Reconstructing low mass boosted A bb at LHCb

Size: px
Start display at page:

Download "Reconstructing low mass boosted A bb at LHCb"

Transcription

1 Summer student report - CERN 2014 Summer student: Petar Bokan Supervisor: Victor Coco Reconstructing low mass boosted A bb at LHCb ABSTRACT: LHCb has the ability to trigger low mass objects with high efficiency. Some theoretical models predict low mass resonances decaying to. Mass Drop Tagger + Filtering procedure can be used to reconstruct these resonances in boosted regime. This report presents work on Mass Drop Tagger + Filtering parameters optimization in the LHCb kinematic regime. The parameters have been optimized by taking into account signal and background efficiencies and di jet mass resolution.

2 1 INTRODUCTION Quarks and gluons can t be detected as free objects. Almost immediately after being produced, a quark or gluon fragments and hadronises, leading to collimated spray of energetic hadrons a jet. Jets are obvious structures when one looks at an event display, and by measuring their energy and direction one can get close to the idea of the original parton. Jets are used for a few decades in particle physics already. There is no unique definition, but instead there is many jet algorithms. We would like for a jet to have the same properties as initial parton, starting with momentum and energy. This is much easier said than done. In real events, when quarks and gluons are produced, they can radiate additional gluons, there can be gluon splitting, or some other QCD processes. For this reason, jets can't be too small, because in that case jet will not represent original parton and this rises whole new problem. If two particles are too close in sence of their angular splitting, their products will be reconstructed as one jet. This would change signature of dominant process in event and it would lead to wrong conclusions. Solution lies in jet substructure. If those jets which were reconstructed as a jet coming from two primary event products can be identified, than the problem would be solved [1]. Jets coming from two primary event products are not the only one with substructure. As mentioned, gluon emission or gluon splitting can also give substructure to jets. Best case for analyzing substructure tools is hadronic decay of some heavy particle, because than we will be able to compare substructure results with our physical expectations. Substructure procedures are also used do discriminate underlying events, pileup, uncorrelated showering and hadronization products [2]. Jets wits substructure are often called fat jets. 1.1 Substructure on LHCb Previous work on LHCb, especially search for exotic massive long lived particles [3] gave us a reason to consider jet substructure. Search for exotic massive long lived particles in low mass region showed low efficiency in reconstructing resolved jets. Comparison of efficiencies for, where is some scalar particle, being reconstructed as resolved case (two jets) is given in table (Fig ). 35 GeV 25 GeV 15 GeV efficiency 60% 45% 7% Fig : Efficiency of reconstructing resolved jets for respect to different values of. in Angular separation (distance in space - ) between two resolved jets for di-jet event becomes smaller for lower masses, so only one jet can be

3 reconstructed (Fig 1.1.2). To increase efficiencies in Fig 1.1.1, one of the ways is to consider jet substructure, to identify those di-jet events that were reconstructed as one jet. Fig : between two resolved jets for di-jet event for different values. 2 DEFINITIONS 2.1 Mass Drop Tagger There is many tools which were developed to evaluate substructure. One of these tools is Mass Drop Tagger (MDT) which was specially designed for this particular case where only one jet is reconstructed for di-jet event. MDT is designed to be used with jets found by the Cambridge/Aachen algorithm (C/A) [3]. If we have jet labeled j and we wont to perform Mass Drop Tagger we have to do next [2]: 1. Brake jet j into two subjets by undoing its last step of C/A clustering. Label them j 1 and j 2 so that. 2. If and if splitting is not to asymmetric ( ) than j is tagged jet. 3. Otherwise redefine j to be equal to j 1 and go back to step 1 (unless consists of just a single particle, in which case the original jet is deemed untagged.

4 Parameter shouldn t influence results if it s not too small, and should be the most important parameter for Mass Drop Tagger. Standard choices are and (range). 2.2 Filtering Filtering is another procedure used to evaluate background. It is often used in combination with Mass Drop Tagger (Fig ). If is angular separation between the two prongs of the jet after tagging. The tagged jet was then reclustered with radius only its hardest prongs are kept. Alternatively we could keep only filtered jets that have more than some fraction of jet's transverse momenta (10%). This should also be investigated. and Fig : Mass Drop Tagger + Filtering 3 ANALYSIS 3.1 Process and boosted regime The goal of this analysis is to find range of parameters that can be used for Mass Drop Tagger + Filtering procedure that match conditions required by LHCb experiment. Signal MC samples that were used are different combinations of for process (Fig ). If, than will be boosted, and angular separation between two b quarks will be smaller than jet radius, so only one jet will be reconstructed for this process. Also, these samples are in accordance with MDT + Filtering procedure. Fig : Different combinations of To estimate boosted regime for individual ( how angular separation of b quarks depends on ) combination it s best to see distribution. To avoid dependence of this

5 analysis on initial distribution different bins are defined and most of the results will be presented in these bins. Since this analysis is about MDT + Filtering procedure we chose this way, but in real physical analysis only cut on minimum value would be applied. Bins are defined as: ( ) ( ) ( ) ( ) ( ) ( ). (3.1.1) The dependence of angular separation of b quarks on distribution (Fig ) is shown for three ( ) combinations, and bins are illustrated in (a) together with illustrative two fat jet radius choices, (red) and (black). (a) (b) Fig : Correlation between angular separation of b quarks and ( ) combinations. (c) distribution for three

6 These lines (red and black) do not represent fat jet radius literally, but they can give us some hints about optimal fat jet radius. In standard analysis usually there would be some cut which would define boosted regime ( ) and that value would determine optimal jet radius. The optimal value is different for different ( ) combinations, as showed in Fig Only data in LHCb acceptance are considered, so background this condition is applied for fat jets. cut is applied. For 3.2 Mass Drop Tagger parameter combinations In the table (Fig ) chosen combinations of parameters for Mass Drop Tagger procedure are shown. In the future it would be advised to check results for parameters in interval. 3.3 Filtering jet radius Fig : Mass Drop Tagger parameters Two values of filtering jet radius are used: and. These values perform differently, so more detailed study would be desirable. The optimization of filtering procedure is also connected to choice of criteria for number of filtered jets that are kept after filtering process. Filtered jets are recombined in filtered fat jet after filtering procedure, and mass distribution of filtered fat jet is relevant distribution for evaluation of filtering procedure. Angular separation between two subjets (after applying Mass Drop Tagger) depends only on fat jet radius (Fig ).

7 Fig : Angular separation between two subjets after applying Mass Drop Tagger Different number of entries in two histograms (Fig ) is only because more fat jets are reconstructed (in the same event) for smaller value of fat jet radius. On the other hand, angular separation between two filtered jets depends on both, for subjets (after applying Mass Drop Tagger) and choice of (Fig ). of Fig : Angular separation between two filtered jets after applying Mass Drop Tagger and Filtering. We can see that angular separation between filtered jets is influenced by. Choice is conditioned by efficiency of (filtered fat jet) mass distribution in region of Mother s mass. This is shown for fixed Mass Drop Tagger parameters in defined bins for fat jet

8 radius (Fig ). First few bins are not shown because of their low stats. Similar behavior is seen for all MDT parameters. Fig : Filtered fat jet ( ) mass distribution in defined bins for fixed values of Mass Drop Tagger parameters and for two different values of parameter. Two peaks can be observed. These plots are for, so we can conclude that fat jets in that mass region are fully reconstructed fat jets coming from. goes to two quarks ( ), so it s expected that these jets are jets with substructure and that they contain two hadrons. Since they have well defined substructure, their splitting is preferably symmetric and they will pass Mass Drop Tagger procedure. Better resolution and better efficiency for this second peak is criterion for optimization. Conclusion is that has better performance, especially in lower bins, as expected. For higher bins jets and subjets are more collimated and there is no difference between two values (look at the last histogram in Fig ) Other fat jets (that make first peak) can also be jets with substructure. Some accompanying processes, such as gluon radiation can lead to substructure and symmetrical separation. That s the reason why many of low mass jets will pass Mass Drop Tagger procedure also.

9 3.4 tagging Process in ideal case is process with two fat jets, one for each, since is boosted. As explained, well reconstructed fat jet contains two hadrons. If we ask for angular separation between filtered jet and hadron to be less than we can say that those filtered jets, which satisfy this condition, come from quark. If two filtered jets from one fat jet satisfy this condition, than that fat jet comes from a decay of mother. Next figure (Fig ) shows effect of fake tagging on filtered fat jet mass distribution. We say fake because we didn t discuss issue of LHCb s liability to separate two hadrons. tagging discriminates jets which are coming from, for example. Fig : Filtered fat jet mass distribution before and after tagging. 4 RESULTS 4.1 What was calculated for signal? Optimization of parameters includes assessment of their performance in respect to good signal efficiency, signal quality and background rejection. For signal, properties that were used as relevant properties are: Most Probable Value (MPV) Center of highest bin in mass histogram, but we require for MPV to be higher than some value ( for ). Mass Window (MW) defined as smallest width mass window that contains of signal (entries). Important parameters of MW are Width, Top Edge and Low Edge. Mass Resolution (Relative Width) defined as half of width divided by MPV.

10 tagging allows us to have much better overview of MPV and MW results. These results are shown in bins which are defined by (3.1.1). Some of these (first few) bins (after applying tagging) have low stats, so MPV and MW properties are not well defined for them. We can see that Mass Resolution improves for high values, but the difference is not too significant, so it s not good to go to high for, because signal efficiency drops (shown in sec. 4.2). Fig MPV for listed values ( ) boosted regime.

11 Fig : Width of MW for listed values ( ) boosted regime. Fig : Relative Width of MW for listed values ( ) boosted regime.

12 tagged filtered fat jet mass distributions for one of the bins ( ) is shown in (Fig ) and it can illustrate decrease in efficiency for high values. Fig : Filtered fat jet mass distribution for listed values in one of the bins. 4.2 Signal and background efficiency First, we divide mass region into five mass windows: in. We define four different efficiencies in 8 ( bins (3.1.1)) diagrams: 1. Number of fat jets (in LHCb acceptance) in specified fat jet mass window (5 mass windows) and for specified (6 values), normalized to total number of fat jets in that fat jet mass window. Mass Drop Tagger does not influence this number (it s not yet applied). 2. Number of fat jets that pass Mass Drop Tagger procedure (in LHCb acceptance) in specified fat jet mass window (5 mass windows) and for specified (6 values), normalized to total number of fat jets in that fat jet mass window. 3. Number of filtered fat jets (in LHCb acceptance) in specified filtered fat jet mass window (5 mass windows) and for specified (6 values), normalized to total number of fat jets in the same fat jet mass window. 4. Number of tagged filtered fat jets (in LHCb acceptance) in specified filtered fat jet mass window (5 mass windows) and for specified (6 values), normalized to total number of fat jets in the same fat jet mass window.

13 QCD jets ( production) are used as background samples. Samples with different minimal hadron transverse momentum are used separately. In the next two figures four different efficiencies (listed before) are shown for bb20 (at least one hadron with in every event) and bb120 (at least one hadron with in every event). Filtering of background fat jets leads to migrations of jet s mass (filtered fat jet mass) to low values, so high values of number of filtered fat jets can be seen in first mass bin in Fig and Fig In Fig four efficiencies are shown for signal ( ). For this figure it s interesting to see what happens in mass region of (region indicated with arrows).

14 Fig : Four efficiencies for background (bb20) in defined bins.

15 Fig : Four efficiencies for background (bb120) in defined bins.

16 Fig : Four efficiencies for signal ( ) in defined bins.

17 Fig 4.2.4: Four efficiencies for signal ( ) in defined bins, but in 68% Mass Window, which is defined for filtered fat jet mass distribution after MDT + Filtering and after B-tagging.

18 Number of fat jets (Fig ) is not always the same in one bin because MW boundaries are not the same, not because of change in values. Also, number of fat jets is not the highest number in every bin, because of the migrations (to lower values) of fat jets mass after MDT + Filtering. Results shows, what we hoped for, significant background rejection, with satisfying signal quality. Optimization of values showed that and have the best performance, so it would be advised to check values in interval. Also, more detailed study of values is needed for specific kinematic regimes. References: [1] G.P. Salam, Towards Jetography, (2010) [arxiv: v2[hep.ph]]. [2] M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, (2013) [arxiv: v2[hep-ph]]. [3] LHCb-ANA [4] J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Phys. Rev. Lett. 100 (2008) [arxiv: [hep-ph]].

bb and TopTagging in ATLAS

bb and TopTagging in ATLAS X bb and TopTagging in ATLAS Mike Nelson, University of Oxford michael.nelson@physics.ox.ac.uk Focus of the discussion I want to try and achieve two things: Introduce the basic tools employed in ATLAS

More information

Jets and Heavy Flavour Physics in the vacuum and in the medium

Jets and Heavy Flavour Physics in the vacuum and in the medium LHCP Shanghai, May 2017 Jets and Heavy Flavour Physics in the vacuum and in the medium Matteo Cacciari LPTHE Paris Université Paris Diderot Jets Jets can be a golden observable to study the properties

More information

Jet substructure, top tagging & b-tagging at high pt Pierre-Antoine Delsart and Jeremy Andrea

Jet substructure, top tagging & b-tagging at high pt Pierre-Antoine Delsart and Jeremy Andrea Jet substructure, top tagging & b-tagging at high pt Pierre-Antoine Delsart and Jeremy Andrea Laboratoire de Physique Subatomique et Corpusculaire CNRS/IN2P3 1 Motivations Now exploring very high pt regions

More information

Large R jets and boosted. object tagging in ATLAS. Freiburg, 15/06/2016. #BoostAndNeverLookBack. Physikalisches Institut Universität Heidelberg

Large R jets and boosted. object tagging in ATLAS. Freiburg, 15/06/2016. #BoostAndNeverLookBack. Physikalisches Institut Universität Heidelberg Large R jets and boosted object tagging in ATLAS Christoph Anders Physikalisches Institut Universität Heidelberg #BoostAndNeverLookBack Freiburg, 15/06/2016 ??? Cambridge-Aachen 2 arxiv:1506.00962 Higgs

More information

Studies on hadronic top decays

Studies on hadronic top decays Studies on hadronic top decays José M. Clavijo, Havana University, Cuba September 6, 208 Supervisors: Daniela Dominguez Damiani and Hannes Jung Abstract Top events in the boosted regime are studied using

More information

George Bakas For the NTUA CMS Group

George Bakas For the NTUA CMS Group George Bakas For the NTUA CMS Group Top quark CMS Experiment Boosted Jets Analysis Overview 2 Mass : 172.44 ± 0.13 GeV c 2 Top Quark decay W + + b ( ҧ t W - + തb) Top pair production q + തq t + tҧ g +

More information

Boosted hadronic object identification using jet substructure in ATLAS Run-2

Boosted hadronic object identification using jet substructure in ATLAS Run-2 Boosted hadronic object identification using jet substructure in ATLAS Run-2 Emma Winkels on behalf of the ATLAS collaboration HEPMAD18 Outline Jets and jet substructure Top and W tagging H bb tagging

More information

Jet Substructure. Adam Davison. University College London

Jet Substructure. Adam Davison. University College London Jet Substructure Adam Davison University College London 1 Outline Jets at the LHC Machine and ATLAS detector What is a jet? Jet substructure What is it? What can it do for us? Some ATLAS/Higgs bias here

More information

arxiv: v1 [hep-ex] 28 Aug 2017

arxiv: v1 [hep-ex] 28 Aug 2017 Proceedings of the Fifth Annual LHCP AL-PHYS-PROC-7-99 November 9, 8 Boosted top production in ALAS and arxiv:78.864v [hep-ex] 8 Aug 7 Marino Romano On behalf of the ALAS and Collaborations, INFN, Sezione

More information

Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection

Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection DESY Summer School 24 9 September, 24 Author: Ibles Olcina Samblàs* Supervisor: Carmen Diez Pardos Abstract A study

More information

Top-tagging at high jet multiplicity

Top-tagging at high jet multiplicity Top-tagging at high jet multiplicity Sebastian Schätzel Universität Heidelberg, Germany Using Jet Substructure Workshop University of Oregon, Eugene, USA 23-26 April 2013 HEPTopTagger fat jet quantities

More information

arxiv: v1 [hep-ex] 7 Jan 2019

arxiv: v1 [hep-ex] 7 Jan 2019 Top quarks and exotics at ATLAS and CMS Leonid Serkin on behalf of the ATLAS and CMS Collaborations 1 arxiv:1901.01765v1 [hep-ex] 7 Jan 2019 INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine and

More information

Review of jet reconstruction algorithms

Review of jet reconstruction algorithms Journal of Physics: Conference Series PAPE OPEN ACCESS eview of jet reconstruction algorithms To cite this article: yan Atkin 2015 J. Phys.: Conf. Ser. 645 012008 View the article online for updates and

More information

Jet Physics. Yazid Delenda. 1st Jijel Meeting on Theoretical Physics. Jijel, October 29-31, University Batna 1

Jet Physics. Yazid Delenda. 1st Jijel Meeting on Theoretical Physics. Jijel, October 29-31, University Batna 1 Jet Physics Yazid Delenda University Batna 1 1st Jijel Meeting on Theoretical Physics Quantum Mechanics, Gravitation and Particle Physics Jijel, October 29-31, 2018 977 1 ⵜ ⴰ ⵙ ⴷⴰ ⵡⵉ ⵜ ⵏ ⵜ ⴱⴰ ⵜ ⴻ ⵏ ⵜ U

More information

Hard And Soft QCD Physics In ATLAS

Hard And Soft QCD Physics In ATLAS Hard And Soft QCD Physics In ALAS Stefanie Adomeit on behalf of the ALAS collaboration International Conference on New Frontiers in Physics - Crete, June -6, QCD Measurements in ALAS at LHC every kind

More information

AN ANALYTIC UNDERSTANDING OF JET SUBSTRUCTURE

AN ANALYTIC UNDERSTANDING OF JET SUBSTRUCTURE AN ANALYTIC UNDERSTANDING OF JET SUBSTRUCTURE Simone Marzani Institute for Particle Physics Phenomenology Durham University NIKHEF Amsterdam, 7 th November 213 Dasgupta, Fregoso, SM, Powling EPJ C Dasgupta,

More information

Factorization for Jet Substructure. Andrew Larkoski Reed College

Factorization for Jet Substructure. Andrew Larkoski Reed College Factorization for Jet Substructure Andrew Larkoski Reed College SCET 017, March 14, 017 Goal: Precision Calculations on Isolated Jets at the LHC 3 Perturbative Radiation Perturbative Radiation Underlying

More information

Measurement of multijets and the internal structure of jets at ATLAS

Measurement of multijets and the internal structure of jets at ATLAS Measurement of multijets and the internal structure of jets at ALAS Bilge M. Demirköz, on behalf of the ALAS Collaboration Institut de Fisica d Altes Energies, Barcelona, SPAIN also at Middle East echnical

More information

Vivian s Meeting April 17 th Jet Algorithms. Philipp Schieferdecker (KIT)

Vivian s Meeting April 17 th Jet Algorithms. Philipp Schieferdecker (KIT) th 2009 Jet Algorithms What are Jets? Collimated bunches of stable hadrons, originating from partons (quarks & gluons) after fragmentation and hadronization Jet Finding is the approximate attempt to reverse-engineer

More information

Jet physics in ATLAS. Paolo Francavilla. IFAE-Barcelona. Summer Institute LNF , QCD, Heavy Flavours and Higgs physics

Jet physics in ATLAS. Paolo Francavilla. IFAE-Barcelona. Summer Institute LNF , QCD, Heavy Flavours and Higgs physics Jet physics in ATLAS IFAE-Barcelona Summer Institute LNF-2012-2, QCD, Heavy Flavours and Higgs physics Frascati National Laboratories 27 June 2012 Jets in the LHC era At the Large Hadron Collider (LHC),

More information

Measurements of of BB BB Angular Correlations based on Secondary Vertex Reconstruction at at s s s = 7 TeV in in CMS

Measurements of of BB BB Angular Correlations based on Secondary Vertex Reconstruction at at s s s = 7 TeV in in CMS XIV International Conference on Hadron Spectroscopy Measurements of of BB BB Angular Correlations based on on Secondary Vertex Reconstruction at at s s s = 7 TeV in in CMS Christoph Grab ETH Zurich Representing

More information

Search for BSM Decaying to Top Quarks

Search for BSM Decaying to Top Quarks 1, Johns Hopkins Why 2? In many BSM models, third generation is special (esp. top) Easiest to study the spectrum of invariant masses, 1) Narrow resonance (

More information

Finding heavy particles in single jets

Finding heavy particles in single jets Finding heavy particles in single jets Christopher Vermilion with teve Ellis and Jon Walsh University of Washington eptember 16, 009 arxiv: 0903.5081, 0909.OON tinyurl.com/jetpruning 1 / 37 Why jet substructure?

More information

Search for heavy BSM particles coupling to third generation quarks at CMS

Search for heavy BSM particles coupling to third generation quarks at CMS Search for heavy BSM particles coupling to third generation quarks at on behalf of the Collaboration University of Hamburg E-mail: mareike.meyer@desy.de Many models of physics beyond the Standard Model

More information

Event shapes in hadronic collisions

Event shapes in hadronic collisions Event shapes in hadronic collisions Andrea Banfi ETH Zürich SM@LHC - Durham - April Event shapes at hadron colliders Event shapes are combinations of hadron momenta in a number related to the geometry

More information

Jet reconstruction. What are jets? How can we relate the measured jets to the underlying physics process? Calibration of jets Tagging of jets

Jet reconstruction. What are jets? How can we relate the measured jets to the underlying physics process? Calibration of jets Tagging of jets Jet reconstruction What are jets? How can we relate the measured jets to the underlying physics process? Calibration of jets Tagging of jets 1 What are jets? Jets for non- particle physicists Jets for

More information

Jet structures in New Physics and Higgs searches

Jet structures in New Physics and Higgs searches Jet structures in New Physics and Higgs searches Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS LHC New Physics Forum, IWH Heidelberg, Germany, 23 26 February 2009 Part based on work with Jon Butterworth, Adam

More information

ALICE Results on Jets and Photons

ALICE Results on Jets and Photons ALICE Results on Jets and Photons Yue Shi Lai Miami2018 December 15, 2018 (Yue Shi Lai) December 15, 2018 1 / 17 Introduction Jets: Remnants from surviving quark and gluons, after interaction with the

More information

Top tagging at CMS. Torben Dreyer on behalf of the CMS Collaboration. BOOST 2017, Buffalo

Top tagging at CMS. Torben Dreyer on behalf of the CMS Collaboration. BOOST 2017, Buffalo Torben Dreyer on behalf of the CMS Collaboration BOOST 2017, Buffalo Motivation LHC at s = 13 TeV More top quarks with high momentum (Standard Model and new physics) Top tagging more important than ever

More information

Pre-Processing and Re-Weighting Jet Images with Different Substructure Variables

Pre-Processing and Re-Weighting Jet Images with Different Substructure Variables Pre-Processing and Re-Weighting Jet Images with Different Substructure Variables Lynn Huynh University of California, Davis Department of Mechanical Engineering CERN Work Project Report CERN, ATLAS, Jet

More information

Dark matter searches and prospects at the ATLAS experiment

Dark matter searches and prospects at the ATLAS experiment Dark matter searches and prospects at the ATLAS experiment Wendy Taylor (York University) for the ATLAS Collaboration TeVPA 2017 Columbus, Ohio, USA August 7-11, 2017 Dark Matter at ATLAS Use 13 TeV proton-proton

More information

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS HODA HESARI SCHOOL OF PARTICLES AND ACCELERATORS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM) The LHeC is a proposed deep inelastic electron-nucleon

More information

Boosted Top Tagging with Neural Networks

Boosted Top Tagging with Neural Networks Boosted Top Tagging with Neural Networks Maxim Perelstein Cornell CMS Group Physics Retreat, March 5 2015 Based on work with Leo Almeida, Mihailo Backovic, Mathieu Cliche, Seung Lee [arxiv:1501.05968 +

More information

Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das

Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das Cornell University (September 11, 2006) Decays of the Tau

More information

arxiv: v3 [hep-ph] 25 Jan 2011

arxiv: v3 [hep-ph] 25 Jan 2011 Preprint typeset in JHEP style - HYPER VERSION MIT-CTP 4191 arxiv:111.2268v3 [hep-ph] 25 Jan 211 Identifying Boosted Objects with N-subjettiness Jesse Thaler and Ken Van Tilburg Center for Theoretical

More information

Monte Carlo Simulation of Top Quark pair production in dilepton channel

Monte Carlo Simulation of Top Quark pair production in dilepton channel 2pt Monte Carlo Simulation of Top Quark pair production in dilepton channel Summerstudent Report Daniela Ramermann Physics Department, Bielefeld University, Universitätsstrasse 25, D-3365 Bielefeld, Germany

More information

Background Subtraction Methods on Recoil Jets from Proton-Proton Collisions

Background Subtraction Methods on Recoil Jets from Proton-Proton Collisions Background Subtraction Methods on Recoil Jets from Proton-Proton Collisions Colby Ostberg San Francisco State University REU student at Texas A&M Cyclotron Institute 1 Motivation At the RHIC, heavy ions

More information

Boosted Top Resonance Searches at CMS

Boosted Top Resonance Searches at CMS Boosted Top Resonance Searches at CMS Justin Pilot, UC Davis on behalf of the CMS Collaboration Northwest Terascale Workshop, Using Jet Substructure University of Oregon 5 April 013 Introduction Many new

More information

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Fengwangdong Zhang Peking University (PKU) & Université Libre de Bruxelles (ULB)

More information

tt production in the forward region at LHCb

tt production in the forward region at LHCb tt production in the forward region at LHCb María Vieites Díaz, On behalf of the LHCb Collaboration Universidade de Santiago de Compostela image from https://www.trada.co.uk/case-studies/the-globe-at-cern-geneva/

More information

Tagging Boosted Top Quarks and Higgs Bosons in ATLAS

Tagging Boosted Top Quarks and Higgs Bosons in ATLAS agging Boosted op Quarks and Higgs Bosons in ALAS BOOS 05, University of Chicago Matt LeBlanc, on behalf of the ALAS Collaboration 0 th -4 th August 05 Overview Run-I op agging: ALAS-CONF-05-36 agging

More information

Studies of b b gluon and c c vertices Λ. Abstract

Studies of b b gluon and c c vertices Λ. Abstract SLAC PUB 8661 October 2000 Studies of b b gluon and c c vertices Λ Toshinori Abe Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Representing the SLD Collaboration Abstract

More information

Top and Higgs Tagging and Where it Helps

Top and Higgs Tagging and Where it Helps Top and Higgs Tagging and Where it Helps Universität Heidelberg Mainz 2/2 Boosted particles at the LHC 994 boosted W 2 jets from heavy Higgs [Seymour] 994 boosted t 3 jets [Seymour] 22 boosted W 2 jets

More information

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment Search for a new spin-zero resonance in diboson channels at 3 TeV with the experiment Universite Catholique de Louvain (UCL) (BE) E-mail: alessio.magitteri@cern.ch On behalf of the Collaboration Searches

More information

Jet Results in pp and Pb-Pb Collisions at ALICE

Jet Results in pp and Pb-Pb Collisions at ALICE Jet Results in pp and Pb-Pb Collisions at ALICE Oliver Busch for the ALICE Collaboration Motivation Jet reconstruction in ALICE Jets in pp Jets in Pb-Pb Hadron triggered recoil jets Motivation Jets originate

More information

QCD Jets: Rise of the Machines

QCD Jets: Rise of the Machines QCD Jets: Rise of the Machines Universität Heidelberg Budapest 7/217 Fat jets Boosted particles at the LHC 1994 boosted W 2 jets from heavy Higgs [Seymour] 1994 boosted t 3 jets [Seymour] 26 boosted t

More information

Substructure at CMS:

Substructure at CMS: Substructure at CMS: Experimental Perspective (SUNY Buffalo) Terajets 2013: Using Jet Substructure 1 Introduction Use one example analysis (Z tt all hadronic) to bring up some experimental discussion topics

More information

Jet tagging with ATLAS for discoveries in Run II

Jet tagging with ATLAS for discoveries in Run II Jet tagging with ATLAS for discoveries in Run II Ayana Arce (Duke University) November 5 th 2014 The Large Hadron Collider 2008-2013: E CM : 7.0 8.0 TeV m H = 125.4 +/- 0.4 (ATLAS) m H = 125.0 +/- 0.3

More information

Jets and jet substructure 4: substructure

Jets and jet substructure 4: substructure Jets and jet substructure 4: substructure Gavin Salam (CERN) with extensive use of material by Matteo Cacciari and Gregory Soyez TASI June 213 1 Two things that make jets@lhc special The large hierarchy

More information

JET FRAGMENTATION DENNIS WEISER

JET FRAGMENTATION DENNIS WEISER JET FRAGMENTATION DENNIS WEISER OUTLINE Physics introduction Introduction to jet physics Jets in heavy-ion-collisions Jet reconstruction Paper discussion The CMS experiment Data selection and track/jet

More information

On QCD jet mass distributions at LHC

On QCD jet mass distributions at LHC On QCD jet mass distributions at LHC Kamel Khelifa-Kerfa (USTHB) with M. Dasgupta, S. Marzani & M. Spannowsky CIPSA 2013 30 th Sep - 2 nd Oct 2013 Constantine, Algeria Outline 1 Jet substructure 2 Jet

More information

Distinguishing quark and gluon jets at the LHC

Distinguishing quark and gluon jets at the LHC Distinguishing quark and jets at the LHC Giorgia Rauco (on behalf of the ALAS and CMS Collaborations) Universität Zürich, Zürich, Switzerland Abstract: Studies focused on discriminating between jets originating

More information

W vs. QCD Jet Tagging at the Large Hadron Collider

W vs. QCD Jet Tagging at the Large Hadron Collider W vs. QCD Jet Tagging at the Large Hadron Collider Bryan Anenberg: anenberg@stanford.edu; CS229 December 13, 2013 Problem Statement High energy collisions of protons at the Large Hadron Collider (LHC)

More information

Properties of Proton-proton Collision and. Comparing Event Generators by Multi-jet Events

Properties of Proton-proton Collision and. Comparing Event Generators by Multi-jet Events Properties of Proton-proton Collision and Comparing Event Generators by Multi-jet Events Author: W. H. TANG 1 (Department of Physics, The Chinese University of Hong Kong) Supervisors: Z. L. MARSHALL 2,

More information

Search for W' tb in the hadronic final state at ATLAS

Search for W' tb in the hadronic final state at ATLAS Search for W' tb in the hadronic final state at ATLAS Ho Ling Li The University of Chicago January 5, 2015 1 Introduction What is W'? A charged, heavy, Standard-Model-like W gauge boson Analysis channels

More information

Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run2 data

Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run2 data Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run data Marilea Reale INFN Lecce and Università del Salento (IT) E-mail:

More information

Physics with Tau Lepton Final States in ATLAS. Felix Friedrich on behalf of the ATLAS Collaboration

Physics with Tau Lepton Final States in ATLAS. Felix Friedrich on behalf of the ATLAS Collaboration Physics with Tau Lepton Final States in ATLAS on behalf of the ATLAS Collaboration HEP 2012, Valparaiso (Chile), 06.01.2012 The Tau Lepton m τ = 1.8 GeV, heaviest lepton cτ = 87 μm, short lifetime hadronic

More information

Demystifying Multivariate Searches

Demystifying Multivariate Searches Demystifying Multivariate Searches and the Matthew Schwartz Harvard University Work down with Jason Gallicchio, PRL, 105:022001,2010 and with Gallicchio, Tweedie, Huth, Kagan and Black in preparation Johns

More information

Measurement of Jet Energy Scale and Resolution at ATLAS and CMS at s = 8 TeV

Measurement of Jet Energy Scale and Resolution at ATLAS and CMS at s = 8 TeV Measurement of Jet Energy Scale and Resolution at ATLAS and CMS at s = 8 TeV EDSBlois 2015 02.07.2015 Dominik Haitz on behalf of the ATLAS and CMS Collaborations INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

More information

Studies of the diffractive photoproduction of isolated photons at HERA

Studies of the diffractive photoproduction of isolated photons at HERA Studies of the diffractive photoproduction of isolated photons at HERA P. J. Bussey School of Physics and Astronomy University of Glasgow Glasgow, United Kingdom, G12 8QQ E-mail: peter.bussey@glasgow.ac.uk

More information

New physics searches with top quarks at ATLAS

New physics searches with top quarks at ATLAS New physics searches with top quarks at ATLAS Marcel Vos (IFIC, CSIC/UV, Valencia, Spain) New phenomena discussion session IMFP2012, Benasque, Spain Top as a signature for new physics? Wishful thinking?:

More information

PoS(Confinement X)171

PoS(Confinement X)171 in pp collisions at LHC energies Institute for Particle and Nuclear Physics, Wigner RCP, HAS 2 Budapest, XII. Konkoly Thege Miklos ut 29-33 E-mail: sona.pochybova@cern.ch With increasing luminosities at

More information

Searches for exotica at LHCb

Searches for exotica at LHCb Searches for exotica at LHCb Lorenzo Sestini Università di Padova e INFN LHCb Implications Workshop, Geneve-Cern, 3-11-2015 Searches for exotics LHCb can be complementary to ATLAS and CMS in the search

More information

Searches for BSM Physics in Events with Top Quarks (CMS)

Searches for BSM Physics in Events with Top Quarks (CMS) Searches for BSM Physics in Events with Top Quarks (CMS) On behalf of the CMS collaboration SUSY 2014 Manchester, July 22nd 2014 The Top Quark Top quark special due to its high mass main responsible for

More information

Highlights of top quark measurements in hadronic final states at ATLAS

Highlights of top quark measurements in hadronic final states at ATLAS Highlights of top quark measurements in hadronic final states at ATLAS Serena Palazzo 1,2,, on behalf of the ATLAS Collaboration 1 Università della Calabria 2 INFN Cosenza Abstract. Measurements of inclusive

More information

Studies on a Higgs-like Boson in the H(bb )W(`ν ) Channel with the CMS Experiment

Studies on a Higgs-like Boson in the H(bb )W(`ν ) Channel with the CMS Experiment Studies on a Higgs-like Boson in the H(bb )W(`ν ) Channel with the CMS Experiment DPG Fru hjahrstagung Dresden 23 Christian Bo ser, Th. Chwalek, S. Fink, H. Held, B. Maier, Th. Mu ller, P. Schieferdecker,

More information

PoS(ICHEP2012)311. Identification of b-quark jets in the CMS experiment. Sudhir Malik 1

PoS(ICHEP2012)311. Identification of b-quark jets in the CMS experiment. Sudhir Malik 1 Identification of b-quark jets in the CMS experiment 1 University of Nebraska-Lincoln Lincoln, NE 68588 E-mail: malik@fnal.gov The identification of jets arising from the production of b-quarks is an essential

More information

CMS Physics Analysis Summary

CMS Physics Analysis Summary Available on the CERN CDS information server CMS PAS JME3 CMS Physics Analysis Summary Contact: cms-pog-conveners-met@cern.ch /3/3 Study of Jet Substructure in pp Collisions at 7 ev in CMS he CMS Collaboration

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

PoS(DIS2014)064. Forward-Central Jet Correlations. Pedro Miguel RIBEIRO CIPRIANO, on behalf of CMS. DESY - CMS

PoS(DIS2014)064. Forward-Central Jet Correlations. Pedro Miguel RIBEIRO CIPRIANO, on behalf of CMS. DESY - CMS DESY - CMS E-mail: pedro.cipriano@desy.de The azimuthal correlation between forward and central jets has been measured in proton proton collisions at the LHC, at the centre-of-mass energy of 7 TeV. The

More information

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010 Jets (and photons) at the LHC J. Huston LPC March 10, 2010 More references Understanding cross sections at the LHC we have to understand QCD (at the LHC) PDF s, PDF luminosities and PDF uncertainties LO,

More information

B-Tagging in ATLAS: expected performance and and its calibration in data

B-Tagging in ATLAS: expected performance and and its calibration in data B-Tagging in ATLAS: expected performance and and its calibration in data () on behalf of the ATLAS Collaboration Charged Higgs 2008 Conference (Uppsala: 15-19 September 2008) Charged Higgs Conference -

More information

Jet reconstruction in heavy-ion collisions

Jet reconstruction in heavy-ion collisions Jet reconstruction in heavy-ion collisions Grégory Soyez IPhT, Saclay CERN In collaboration with Gavin Salam, Matteo Cacciari and Juan Rojo BNL March 12 21 p. 1 Plan Motivations Why jets in heavy-ion collisions

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2013/016 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 18 January 2013 (v2, 21 January 2013)

More information

Boosted top quarks & jet substructure

Boosted top quarks & jet substructure Boosted top quarks & jet substructure Marcel Vos (IFIC, CSIC/UV, Valencia, Spain) MIAPP top physics day Garching, 11 August 2014 The boosted production threshold LHC: s >> EEW Even the heaviest SM particles

More information

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2 THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2 S. Shaw a on behalf of the ATLAS Collaboration University of Manchester E-mail: a savanna.marie.shaw@cern.ch The ATLAS trigger has been used very

More information

Measurement of the jet production properties at the LHC with the ATLAS Detector

Measurement of the jet production properties at the LHC with the ATLAS Detector Measurement of the jet production properties at the LHC with the ALAS Detector Stanislav okar Comenius University, Bratislava On behalf of the ALAS collaboration Different features of the jet production

More information

et Experiments at LHC

et Experiments at LHC et Experiments at LHC (as opposed to Jet Physics at RHIC ) JET Collaboration Symposium Montreal June 2015 Heavy-ion jet results at LHC Dijet asymmetries Observation of a Centrality-Dependent Dijet Asymmetry

More information

arxiv: v1 [hep-ph] 27 Dec 2018

arxiv: v1 [hep-ph] 27 Dec 2018 Study of t th production with H b b at the HLLHC arxiv:1812.17v1 [hepph] 27 Dec 218 A. J. Costa, 1 A. L. Carvalho, 2 R. Gonçalo, 2, 3 P. Muiño, 2, 4 and A. Onofre 5 1 School of Physics and Astronomy, University

More information

ATLAS Jet Reconstruction, Calibration, and Tagging

ATLAS Jet Reconstruction, Calibration, and Tagging ALAS Jet Reconstruction, Calibration, and agging Steven Schramm On behalf of the ALAS Collaboration ICNFP 7 Crete, Greece August, 7 Steven Schramm (Université de Genève) Jet reconstruction, calibration,

More information

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY July 8, 2015, Pittsburgh Jets Zoltan Nagy DESY What are Jets? A di-jet ATLAS event A multi-jet (6-jet) event What are Jets? What are Jets? The pt is concentrated in a few narrow sprays of particles These

More information

Searching for Confining Hidden Valleys at the LHC(b)

Searching for Confining Hidden Valleys at the LHC(b) Searching for Confining Hidden Valleys at the LHC(b) Yue Zhao University of Michigan Jan. 2018 with Aaron Pierce, Bibhushan Shakya,Yuhsin Tsai arxiv:1708.05389 [hep-ph] Current Status of Particle Physics

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

ATLAS Measurements of Boosted Objects

ATLAS Measurements of Boosted Objects BOOS24 University College London, 8-22 August 24 ALAS Measurements of Boosted Objects Christoph Anders on behalf of the ALAS collaboration Physikalisches Institut Universita t Heidelberg August 9th 24

More information

TASI Lectures on Jet Substructure

TASI Lectures on Jet Substructure TASI Lectures on Jet Substructure Jessie Shelton arxiv:1302.0260v2 [hep-ph] 9 Feb 2013 Yale University Physics Department and Harvard University Physics Department High Energy Theory Group 17 Oxford Street

More information

Performance of muon and tau identification at ATLAS

Performance of muon and tau identification at ATLAS ATL-PHYS-PROC-22-3 22/2/22 Performance of muon and tau identification at ATLAS On behalf of the ATLAS Collaboration University of Oregon E-mail: mansoora.shamim@cern.ch Charged leptons play an important

More information

Jet Properties in Pb-Pb collisions at ALICE

Jet Properties in Pb-Pb collisions at ALICE Jet Properties in Pb-Pb collisions at ALICE Oliver Busch University of sukuba Heidelberg University for the ALICE collaboration Oliver Busch LHC Seminar 5/216 1 Outline Introduction Jets in heavy-ion collisions

More information

Standard Model Handles and Candles WG (session 1)

Standard Model Handles and Candles WG (session 1) Standard Model Handles and Candles WG (session 1) Conveners: Experiment: Craig Buttar, Jorgen d Hondt, Markus Wobisch Theory: Michael Kramer, Gavin Salam This talk: the jets sub-group 1. Background + motivation

More information

Towards Jetography. Gavin Salam. LPTHE, CNRS and UPMC (Univ. Paris 6)

Towards Jetography. Gavin Salam. LPTHE, CNRS and UPMC (Univ. Paris 6) Towards Jetography Gavin Salam LPTHE, CNRS and UPMC (Univ. Paris 6) Based on work with Jon Butterworth, Matteo Cacciari, Mrinal Dasgupta, Adam Davison, Lorenzo Magnea, Juan Rojo, Mathieu Rubin & Gregory

More information

New particle Searches in the dijet final state at 13TeV with the ATLAS detector

New particle Searches in the dijet final state at 13TeV with the ATLAS detector New particle Searches in the dijet final state at 13TeV with the ATLAS detector Mohammad Atif August 21, 2015 1 INTRODUCTION Summer Project at CERN Supervised by Dr. Caterina Doglioni. In Standard Model

More information

Improving Jet Substructure Performance in ATLAS with Unified Tracking and Calorimeter Inputs Connecting The Dots 2018

Improving Jet Substructure Performance in ATLAS with Unified Tracking and Calorimeter Inputs Connecting The Dots 2018 Improving Jet Substructure Performance in ATLAS with Unified Tracking and Calorimeter Inputs Connecting The Dots 2018 Roland Jansky, University of Geneva 21st March 2018 Jets at the Energy Frontier event

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 22/? The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-2 GENEVA 23, Switzerland xxxx Study of a High Level b-trigger selection of

More information

Searches for Dark Matter with in Events with Hadronic Activity

Searches for Dark Matter with in Events with Hadronic Activity Searches for Dark Matter with in Events with Hadronic Activity Gabriele Chiodini, On behalf of the ATLAS Collaboration. INFN sezione di Lecce, via Arnesano 73100 Lecce - Italy ATL-PHYS-PROC-2017-176 02

More information

Jet Substructure in the Pre-ILC Era. Brock Tweedie Boston University 18 March 2011

Jet Substructure in the Pre-ILC Era. Brock Tweedie Boston University 18 March 2011 Jet Substructure in the Pre-ILC Era Brock Tweedie Boston University 18 March 2011 We re Making Progress Everything heavy becomes light eventually 1970 s: Taus, c-quarks, and b-quarks freshly discovered,

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

Recent Results from the Tevatron

Recent Results from the Tevatron Recent Results from the Tevatron Simona Rolli Tufts University (on behalf of the CDF and D0 Collaborations) PPC 2010: IV INTERNATIONAL WORKSHOP ON THE INTERCONNECTION BETWEEN PARTICLE PHYSICS AND COSMOLOGY

More information

Jets at LHCb. Gavin Salam. LHCb, CERN, 21 January CERN, Princeton & LPTHE/CNRS (Paris)

Jets at LHCb. Gavin Salam. LHCb, CERN, 21 January CERN, Princeton & LPTHE/CNRS (Paris) Jets at LHCb Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) LHCb, CERN, 21 January 2011 Jets @ LHCb (G. Salam) CERN, 2011-01-21 2 / 16 Any process that involves final-state partons gives jets Examples

More information

Tau (or no) leptons in top quark decays at hadron colliders

Tau (or no) leptons in top quark decays at hadron colliders Tau (or no) leptons in top quark decays at hadron colliders Michele Gallinaro for the CDF, D0, ATLAS, and CMS collaborations Laboratório de Instrumentação e Física Experimental de Partículas LIP Lisbon,

More information

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Measurement of photon production cross sections also in association with jets with the ATLAS detector Nuclear and Particle Physics Proceedings 00 (07) 6 Nuclear and Particle Physics Proceedings Measurement of photon production cross sections also in association with jets with the detector Sebastien Prince

More information