurable (m 1), we have E [M,n+1 F τ +n] = M,n E[exp(c 3 W,n+1 ), τ + n + 1 < τ +1 F τ +n] M,n E[exp(c 3 W,n+1 ) F τ +n]. Therefore s suffces to show for the proof of (16) that on the event {τ + n < τ +1 }, E[exp(c 3 W,n+1 ) F τ +n] < 1 for some sutable c 3 > 0. However, snce the W,m s (m 1) are unformly bounded by a constant ths follows from the fact that on the event {τ + n < τ +1 }, E [W,n+1 F τ +n] = E[D,n D,n+1 + R,n R,n+1 F τ +n] ( + 4 π ) 8E[R,n R,n+1 F τ +n] + 1{n s good for } c 2 < 0 P -a.s. by vrtue of defnton (15) and Lemma 2 (6), (8). Usng (16) for nducton over n we obtan by the tower property, E [M,n F τ ] exp( c 4 (n 1))E [M,1 F τ ] P -a.s. for all n 1. Snce M,1 s bounded by a constant ths fnshes the proof. 4. Exponental moments of τ +1 τ. The next two lemmas provde tools needed to bound n Proposton 6 the tmes durng whch the dameter does not ncrease. The frst lemma shows that the walk cannot spend too much tme nsde the lens and the small ball around X τ shown n Fgure 2. Lemma 4. For all 1, n 0, P -a.s. P [τ + n < τ +1 γ +1 F τ ] c 5 exp( c 4 n), where c 4 and c 5 are as n Lemma 3. The second lemma gves a frst crude upper bound for.

10 10 RANDOM WALK AVOIDING ITS CONVEX HULL Lemma 5. There s a fnte constant c 6 such that for all 1, n 0, P -a.s. where c 4 and c 5 are as n Lemma 3. P [ > n F τ ] c 5 exp(c 4 (c 6 d τ n)), In the proof of both lemmas we wll use the fact that the sum n the defnton of M,n s n part telescopc,.e. n n (17) W,m = D,n + β(r,0 R,n ) + 4 1{m 1 s good for } m=1 snce D,0 = 0. Proof of Lemma 4. For n = 0 the statement s true snce c 5 1. Fx n 1. The statement follows from Lemma 3 and (17) once we have shown that on the event {τ + n < τ +1 γ +1 }, the rght hand sde of (17) s nonnegatve. Frst we wll show that on {τ + n < τ +1 γ +1 }, m=1 (18) D,n + β(r,n R,0 ) 2(D,n X τ Z,n ). Ths s done by brute force. For abbrevaton we set d := d τ, y := D,n and x := X τ Z,n and note that on {τ + n < τ +1 γ +1 } we have x, y [0, γd]. Observe that x and y play the role of cartesan coordnates of X τ +n, see Fgure 6. Usng R,0 = d/2 and R,n = (d/2 x) 2 + y 2 we see that (18) s equvalent to β (d/2 x) 2 + y 2 y 2x + βd/2. Both sdes of ths nequalty are nonnegatve snce x s less than γd, whch s tny compared to βd. Takng the square and rearrangng shows that (18) s equvalent to (19) x(4x 4y 2βd β 2 x + β 2 d) + y(y + βd β 2 y) 0. Snce x, y [0, γd] and βγ = 1/2, see (14), the terms β 2 d n the frst bracket and βd n the second bracket are the domnant terms, respectvely, whch shows that (19) and thus (18) holds. For the proof that the rght hand sde of (17) s ndeed nonnegatve on {τ + n < τ +1 γ +1 } t therefore suffces to show that, n 1 (20) D,n X τ Z,n 2 1{j s good for }. Both D,j and X τ Z,j can ncrease by at most 1 f j ncreases by 1. Therefore, the left hand sde of (20) s less than or equal to 2(#J,n ) where J,n := {0 j < n 0 m < j : D,m X τ Z,m D,j X τ Z,j }. j=0

11 RANDOM WALK AVOIDING ITS CONVEX HULL X k()... Y K τ K τ +3 ϕ 1 ψ1 Z X τ +3,3 x X τ y γd τ Fgure 6. More realstc and detaled than Fgure 3. The darkly shaded convex hull K τ at tme τ has been enlarged after three steps by the lghtly shaded part. j = 3 s good for snce t satsfes the suffcent crteron ψ 1,,3 π/4, see (22), whch corresponds to the fact that the dashed lne, whch ntersects the horzontal axs at an angle of π/4, does not ntersect Kτ o +3. j = 1 s also good for for the same reason, whle j = 2 mght be good for but fals to satsfy the suffcent condton (22), snce the correspondng dashed lne startng n X τ +2 would have ntersected Kτ o +2. Hence t suffces to show that the elements of J,n are good for. Note that j = 0 J,n s good for by defnton of beng good. So fx 1 j J,n. By Lemma 2 (6) t s enough to show that sn ϕ 1,,j 2 1/2, that s (21) ϕ 1,,j [π/4, 3π/4]. On the one hand, ϕ 1 ψ 1 s close to π/2, as can be seen n Fgure 6. More precsely, sn(ϕ 1 ψ 1 ) = Y Z,j Y X τ +j d τ /2 γd τ d τ /2 + γd τ Y X τ X τ Z,j Y X τ + X τ X τ +j = 1 2γ 1 + 2γ 1 2 = sn π 4. Snce 0 ψ 1 ϕ 1 ths mples ϕ 1 π/4, thus provng the frst part of (21). On the other hand, ϕ 1 ψ 1 π/2, see (5). Hence all that remans to be

12 12 RANDOM WALK AVOIDING ITS CONVEX HULL shown for the completon of the proof of (21) s that (22) ψ 1,,j π/4. Consder the half lne (dashed n Fgure 6) startng at X τ +j whch ncludes an angle of π/4 wth X τ +j, Z,j that contans s 1,,j. We clam that ths lne does not ntersect Kτ o +j. Ths would mply (22). To prove ths clam observe that for any c > 0 the set of possble values for X τ +m wth D,m X τ Z,m = c s a lne parallel to the half lne just descrbed. Snce j J,n the walker dd not cross between tme τ and tme τ + j 1 the dashed lne passng through X τ +j. Consequently, t suffces to show that the dashed lne does not ntersect Kτ o. If t dd ntersect Kτ o then ths would force the walker on ts way from X τ to X τ +j to cross the dashed lne strctly before tme τ + j, whch s mpossble as we just saw. Proof of Lemma 5. Agan, the statement s true for n = 0 snce c 5 1. For n 1, by the Pythagorean theorem and (13), D,n R,n d τ on the event {τ + n < τ +1 }. Thus on ths event the rght hand sde of (17) s greater than or equal to d τ + β(0 d τ ) + 0. Hence due to Lemma 3 and (17), P -a.s. for all n 1, exp( c 3 (1 + β)d τ )P [τ + n < τ +1 F τ ] c 5 exp( c 4 n), whch s equvalent to the clam of the lemma wth c 6 := c 3 (1 + β)/c 4. The followng result s stronger than Lemma 5. Proposton 6. τ < P -a.s. for all 0. Moreover, there are postve constants c 7, c 8 and fnte constants c 9 and c 10 1 such that for all 0 and n 0, P -a.s., (23) (24) P [ n F τ ] c 9 exp( c 7 n) and E [exp(c 8 ) F τ ] c 10. Proof. (24) s an mmedate consequence of (23). For the proof of (23) choose (25) c 7 := γc 4 c 6 + γ and c 9 := c 5 e c 4 wth c 4, c 5 and c 6 accordng to Lemma 5. We only need to show that (23) holds for all 1 wth τ <. Indeed, the case = 0 s trval snce τ 0 = 0, τ 1 = 1 and hence 0 = 1. Moreover, snce (23) mples < P -a.s., we then have τ = < as well. Fx 1 and n 0. We dstngush three cases: {n < γd τ }, {γd τ n < (c 6 + γ)d τ } and {(c 6 + γ)d τ n}.

13 RANDOM WALK AVOIDING ITS CONVEX HULL 13 Note that these events are elements of F τ and partton Ω. By defnton of γ +1, (26) γ +1 τ + γd τ snce the walker takes steps of length one. Therefore, on {n < γd τ }, P [ > n F τ ] On {γd τ n < (c 6 + γ)d τ }, P [ > n F τ ] P [τ + γd τ < τ +1 F τ ] Lemma 4 c 5 exp( c 4 (γ d τ 1)) (25) Fnally, on {(c 6 + γ)d τ n}, P [ > n F τ ] (26) = P [τ + n < τ +1 γ +1 F τ ] Lemma 4 c 5 exp( c 4 n) (25) c 9 exp( c 7 n). (26) P [τ + γd τ 1 < τ +1 γ +1 F τ ] c 9 exp( c 7 n). Lemma 5 c 5 exp(c 4 (c 6 d τ n)) (25) where the last nequalty can easly be checked. c 9 exp( c 7 n), 5. Lnear growth of the dameter and proof of Theorem 1 The followng result (wth m = 0) mples that (d n ) n has a postve lm nf speed. Lemma 7. There are constants c 11 > 0 and c 12 < such that for all 0 m n, E[exp(d m d n )] c 12 (n + 1) exp(c 11 (m n)). For the proof of ths lemma and of Theorem 1 we need the followng defnton: Gven n 0 let n := sup{ 0 τ n}. Note that (27) d τn = d n and n τ n n < τ n+1. Proof of Lemma 7. The case n = m s trval. So let 0 m < n and set (28) f(m, n) := n m > 0 and g(m, n) := c 8f(m, n) > 0, 2n 2 ln c 10 where c 8 and c 10 are accordng to Proposton 6. A smple unon bound yelds E[e dm dn ] I + II + III, where I := P [τ m+1 m f(m, n)n], II := P [τ m+1 m < f(m, n)n, n < m + g(m, n)n ] and III := E [exp (d m d n ), n m + g(m, n)n ],

14 14 RANDOM WALK AVOIDING ITS CONVEX HULL m n τ m m τ +1 m τ n n τ n +1 Fgure 7. see also Fgure 7. Here term I corresponds to the stuaton n whch after tme m the dameter does not ncrease for an untypcal long whle. Term II handles the case n whch the dameter does ncrease shortly after tme m, as t should, but not often enough n the remanng tme untl n. The thrd term III consders the orgnal random varable on the typcal event that the number of tmes at whch the dameter ncreases s at least proportonal to n wth a constant of proportonalty not too small. It suffces to show that each of these three terms decays as n n the way clamed n Lemma 7 wth constants c 11 and c 12 ndependent of n and m. As for the frst term, I P [ m f(m, n)n ] (23) c 9 (m + 1)e c 7 f(m,n)n (27) = m P [ m =, f(m, n)n ] =0 c 9 (n + 1)e c 7(m n)/2, whch s an upper bound lke the one requested n Lemma 7. The second term s estmated as follows. II (27) = P [ ] τ m+1 < m + f(m, n)n, n < τ n+1 τ m+ g(m,n)n (28) P [ τ m+ g(m,n)n τ m+1 n m f(m, n)n = f(m, n)n ] E [ exp ( ( c 8 τm+ g(m,n)n τ m+1 f(m, n)n ))] (29) = e c 8f(m,n)n k 1 = e c 8f(m,n)n E k 1 E [ exp ( c 8 ( τk+ g(m,n)n 1 τ k )), m + 1 = k ] g(m,n)n 2 =0 exp (c 8 k+ ), m + 1 = k. Note that { m + 1 = k} s the event that τ k s the frst tme after tme m at whch the dameter ncreases. Therefore, (30) { m + 1 = k} F τk. Moreover, the ncrements k+ are measurable wth respect to F τk++1. Consequently, by condtonng n (29) on F τk+ g(m,n)n 2 and applyng Proposton

15 RANDOM WALK AVOIDING ITS CONVEX HULL 15 1/2 X k() 1 Xτ X τ+u =X τ,0 τ +1 K τ Fgure 8. The event A occurs f the frst tral pont sampled les on the bold arc. 6 (24) wth = k + g(m, n)n 2 we conclude g(m,n)n 3 II e c8f(m,n)n c 10 E exp (c 8 ( k+ )), m + 1 = k. k 1 =0 Contnung n ths way we obtan by nducton after g(m, n)n 1 steps, II e c8f(m,n)n c g(m,n)n 1 10 e c8f(m,n)n c g(m,n)n 10 (28) = e (c 8/4)(m n), whch s agan of the form requred n Lemma 7. In order demonstrate that also the thrd term III behaves properly we wll show that the ncrements d τ+1 d τ, 1, have a unformly postve chance of beng larger than a fxed constant, say 1/2, ndependently of the past. To ths end, we may assume that the process (X n ) n s generated n the followng way: There are..d. random varables U n,k, n 0, k 0, unformly dstrbuted on the unt crcle centered n 0 such that X n+1 = X n + U n,k, where k s the smallest nteger such that X n, X n + U n,k does not ntersect K n. Then for any 1, by defnton of τ, (31) {d τ+1 d τ + 1/2} {d τ +1 d τ + 1/2} { U τ,0 Xτ X k() 1 } =: A. d τ 2 The reason for ncluson (31) s llustrated n Fgure 8: If A occurs then K τ and X τ + U τ,0 are separated by a slab of wdth 1/2. In partcular, the lne connectng X τ and X τ + U τ,0 does not ntersect K τ. Hence τ +1 = τ + 1 and X τ+1 = X τ +1 = X τ + U τ,0. Therefore, d τ +1 X τ +1 X k() X τ X k() + 1/2 = d τ + 1/2.

16 16 RANDOM WALK AVOIDING ITS CONVEX HULL It follows from (31) that for all 1 j 1 j 2, (32) j 2 1 j 2 1 d τj2 d τj1 1 1{d τ+1 d τ + 1/2} 1 1{A }. 2 2 =j 1 =j 1 Ths estmate wll be useful snce the random varables (33) 1{A } ( 1) are..d. wth P [A ] > 0. Indeed, let F n (n 0) be the σ-feld generated by U m,k, 0 m < n, 0 k. Because of F n F n we have A j F τ for all 1 j <. Moreover, snce the unform dstrbuton on the unt crcle s nvarant under rotatons, (34) A s ndependent of F τ ( 1) and P [A Fτ ] = P [A ] s just the length of the bold crcle segment shown n Fgure 8 dvded by 2π. Ths mples (33). Now we estmate III by (27) III = E [ exp ( ) d τm d τn, n m + g(m, n)n ] E [ exp ( ) d τm+1 d τn, n ( m + 1) + g(m, n)n 1 ] [ ) ] E exp (d τk d τk+ g(m,n)n 1, m + 1 = k k 1 (35) (32) k 1 E exp 1 2 k+ g(m,n)n 2 =k 1{A }, m + 1 = k. As seen n (30), { m + 1 = k} F τk F τk. Therefore, after condtonng n (35) on F τk, we see wth the help of (34) for k and (33) that the rght hand sde of (35) equals [ ( E exp 1 g(m,n)n 1 1)] 2 A, whch decays as requred n Lemma 7, see (28). Lemma 7 drectly mples a weaker verson of Theorem 1 n whch X n s replaced by d n. For the full statement we need the followng addtonal argument. Proof of Theorem 1. (2) follows from (1) by the Borel-Cantell lemma. For the proof of (1) pck c 11 and c 12 accordng to Lemma 7 and choose c 13 > 0 and c 1 > 0 small enough such that (36) 2c 13 c 11 < 0 and 2c 1 c 11 (c 13 c 1 ) < 0.

17 RANDOM WALK AVOIDING ITS CONVEX HULL 17 We denote by M n := max{ X m m n} the walker s maxmal dstance from the orgn by tme n. Note that M n and d n are related va (37) M n d n 2M n for all n 0 because of X 0 = 0. By a unon bound for any n 0, (38) P [ X n c 1 n] P [ n c 1 n] + P [M n c 13 n] + P [B n ], where B n := { n < c 1 n, M n > c 13 n, X n c 1 n}. It suffces to show that each one of the three terms on the rght hand sde of (38) decays exponentally fast n n. As for the frst term, n P [ n c 1 n] (27) = P [ n =, c 1 n ] (23) c 9 (n + 1)e c 7c 1 n, =0 whch decays exponentally fast n n ndeed. So does the second term n (38) snce by Chebyshev s nequalty, P [M n c 13 n] (37) P [d n 2c 13 n] e 2c 13n E[e dn ] Lemma 7 c 12 (n + 1)e (2c 13 c 11 )n, whch decays exponentally fast due to the choce of c 13 n (36). Fnally, we are gong to bound the thrd term n (38), P [B n ]. Defne the ladder tmes (µ j ) j of the process (M n ) n 0 recursvely by µ 0 := 0 and µ j+1 := nf{n > µ j M n > M µj }. In analogy to ( n ) n for (τ ) we defne for (µ j ) j the ncreasng sequence (j n ) n by j n := sup{j 0 µ j n} and note that µ jn n < µ jn+1 and M n = X µjn. Hence on the event B n, X µjn X n X µjn X n = M n X n (c 13 c 1 )n. Snce the walker takes steps of length one, ths mples n µ jn (c 13 c 1 )n and therefore, on the event B n, (39) µ jn (1 c 13 + c 1 )n. On the other hand, on B n, (40) d n (27) = d τn = X τn X k(n) X n + X n X τn + X k(n) c 1 n + n + M n, where we used agan the fact that the steps have length one to estmate the second term and k( n ) n n to bound the thrd term. Therefore (40) can be estmated on B n from above by (37) (39) c 1 n + c 1 n + M µjn 2c 1 n + d µjn 2c 1 n + d (1 c13 +c 1 )n.

18 18 RANDOM WALK AVOIDING ITS CONVEX HULL Consequently, by Chebyshev s nequalty and Lemma 7, P [B n ] P [d n d (1 c13 +c 1 )n 2c 1 n] c 12 (n + 1)e (2c 1 c 11 (c 13 c 1 ))n, whch decays exponentally n n due to the choce of c 13 and c 1 n (36). References [1] O. Angel, I. Benjamn and B. Vrág. Random walks that avod ther past convex hull. Elect. Comm. n Probab. 8 (2003) [2] I. Benjamn and D.B. Wlson. Excted random walk. Elect. Comm. n Probab. 8 (2003) Department of Mathematcs Stanford Unversty Stanford, CA 94305, U.S.A.

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

DECOUPLING THEORY HW2

DECOUPLING THEORY HW2 8.8 DECOUPLIG THEORY HW2 DOGHAO WAG DATE:OCT. 3 207 Problem We shall start by reformulatng the problem. Denote by δ S n the delta functon that s evenly dstrbuted at the n ) dmensonal unt sphere. As a temporal

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

HMMT February 2016 February 20, 2016

HMMT February 2016 February 20, 2016 HMMT February 016 February 0, 016 Combnatorcs 1. For postve ntegers n, let S n be the set of ntegers x such that n dstnct lnes, no three concurrent, can dvde a plane nto x regons (for example, S = {3,

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solvng n Math (Math 43900) Fall 2013 Week four (September 17) solutons Instructor: Davd Galvn 1. Let a and b be two nteger for whch a b s dvsble by 3. Prove that a 3 b 3 s dvsble by 9. Soluton:

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

n ). This is tight for all admissible values of t, k and n. k t + + n t

n ). This is tight for all admissible values of t, k and n. k t + + n t MAXIMIZING THE NUMBER OF NONNEGATIVE SUBSETS NOGA ALON, HAROUT AYDINIAN, AND HAO HUANG Abstract. Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Math 702 Midterm Exam Solutions

Math 702 Midterm Exam Solutions Math 702 Mdterm xam Solutons The terms measurable, measure, ntegrable, and almost everywhere (a.e.) n a ucldean space always refer to Lebesgue measure m. Problem. [6 pts] In each case, prove the statement

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

The Second Eigenvalue of Planar Graphs

The Second Eigenvalue of Planar Graphs Spectral Graph Theory Lecture 20 The Second Egenvalue of Planar Graphs Danel A. Spelman November 11, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

A new construction of 3-separable matrices via an improved decoding of Macula s construction

A new construction of 3-separable matrices via an improved decoding of Macula s construction Dscrete Optmzaton 5 008 700 704 Contents lsts avalable at ScenceDrect Dscrete Optmzaton journal homepage: wwwelsevercom/locate/dsopt A new constructon of 3-separable matrces va an mproved decodng of Macula

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2]. Bulletn of Mathematcal Scences and Applcatons Submtted: 016-04-07 ISSN: 78-9634, Vol. 18, pp 1-10 Revsed: 016-09-08 do:10.1805/www.scpress.com/bmsa.18.1 Accepted: 016-10-13 017 ScPress Ltd., Swtzerland

More information

Random Partitions of Samples

Random Partitions of Samples Random Parttons of Samples Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract In the present paper we construct a decomposton of a sample nto a fnte number of subsamples

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS Research and Communcatons n Mathematcs and Mathematcal Scences Vol 10, Issue 2, 2018, Pages 123-140 ISSN 2319-6939 Publshed Onlne on November 19, 2018 2018 Jyot Academc Press http://jyotacademcpressorg

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Classes of States and Stationary Distributions

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Classes of States and Stationary Distributions Steven R. Dunbar Department of Mathematcs 203 Avery Hall Unversty of Nebraska-Lncoln Lncoln, NE 68588-0130 http://www.math.unl.edu Voce: 402-472-3731 Fax: 402-472-8466 Topcs n Probablty Theory and Stochastc

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Note on EM-training of IBM-model 1

Note on EM-training of IBM-model 1 Note on EM-tranng of IBM-model INF58 Language Technologcal Applcatons, Fall The sldes on ths subject (nf58 6.pdf) ncludng the example seem nsuffcent to gve a good grasp of what s gong on. Hence here are

More information

Geometric drawings of K n with few crossings

Geometric drawings of K n with few crossings Geometrc drawngs of K n wth few crossngs Bernardo M. Ábrego, Slva Fernández-Merchant Calforna State Unversty Northrdge {bernardo.abrego,slva.fernandez}@csun.edu ver 9 Abstract We gve a new upper bound

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Solutions to the 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010

Solutions to the 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010 Solutons to the 7st Wllam Lowell Putnam Mathematcal Competton Saturday, December 4, 2 Kran Kedlaya and Lenny Ng A The largest such k s n+ 2 n 2. For n even, ths value s acheved by the partton {,n},{2,n

More information

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper Games of Threats Elon Kohlberg Abraham Neyman Workng Paper 18-023 Games of Threats Elon Kohlberg Harvard Busness School Abraham Neyman The Hebrew Unversty of Jerusalem Workng Paper 18-023 Copyrght 2017

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

Self-complementing permutations of k-uniform hypergraphs

Self-complementing permutations of k-uniform hypergraphs Dscrete Mathematcs Theoretcal Computer Scence DMTCS vol. 11:1, 2009, 117 124 Self-complementng permutatons of k-unform hypergraphs Artur Szymańsk A. Paweł Wojda Faculty of Appled Mathematcs, AGH Unversty

More information

arxiv: v1 [math.ca] 31 Jul 2018

arxiv: v1 [math.ca] 31 Jul 2018 LOWE ASSOUAD TYPE DIMENSIONS OF UNIFOMLY PEFECT SETS IN DOUBLING METIC SPACE HAIPENG CHEN, MIN WU, AND YUANYANG CHANG arxv:80769v [mathca] 3 Jul 08 Abstract In ths paper, we are concerned wth the relatonshps

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information