and problem sheet 6

Size: px
Start display at page:

Download "and problem sheet 6"

Transcription

1 2-28 and 5-5 problem sheet 6 Solutions to the following seven exercises and optional bonus problem are to be submitted through gradescope by 2:0AM on Thursday 9th October 207. There are also some practice problems not to be turned in for those seeking more practice and also for review prior to the exam. Problem Let f : R \ {0} R be a function satisfying Determine f. f(x) 2f( x ) x2 x R \ {0}. Calculation. Let x R \ {0}. Note that x is a non-zero real number and substituting x the functional equation yields f( x ) 2f(x) ( x )2. for x in Multiplying by 2 and adding the result to the original functional equation yields Thus f(x) if it exists must be defined by 3f(x) x 2 + 2( x )2. 3 (x2 ) 2 3 ( x )2. A computation shows that a function defined in that way solves the original functional equation. Problem 2 Let g : R \ {0 } R be a function satisfying g(x) + g( ) x x R \ {0 }. x Determine g. You may assume that the function h : R \ {0 } R \ {0 } defined by h(x) x is well-defined. Hint: compute h(h(x)) and h(h(h(x))).

2 Calculation. Let x R\{0 }. We note that h(h(h(x))) x. Substituting h(x) and then h(h(x)) for x in the functional equation yields and g(h(x)) + g(h(h(x))) h(x) g(h(h(x))) + g(h(h(h(x)))) g(h(h(x))) + g(x) h(h(x)). Subtracting the first and then adding the second to the original functional equation yields Thus g(x) if it exists must be defined by 2g(x) x h(x) + h(h(x)). g(x) 2 (x h(x) + h(h(x))) 2 (x3 x + x 2 x ). A computation shows that a function defined in that way solves the original functional equation. Problem 3 Verify that the function f : (0 ) R defined by f(x) 2x 2x( x) for all x (0 ) is a bijection. Solution. First note that given x y R with y 0 we have f(x) y ()x 2 + 2( y)x 0 { y + y x 2 + y } y 2 + Call this result ( ). We prove that f is a bijection by finding an inverse for f. Define a function g : R (0 ) by letting for y R y + y 2 + g(y) 2 if y 0 if y 0 We verify that g is a well-defined function and that g is a left inverse and a right inverse for f. 2

3 g is well-defined. First note that the cases in the definition of g are mutually exclusive and cover all possibilities for y R. Also note that we may divide by y and take the square root in the first case since y 0 and y Finally note that g(y) (0 ) for all y R. Certainly if y 0 then g(y) 2 (0 ). If y 0 then y 2 > 0 so that y 2 + >. Moreover y 2 + < y y + ( y + ) 2 and so y 2 + < y + Hence 2 g(y) y (y + y 2 + ) y 2 + y y < y 2 y 2 by combining fractions by simplifying since y 2 + > 0 since y 2 + < y + by cancellation Since 2 g(y) < 2 it follows that 0 < g(y) < as required. g is a right inverse for f. To see this fix y R and let x g(y). We need to show that f(x) y. If y 0 then x 2 so that f(x) 0 y as required. If y 0 then x y + y 2 + so that f(x) y by ( ) above. g is a left inverse for f. To see this fix x (0 ) and let y f(x). We need to show that g(y) x. If x 2 then y 0 so that g(y) 2 x as required. If x 2 then y 0 so that x y + y 2 + or x y y 2 + by ( ) above. If x takes the first of these values then x g(y) so we re done. Hence it remains to show that 3

4 x y y 2 +. To see this note that if x y y 2 + then 2 x y (y y 2 + ) by combining fractions + y 2 + by simplifying + y 2 y 2 y + 2 > 2 so that 2 x > 2 and x (0 ). Hence f is a bijection and g f. since y 2 + > y by separating fractions since 2 y > 0 Problem 4 For all positive integers n define the function f n : R R via f n (x) xn + x 2. Determine all n > 0 for which f n is injective. You may assume that for any odd positive integer n and real numbers x > y x n > y n. You may not use calculus. Solution. We claim that the answer is all odd integers n larger than. First note that these are the only possible cases which can work. that f (2) ( ) f 2 4 and for n even one can note that f n () f n ( ). For n one can note Let n 3 be odd. Suppose that x and y are real numbers such that x y. WLOG we may assume that x > y. Since + x 2 and + y 2 are both positive x n + x 2 > yn + y 2 xn + x n y 2 > y n + y n x 2 (x n y n ) + (xy) 2 (x n 2 y n 2 ) > 0. 4

5 The last inequality is true since n and n 2 are odd positive integers and x > y (note that the first term is positive and the second term is non-negative). Thus f(x) > f(y) and in particular f(x) f(y). Thus f n is injective when n is odd and larger than. Problem 5 Given real numbers a b c d let f : R 2 R 2 be defined by f(x y) (ax + by cx + dy) for all (x y) R 2. Prove that f is an injection if and only if 0. Note: it is also true that f is a surjection if and only if 0 but you needn t show that. Solution. We show that both injectivity and surjectivity depend on 0 for completeness. Suppose 0. Define g(x y) ( ) dx by cx + ay for all (x y) R 2 Note that g is well-defined: 0 so we haven t divided by zero. Now g is a left inverse for f. To see this let (x y) R 2. Then g(f(x)) g(ax + by cx + dy) ( d(ax + by) b(cx + dy) ( (da bc)x + (db bd)y ( ()x ()y ) (x y) ) c(ax + by) + a(cx + dy) ( ca + ac)x + ( cb + ad)y ) 5

6 g is a right inverse for f. To see this let (x y) R 2. Then ( ) dx by cx + ay f(g(x)) f ( ) dx by + ay by + ay a + b cx cdx + d cx ( ) a(dx by) + b( cx + ay) c(dx by) + d( cx + ay) ( ) ()x + ( ab + ba)y (cd dc)x + ( cb + da)y ( ()x ()y ) (x y) Now suppose 0. Note that f(0 0) f( b a) f( d c) (0 0). This provides an example to show that f is not injective unless a b c d 0. If a b c d 0 we note that f(0 0) f( ) (0 0) which shows that f is not injective in this case. Problem 6 Let f : A B and g : B C be functions and define h g f. Determine which of the following statements are true giving proofs for the true statements and counterexamples for the false statements: (a) If h is injective then f is injective. (b) If h is injective then g is injective. (c) If h is surjective then f is surjective. (d) If h is surjective then g is surjective. Solution. (a) True. If f is not injective then f(a) f(b) for some a b; but then g(f(a)) g(f(b)) so h(a) h(b) and h is not injective. (b) False. For example let A C {} and B { 2}. Let f() and g() g(2). Then h : {} {} is bijective since it is its own inverse (so h is definitely injective) but g is not since 2 but g() g(2). 6

7 (c) False. The same counterexample as in (b) works: h is surjective since it is bijective but f is not surjective since 2 f(x) for any x {}. (d) True. Given c C there exists a A with h(a) c since h is surjective. Let b f(a). Then g(b) g(f(a)) h(a) c. So g is surjective. Problem 7 Consider functions f : A B and g : B A. Prove that (a) If f g is the identity function on B then f is surjective. (b) If g f is the identity function on A then f is injective. To remind you: given a set X the identity function on X is the function id X : X X defined by id X (x) x for all x X. Solution. (a) Suppose f g id B and let y B. Let x g(y). Since f g id B we have f(x) f(g(y)) y. Hence f is surjective. (b) Suppose g f id A. Let x x A with f(x) f(x ). Then so f is injective. x g(f(x)) g(f(x )) x Bonus Problem - 2 points If the common difference d of an arithmetic progression starting from is relatively prime to 0 show that the sequence + d + 2d... contains infinitely many powers of 0. Is this still true if the arithmetic progression starts from 2? Solution. For each k we have from Euler s Totient theorem that 0 kϕ(d) (mod d). Equivalently there exists an integer n k (depending on the choice of k) such that 0 kϕ(d) +n k d. Therefore this term will be in the sequence and since k can be an arbitrary positive integer the result follows. For the second question the answer is no. 3 is relatively prime to 0 while 0 (mod 3) and so no power of 0 will be 2 (mod 3). 7

8 Extra Problem Consider a function f : A A. Prove that if f f is injective then f is injective. Solution. This is immediate from Q6(a) letting g f. Extra Problem 2 Let f : A B be a function. (a) Prove that there exists a set X and functions p : A X and i : X B with p surjective and i injective such that f i p. (b) Prove that there exists a set Y and functions j : A Y and q : Y B with j injective and q surjective such that f q j. Solution. (a) Define p : A f (A) by p(a) f(a) for all a A and define i : f (A) B by i(b) b for all b f (A). Then p is well-defined since if a A then f(a) f (A) and i is well-defined since f (A) B. Now If a A then i(p(a)) i(f(a)) f(a) so that f i p. Given b f (A) we have b f(a) p(a) for some a A so that p is surjective. Given b b f (A) if i(b) i(b ) then b b simply by definition of i so that i is injective. (b) If A then let Y A B and define for all a A and b B. Then j(a) (a f(a)) and q(a b) b j is injective. If a a A and j(a) j(a ) then (a f(a)) (a f(a )). Since the first components must be equal we have a a. q is surjective. Given b B let a A be any element (note: this is where we use the fact that A is non-empty). Then b q(a b). f q j since if a A then q(j(a)) q(a f(a)) f(a). On the other hand if A then f is vacuously injective and moreover the identity function id B : B B is surjective so we can define j f and q id B. 8

9 Extra Problem 3 Recall that if A B R a function f : A B is increasing if for all x y A if x < y then f(x) < f(y). Let A and B be subsets of R and let f : A B be a bijection. Prove that if f is increasing then f is increasing. Solution. Suppose f is increasing and let x y B with x < y. We prove that f (x) < f (y) by contradiction. Indeed if f (x) f (y) then one of the following must be true: f (x) f (y). In this case applying f to both sides yields x y contradicting x < y. f (x) > f (y). In this case since f is increasing applying f to both side yields x > y also contradicting x < y. It follows that f (x) < f (y). Hence f is increasing. 9

REVIEW FOR THIRD 3200 MIDTERM

REVIEW FOR THIRD 3200 MIDTERM REVIEW FOR THIRD 3200 MIDTERM PETE L. CLARK 1) Show that for all integers n 2 we have 1 3 +... + (n 1) 3 < 1 n < 1 3 +... + n 3. Solution: We go by induction on n. Base Case (n = 2): We have (2 1) 3 =

More information

Solutions to Homework Problems

Solutions to Homework Problems Solutions to Homework Problems November 11, 2017 1 Problems II: Sets and Functions (Page 117-118) 11. Give a proof or a counterexample of the following statements: (vi) x R, y R, xy 0; (x) ( x R, y R,

More information

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k)

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k) MATH 111 Optional Exam 3 lutions 1. (0 pts) We define a relation on Z as follows: a b if a + b is divisible by 3. (a) (1 pts) Prove that is an equivalence relation. (b) (8 pts) Determine all equivalence

More information

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant).

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant). Sets and Functions 1. The language of sets Informally, a set is any collection of objects. The objects may be mathematical objects such as numbers, functions and even sets, or letters or symbols of any

More information

447 HOMEWORK SET 1 IAN FRANCIS

447 HOMEWORK SET 1 IAN FRANCIS 7 HOMEWORK SET 1 IAN FRANCIS For each n N, let A n {(n 1)k : k N}. 1 (a) Determine the truth value of the statement: for all n N, A n N. Justify. This statement is false. Simply note that for 1 N, A 1

More information

MATH 201 Solutions: TEST 3-A (in class)

MATH 201 Solutions: TEST 3-A (in class) MATH 201 Solutions: TEST 3-A (in class) (revised) God created infinity, and man, unable to understand infinity, had to invent finite sets. - Gian Carlo Rota Part I [5 pts each] 1. Let X be a set. Define

More information

MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false.

MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false. MATH 3330 ABSTRACT ALGEBRA SPRING 2014 TANYA CHEN Dr. Gordon Heier Tuesday January 14, 2014 The Basics of Logic (Appendix) Definition. A statement is a declarative sentence that is either true or false.

More information

Contribution of Problems

Contribution of Problems Exam topics 1. Basic structures: sets, lists, functions (a) Sets { }: write all elements, or define by condition (b) Set operations: A B, A B, A\B, A c (c) Lists ( ): Cartesian product A B (d) Functions

More information

RED. Name: Math 290 Fall 2016 Sample Exam 3

RED. Name: Math 290 Fall 2016 Sample Exam 3 RED Name: Math 290 Fall 2016 Sample Exam 3 Note that the first 10 questions are true false. Mark A for true, B for false. Questions 11 through 20 are multiple choice. Mark the correct answer on your ule

More information

Review Problems for Midterm Exam II MTH 299 Spring n(n + 1) 2. = 1. So assume there is some k 1 for which

Review Problems for Midterm Exam II MTH 299 Spring n(n + 1) 2. = 1. So assume there is some k 1 for which Review Problems for Midterm Exam II MTH 99 Spring 014 1. Use induction to prove that for all n N. 1 + 3 + + + n(n + 1) = n(n + 1)(n + ) Solution: This statement is obviously true for n = 1 since 1()(3)

More information

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B.

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Chapter 4 Functions Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Definition 2 Let A and B be sets. A function from A to B is a relation f between A and B such that

More information

4.1 Real-valued functions of a real variable

4.1 Real-valued functions of a real variable Chapter 4 Functions When introducing relations from a set A to a set B we drew an analogy with co-ordinates in the x-y plane. Instead of coming from R, the first component of an ordered pair comes from

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

Selected problems from past exams

Selected problems from past exams Discrete Structures CS2800 Prelim 1 s Selected problems from past exams 1. True/false. For each of the following statements, indicate whether the statement is true or false. Give a one or two sentence

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

Week Some Warm-up Questions

Week Some Warm-up Questions 1 Some Warm-up Questions Week 1-2 Abstraction: The process going from specific cases to general problem. Proof: A sequence of arguments to show certain conclusion to be true. If... then... : The part after

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1 . Let U = { A M (R) A = and b 6 }. CHAPTER 3 REVIEW QUESTIONS MATH 334 Spring 7 a b a and b are integers and a 6 (a) Let S = { A U det A = }. List the elements of S; that is S = {... }. (b) Let T = { A

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

Introduction to Abstract Mathematics

Introduction to Abstract Mathematics Introduction to Abstract Mathematics Notation: Z + or Z >0 denotes the set {1, 2, 3,...} of positive integers, Z 0 is the set {0, 1, 2,...} of nonnegative integers, Z is the set {..., 1, 0, 1, 2,...} of

More information

Exam 2 extra practice problems

Exam 2 extra practice problems Exam 2 extra practice problems (1) If (X, d) is connected and f : X R is a continuous function such that f(x) = 1 for all x X, show that f must be constant. Solution: Since f(x) = 1 for every x X, either

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) : (a A) and (b B)}. The following points are worth special

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 Here are the solutions to the additional exercises in betsepexercises.pdf. B1. Let y and z be distinct points of L; we claim that x, y and z are not

More information

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 1. Arithmetic, Zorn s Lemma.

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 1. Arithmetic, Zorn s Lemma. D-MATH Algebra I HS18 Prof. Rahul Pandharipande Solution 1 Arithmetic, Zorn s Lemma. 1. (a) Using the Euclidean division, determine gcd(160, 399). (b) Find m 0, n 0 Z such that gcd(160, 399) = 160m 0 +

More information

Homework 1 Solutions

Homework 1 Solutions MATH 171 Spring 2016 Problem 1 Homework 1 Solutions (If you find any errors, please send an e-mail to farana at stanford dot edu) Presenting your arguments in steps, using only axioms of an ordered field,

More information

Section 4.2 The Mean Value Theorem

Section 4.2 The Mean Value Theorem Section 4.2 The Mean Value Theorem Ruipeng Shen October 2nd Ruipeng Shen MATH 1ZA3 October 2nd 1 / 11 Rolle s Theorem Theorem (Rolle s Theorem) Let f (x) be a function that satisfies: 1. f is continuous

More information

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Problem 1. [5pts] Consider our definitions of Z, Q, R, and C. Recall that A B means A is a subset

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

RED. Fall 2016 Student Submitted Sample Questions

RED. Fall 2016 Student Submitted Sample Questions RED Fall 2016 Student Submitted Sample Questions Name: Last Update: November 22, 2016 The questions are divided into three sections: True-false, Multiple Choice, and Written Answer. I will add questions

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

Math 190: Fall 2014 Homework 4 Solutions Due 5:00pm on Friday 11/7/2014

Math 190: Fall 2014 Homework 4 Solutions Due 5:00pm on Friday 11/7/2014 Math 90: Fall 04 Homework 4 Solutions Due 5:00pm on Friday /7/04 Problem : Recall that S n denotes the n-dimensional unit sphere: S n = {(x 0, x,..., x n ) R n+ : x 0 + x + + x n = }. Let N S n denote

More information

FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling

FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling Note: You are expected to spend 3-4 hours per week working on this course outside of the lectures and tutorials. In this time you are expected to review

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

MAT115A-21 COMPLETE LECTURE NOTES

MAT115A-21 COMPLETE LECTURE NOTES MAT115A-21 COMPLETE LECTURE NOTES NATHANIEL GALLUP 1. Introduction Number theory begins as the study of the natural numbers the integers N = {1, 2, 3,...}, Z = { 3, 2, 1, 0, 1, 2, 3,...}, and sometimes

More information

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions Sets and Functions MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Notation x A means that element x is a member of set A. x / A means that x is not a member of A.

More information

Class Notes; Week 7, 2/26/2016

Class Notes; Week 7, 2/26/2016 Class Notes; Week 7, 2/26/2016 Day 18 This Time Section 3.3 Isomorphism and Homomorphism [0], [2], [4] in Z 6 + 0 4 2 0 0 4 2 4 4 2 0 2 2 0 4 * 0 4 2 0 0 0 0 4 0 4 2 2 0 2 4 So {[0], [2], [4]} is a subring.

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

About This Document. MTH299 - Examples Weeks 1-6; updated on January 5, 2018

About This Document. MTH299 - Examples Weeks 1-6; updated on January 5, 2018 About This Document This is the examples document for MTH 299. Basically it is a loosely organized universe of questions (examples) that we think are interesting, helpful, useful for practice, and serve

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set

More information

Real Analysis. Joe Patten August 12, 2018

Real Analysis. Joe Patten August 12, 2018 Real Analysis Joe Patten August 12, 2018 1 Relations and Functions 1.1 Relations A (binary) relation, R, from set A to set B is a subset of A B. Since R is a subset of A B, it is a set of ordered pairs.

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

(1) Which of the following are propositions? If it is a proposition, determine its truth value: A propositional function, but not a proposition.

(1) Which of the following are propositions? If it is a proposition, determine its truth value: A propositional function, but not a proposition. Math 231 Exam Practice Problem Solutions WARNING: This is not a sample test. Problems on the exams may or may not be similar to these problems. These problems are just intended to focus your study of the

More information

HOMEWORK ASSIGNMENT 5

HOMEWORK ASSIGNMENT 5 HOMEWORK ASSIGNMENT 5 DUE 1 MARCH, 2016 1) Let f(x) = 1 if x is rational and f(x) = 0 if x is irrational. Show that f is not continuous at any real number. Solution Fix any x R. We will show that f is

More information

Section 4.4 Functions. CS 130 Discrete Structures

Section 4.4 Functions. CS 130 Discrete Structures Section 4.4 Functions CS 130 Discrete Structures Function Definitions Let S and T be sets. A function f from S to T, f: S T, is a subset of S x T where each member of S appears exactly once as the first

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Homework #2 Solutions

Homework #2 Solutions Homework # Solutions Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad Eric Peterson 1 For submission to Thayer Anderson Problem 1.1. Let E denote the extended reals: E := R {, }. The usual arithmetic

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

COMPOSITION OF FUNCTIONS

COMPOSITION OF FUNCTIONS COMPOSITION OF FUNCTIONS INTERMEDIATE GROUP - MAY 21, 2017 Finishing Up Last Week Problem 1. (Challenge) Consider the set Z 5 = {congruence classes of integers mod 5} (1) List the elements of Z 5. (2)

More information

IVA S STUDY GUIDE FOR THE DISCRETE FINAL EXAM - SELECTED SOLUTIONS. 1. Combinatorics

IVA S STUDY GUIDE FOR THE DISCRETE FINAL EXAM - SELECTED SOLUTIONS. 1. Combinatorics IVA S STUDY GUIDE FOR THE DISCRETE FINAL EXAM - SELECTED SOLUTIONS Combinatorics Go over combinatorics examples in the text Review all the combinatorics problems from homewor Do at least a couple of extra

More information

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014 Functions and cardinality (solutions) 21-127 sections A and F TA: Clive Newstead 6 th May 2014 What follows is a somewhat hastily written collection of solutions for my review sheet. I have omitted some

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations D. R. Wilkins Academic Year 1996-7 1 Number Systems and Matrix Algebra Integers The whole numbers 0, ±1, ±2, ±3, ±4,...

More information

Basic Definitions: Group, subgroup, order of a group, order of an element, Abelian, center, centralizer, identity, inverse, closed.

Basic Definitions: Group, subgroup, order of a group, order of an element, Abelian, center, centralizer, identity, inverse, closed. Math 546 Review Exam 2 NOTE: An (*) at the end of a line indicates that you will not be asked for the proof of that specific item on the exam But you should still understand the idea and be able to apply

More information

1.1 Basic Algebra. 1.2 Equations and Inequalities. 1.3 Systems of Equations

1.1 Basic Algebra. 1.2 Equations and Inequalities. 1.3 Systems of Equations 1. Algebra 1.1 Basic Algebra 1.2 Equations and Inequalities 1.3 Systems of Equations 1.1 Basic Algebra 1.1.1 Algebraic Operations 1.1.2 Factoring and Expanding Polynomials 1.1.3 Introduction to Exponentials

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Math 127 Homework. Mary Radcliffe. Due 29 March Complete the following problems. Fully justify each response.

Math 127 Homework. Mary Radcliffe. Due 29 March Complete the following problems. Fully justify each response. Math 17 Homework Mary Radcliffe Due 9 March 018 Complete the following problems Fully justify each response NOTE: due to the Spring Break, this homework set is a bit longer than is typical You only need

More information

1 Homework. Recommended Reading:

1 Homework. Recommended Reading: Analysis MT43C Notes/Problems/Homework Recommended Reading: R. G. Bartle, D. R. Sherbert Introduction to real analysis, principal reference M. Spivak Calculus W. Rudin Principles of mathematical analysis

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X.

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. Notation 2 A set can be described using set-builder notation. That is, a set can be described

More information

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Chapter 2 1 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Sequences and Summations Types of Sequences Summation

More information

Part IA. Numbers and Sets. Year

Part IA. Numbers and Sets. Year Part IA Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 19 Paper 4, Section I 1D (a) Show that for all positive integers z and n, either z 2n 0 (mod 3) or

More information

MATH 22 FUNCTIONS: COMPOSITION & INVERSES. Lecture N: 10/16/2003. Mad world! mad kings! mad composition! Shakespeare, King John, II:1

MATH 22 FUNCTIONS: COMPOSITION & INVERSES. Lecture N: 10/16/2003. Mad world! mad kings! mad composition! Shakespeare, King John, II:1 MATH 22 Lecture N: 10/16/2003 FUNCTIONS: COMPOSITION & INVERSES Mad world! mad kings! mad composition! Shakespeare, King John, II:1 Copyright 2003 Larry Denenberg Administrivia http://denenberg.com/lecturen.pdf

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES 1 CS100: DISCRETE STRUCTURES Computer Science Department Lecture 2: Functions, Sequences, and Sums Ch2.3, Ch2.4 2.3 Function introduction : 2 v Function: task, subroutine, procedure, method, mapping, v

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring c Dr Oksana Shatalov, Spring 2016 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set

More information

Topics in Logic, Set Theory and Computability

Topics in Logic, Set Theory and Computability Topics in Logic, Set Theory and Computability Homework Set #3 Due Friday 4/6 at 3pm (by email or in person at 08-3234) Exercises from Handouts 7-C-2 7-E-6 7-E-7(a) 8-A-4 8-A-9(a) 8-B-2 8-C-2(a,b,c) 8-D-4(a)

More information

Austin Mohr Math 730 Homework 2

Austin Mohr Math 730 Homework 2 Austin Mohr Math 73 Homework 2 Extra Problem Show that f : A B is a bijection if and only if it has a two-sided inverse. Proof. ( ) Let f be a bijection. This implies two important facts. Firstly, f bijective

More information

Assignment #1 Sample Solutions

Assignment #1 Sample Solutions CS 220/MATH 320 Applied Discrete Mathematics Fall 2018 Instructor: Marc Pomplun Assignment #1 Sample Solutions Question 1: Say it with Propositional Functions Let Takes(x, y) be the propositional function

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Introduction to Functions

Introduction to Functions Mathematics for Economists Introduction to Functions Introduction In economics we study the relationship between variables and attempt to explain these relationships through economic theory. For instance

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Contribution of Problems

Contribution of Problems Exam topics 1. Basic structures: sets, lists, functions (a) Sets { }: write all elements, or define by condition (b) Set operations: A B, A B, A\B, A c (c) Lists ( ): Cartesian product A B (d) Functions

More information

Section Summary. Definition of a Function.

Section Summary. Definition of a Function. Section 2.3 Section Summary Definition of a Function. Domain, Cdomain Image, Preimage Injection, Surjection, Bijection Inverse Function Function Composition Graphing Functions Floor, Ceiling, Factorial

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

Chapter Summary. Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2.

Chapter Summary. Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2. Chapter 2 Chapter Summary Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2.6) Section 2.1 Section Summary Definition of sets Describing

More information

MATH 2001 MIDTERM EXAM 1 SOLUTION

MATH 2001 MIDTERM EXAM 1 SOLUTION MATH 2001 MIDTERM EXAM 1 SOLUTION FALL 2015 - MOON Do not abbreviate your answer. Write everything in full sentences. Except calculators, any electronic devices including laptops and cell phones are not

More information

Name (print): Question 4. exercise 1.24 (compute the union, then the intersection of two sets)

Name (print): Question 4. exercise 1.24 (compute the union, then the intersection of two sets) MTH299 - Homework 1 Question 1. exercise 1.10 (compute the cardinality of a handful of finite sets) Solution. Write your answer here. Question 2. exercise 1.20 (compute the union of two sets) Question

More information

Math 3140 Fall 2012 Assignment #3

Math 3140 Fall 2012 Assignment #3 Math 3140 Fall 2012 Assignment #3 Due Fri., Sept. 21. Remember to cite your sources, including the people you talk to. My solutions will repeatedly use the following proposition from class: Proposition

More information

TOPOLOGY HW 2. x x ± y

TOPOLOGY HW 2. x x ± y TOPOLOGY HW 2 CLAY SHONKWILER 20.9 Show that the euclidean metric d on R n is a metric, as follows: If x, y R n and c R, define x + y = (x 1 + y 1,..., x n + y n ), cx = (cx 1,..., cx n ), x y = x 1 y

More information

Homework 10 M 373K by Mark Lindberg (mal4549)

Homework 10 M 373K by Mark Lindberg (mal4549) Homework 10 M 373K by Mark Lindberg (mal4549) 1. Artin, Chapter 11, Exercise 1.1. Prove that 7 + 3 2 and 3 + 5 are algebraic numbers. To do this, we must provide a polynomial with integer coefficients

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2016 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from the set A to the set B is a correspondence that assigns to

More information

Cardinality and ordinal numbers

Cardinality and ordinal numbers Cardinality and ordinal numbers The cardinality A of a finite set A is simply the number of elements in it. When it comes to infinite sets, we no longer can speak of the number of elements in such a set.

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

Fundamentals of Pure Mathematics - Problem Sheet

Fundamentals of Pure Mathematics - Problem Sheet Fundamentals of Pure Mathematics - Problem Sheet ( ) = Straightforward but illustrates a basic idea (*) = Harder Note: R, Z denote the real numbers, integers, etc. assumed to be real numbers. In questions

More information

RELATIONS AND FUNCTIONS

RELATIONS AND FUNCTIONS Chapter 1 RELATIONS AND FUNCTIONS There is no permanent place in the world for ugly mathematics.... It may be very hard to define mathematical beauty but that is just as true of beauty of any kind, we

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

UWO CS2214 Feb. 4, Assignment #1 Due: Feb. 12, 2017, by 23:55 Submission: on the OWL web site of the course

UWO CS2214 Feb. 4, Assignment #1 Due: Feb. 12, 2017, by 23:55 Submission: on the OWL web site of the course UWO CS2214 Feb. 4, 2019 Assignment #1 Due: Feb. 12, 2017, by 23:55 Submission: on the OWL web site of the course Format of the submission. You must submit a single file which must be in PDF format. All

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

Topology Exercise Sheet 2 Prof. Dr. Alessandro Sisto Due to March 7

Topology Exercise Sheet 2 Prof. Dr. Alessandro Sisto Due to March 7 Topology Exercise Sheet 2 Prof. Dr. Alessandro Sisto Due to March 7 Question 1: The goal of this exercise is to give some equivalent characterizations for the interior of a set. Let X be a topological

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

Solutions to Tutorial for Week 4

Solutions to Tutorial for Week 4 The University of Sydney School of Mathematics and Statistics Solutions to Tutorial for Week 4 MATH191/1931: Calculus of One Variable (Advanced) Semester 1, 018 Web Page: sydneyeduau/science/maths/u/ug/jm/math191/

More information

SMSTC (2017/18) Geometry and Topology 2.

SMSTC (2017/18) Geometry and Topology 2. SMSTC (2017/18) Geometry and Topology 2 Lecture 1: Differentiable Functions and Manifolds in R n Lecturer: Diletta Martinelli (Notes by Bernd Schroers) a wwwsmstcacuk 11 General remarks In this lecture

More information

Solutions for Chapter Solutions for Chapter 17. Section 17.1 Exercises

Solutions for Chapter Solutions for Chapter 17. Section 17.1 Exercises Solutions for Chapter 17 403 17.6 Solutions for Chapter 17 Section 17.1 Exercises 1. Suppose A = {0,1,2,3,4}, B = {2,3,4,5} and f = {(0,3),(1,3),(2,4),(3,2),(4,2)}. State the domain and range of f. Find

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

MTH 299 In Class and Recitation Problems SUMMER 2016

MTH 299 In Class and Recitation Problems SUMMER 2016 MTH 299 In Class and Recitation Problems SUMMER 2016 Last updated on: May 13, 2016 MTH299 - Examples CONTENTS Contents 1 Week 1 3 1.1 In Class Problems.......................................... 3 1.2 Recitation

More information