Survey of JPEG compression history analysis

Size: px
Start display at page:

Download "Survey of JPEG compression history analysis"

Transcription

1 Survey of JPEG compression history analysis Andrew B. Lewis Computer Laboratory Topics in security forensic signal analysis

2 References Neelamani et al.: JPEG compression history estimation for color images, IEEE Transactions on Image Processing 15(6), 2006 Hany Farid: Exposing digital forgeries from JPEG ghosts, IEEE Transactions on Information Forensics and Security 4(1), 2009 Andrew B. Lewis, Markus G. Kuhn: Exact JPEG recompression 1, to appear in SPIE Electronic Imaging: Visual Information Processing and Communication, Draft at

3 Outline Revision of JPEG compression/decompression algorithm Probability theory for parameter estimation JPEG compression history estimation for color images Exact JPEG recompression

4 The JPEG algorithm Parameters: Quantization: Q L (luma), Q C (chroma) Sub-sampling: 1 1 (luma), 2 2, 2 2 (chroma) also known as 4:2:0 sub-sampling Colour space: Y C b C r Image Colour space convert Y C b C r DCT Q L Encode 2 2 DCT Q C Encode 2 2 DCT Q C Encode

5 JPEG compression history estimation Probabilistically estimate settings used in the previous compression step Input: raw image in colour space F Output: compressed representation colour space G, sub-sampling scheme S and quantization tables Q {G, S, Q } = arg max P(Image, G, S, Q) G,S,Q = arg max P(Image G, S, Q)P(G, S, Q) G,S,Q

6 Terminology of inverse probability Unknown parameters θ, data D, assumptions H P(θ D, H) = P(D θ, H)P(θ H) P(D H) likelihood prior posterior = evidence The quantity of P(D θ, H) is a function of both D and θ. For fixed θ it defines a probability over D. For fixed D it defines the likelihood of θ. 2 2 More in David J. C. MacKay: Information Theory, Inference and Learning Algorithms, Cambridge University Press.

7 Maximum a posteriori estimation We wish to estimate θ on the basis of data D. The maximum likelihood (ML) estimate of the parameters from the data is ˆθ ML (D) = arg max P(D θ) θ and maximum a posteriori (MAP) estimate is ˆθ MAP (D) = arg max P(D θ)p(θ) θ

8 Expectation maximization ML estimate requires the marginal likelihood, if we have hidden variables. ˆθ ML (D) = arg max P(D θ) θ P(D θ) = Z P(D z, θ)p(z θ) Evaluating the sum is sometimes computationally infeasible. The expectation-maximization algorithm can be used instead. Expectation: Q(θ θ (t) ) = E Z x,θ (t)[log L(θ; x, Z)] Maximization: θ t+1 = arg max Q(θ θ (t) ) θ No guarantees of convergence

9 Interpolation characterisation as an expectation maximization problem Expectation: Q(θ θ (t) ) = E Z x,θ (t)[log L(θ; x, Z)] Maximization: θ t+1 = arg max Q(θ θ (t) ) θ x: the observed image samples f (x, y) θ: the interpolation kernel α and variance σ 2 Z: the p-map, an array of probabilities with the same dimensions as the image, where each probability indicates P(f (x, y) M 1 )

10 Compression history estimation as MAP problem ˆθ MAP (D) = arg max P( D θ )P( θ ) θ {G, S, Q } = arg max G, S, Q P( Image G, S, Q )P( G, S, Q )

11 Estimating quantization tables Q (1) Small set of possible values for G and S. C space to G, sub-sample with S, then forward DCT gives a near-periodic distribution of coefficients Ω G,S over image. G, S, Q and X G,S Ω G,S independent {G, S, Q } = arg max P(Ω G,S G, S, Q)P(G)P(S)P(Q) G,S,Q {G, S, Q } = arg max G,S,Q ex G,S Ω G,S P( X G,S G, S, Q)P(G)P(S)P(Q)

12 Estimating quantization tables Q (2) Since the decompressor s dequantization, DCT coefficients X q were IDCT ed; the results were up-sampled if necessary; and the image was converted to the RGB colour space. We received the image, and applied a forward colour space conversion; we downsampled the planes, if appropriate; and we applied the forward DCT to get e X. Rounding errors accumulate during every stage of this process. Therefore, we model the DCT coefficient values X = X q + Γ where original DCT coefficients X q are modelled by a sampled zero-mean Laplace distribution P(x) drawn from a truncated normal distribution x and rounding error Γ is P(x) x.

13 Estimating quantization tables Q (3) The Laplace distribution for DCT coefficient values has scale parameter λ, determined from the observations. The probability distribution of coefficient values after quantization/dequantization with factor q is P( X q = t q Z + ) = (k+0.5)q λ δ(t kq) exp ( λ τ ) dτ k Z (k 0.5)q 2 Rounding errors are independent, so we convolve this distribution with our error term s distribution and normalize: P( X = t q) P( X q = τ q)p(γ = t τ) dτ

14 Estimating quantization tables Q (4) If we assume a uniform prior P(q) for quantization factors, we can now find the most likely value for a particular quantization factor q = Qi,j by maximizing P( X q). This is repeated for each quantization factor Qi,j for (i, j) {(0, 0),..., (7, 7)}: q = arg max q Z + P( X q) ex Ω

15 Evaluation Allows for arbitrary colour space conversion, sub-sampling and quantization table parameters Not implementation specific Partially recovered quantization tables could be used to determine quality factor Quality factors q {1,..., 100} map onto quantization tables in many compressor implementations Statistical rather than exact Can t recover bitstream Tikhonov deconvolution filter introduces errors Errors in the quantization table when most DCT coefficients at a particular frequency are zero No data for the quantization table when all are zero (low quality factors)

16 Exact recompression Can we recover the original bitstream (including the quantization tables) when given the result of decompression? Due to rounding and mismatch between the compressor and decompressor operations, simplying invoking the compressor with the same parameters will not work. Can we provide a guarantee that if the provided image was produced by a particular JPEG decompressor, we will recover that bitstream? uncompressed image compression JPEG image decompressed image 1 decompression = recompression recompressed JPEG image(s) decompressed image 2 decompression

17 Applications of exact recompression The input to JPEG compressors is often previously compressed image data. Detecting this and recompressing exactly will reduce the information loss from recompression. Hinder forensic analysis double compression detection, JPEG ghosts,... Detect tampered regions in an uncompressed image, when the background was output by a JPEG decompressor Some copy-protection schemes rely on the fact that copies will be recompressed, lowering the quality.

18 Information loss in the decompressor Model sources of uncertainty (rounding, range limiting) when inverting operations in the decompressor using intervals of integers. We store intervals for all intermediate values in the decompressor. Because we are modelling the exact computations, exact recompressors are implementation-specific.

19 Chroma down-sampling example (1) IJG chroma upsampling filter weights contributions from neighbouring samples by 1 16 (1, 3, 3, 9) in order of increasing proximity v x,y = with weights 1 16 (8 + α w i 1,j 1 + β w i,j 1 + γ w i 1,j + δ w i,j ), (1, 3, 3, 9) x = 2i, y = 2j (3, 1, 9, 3) x = 2i 1, y = 2j (α, β, γ, δ) = (3, 9, 1, 3) x = 2i, y = 2j 1 (9, 3, 3, 1) x = 2i 1, y = 2j 1.

20 Chroma down-sampling example (2) We need to solve for the down-sampled weights w i,j : 1 v x,y = 16 (8 + α w i 1,j 1 + β w i,j 1 + γ w i 1,j + δ w i,j ) Interval arithmetic rules give [ 1 w i,j = δ (v x,y 16 (8 + α w i 1,j 1 + β w i,j 1 + γ w i 1,j )), ] 1 δ (v x,y (α w i 1,j 1 + β w i,j 1 + γ w i 1,j ))

21 Chroma down-sampling example (3) k 0 w x,y 0 [0, 255] at all positions 1 x w 2, 1 y h 2 repeat k k + 1 change scan order of (x, y) (,,, ) for each sample position (x, y) in the upsampled plane do for (i, j ) {(i 1, j 1), (i, j 1), (i 1, j), (i, j)} do w i,j s v x,y c ā : Equation satisfied with ā for w i,j, s for v x,y and current estimates w x,y for other w values. w i k,j w k 1 i,j w i,j end for end for until w k = w k 1 w x,y c w k

22 Performance Number of test images IJG quality factor infeasible blocks total blocks Figure: Recompression performance for a dataset of uncompressed images from the UCID colour images were compressed and decompressed at quality factors q {40, 60, 70, 80, 82, 84, 86, 88, 90}, then recompressed. The proportion of blocks at each quality factor which were not possible to recompress due to an infeasible search size is shown.

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Expectation maximization tutorial

Expectation maximization tutorial Expectation maximization tutorial Octavian Ganea November 18, 2016 1/1 Today Expectation - maximization algorithm Topic modelling 2/1 ML & MAP Observed data: X = {x 1, x 2... x N } 3/1 ML & MAP Observed

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

Hierarchical Models & Bayesian Model Selection

Hierarchical Models & Bayesian Model Selection Hierarchical Models & Bayesian Model Selection Geoffrey Roeder Departments of Computer Science and Statistics University of British Columbia Jan. 20, 2016 Contact information Please report any typos or

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 3 Stochastic Gradients, Bayesian Inference, and Occam s Razor https://people.orie.cornell.edu/andrew/orie6741 Cornell University August

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

Motif representation using position weight matrix

Motif representation using position weight matrix Motif representation using position weight matrix Xiaohui Xie University of California, Irvine Motif representation using position weight matrix p.1/31 Position weight matrix Position weight matrix representation

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression SYDE 575: Introduction to Image Processing Image Compression Part 2: Variable-rate compression Variable-rate Compression: Transform-based compression As mentioned earlier, we wish to transform image data

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006 1365 JPEG Compression History Estimation for Color Images Ramesh (Neelsh) Neelamani, Member, IEEE, Ricardo de Queiroz, Senior Member, IEEE,

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over Point estimation Suppose we are interested in the value of a parameter θ, for example the unknown bias of a coin. We have already seen how one may use the Bayesian method to reason about θ; namely, we

More information

Inverse Problems in Image Processing

Inverse Problems in Image Processing H D Inverse Problems in Image Processing Ramesh Neelamani (Neelsh) Committee: Profs. R. Baraniuk, R. Nowak, M. Orchard, S. Cox June 2003 Inverse Problems Data estimation from inadequate/noisy observations

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Variational Methods in Bayesian Deconvolution

Variational Methods in Bayesian Deconvolution PHYSTAT, SLAC, Stanford, California, September 8-, Variational Methods in Bayesian Deconvolution K. Zarb Adami Cavendish Laboratory, University of Cambridge, UK This paper gives an introduction to the

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Probability and Inference

Probability and Inference Deniz Yuret ECOE 554 Lecture 3 Outline 1 Probabilities and ensembles 2 3 Ensemble An ensemble X is a triple (x, A X, P X ), where the outcome x is the value of a random variable, which takes on one of

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Bayesian Interpretations of Regularization

Bayesian Interpretations of Regularization Bayesian Interpretations of Regularization Charlie Frogner 9.50 Class 15 April 1, 009 The Plan Regularized least squares maps {(x i, y i )} n i=1 to a function that minimizes the regularized loss: f S

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image Fundamentals: Coding redundancy The gray level histogram of an image can reveal a great deal of information about the image That probability (frequency) of occurrence of gray level r k is p(r k ), p n

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Parametric Inverse Simulation

Parametric Inverse Simulation Parametric Inverse Simulation Zenna Tavares MIT zenna@mit.edu Armando Solar Lezama MIT asolar@csail.mit.edu Abstract We introduce the theory of parametric inversion, which generalizes function inversion

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

DUE to the ease of tampering a multimedia file, forensics

DUE to the ease of tampering a multimedia file, forensics 774 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 4, APRIL 2016 Information Theoretical Limit of Media Forensics: The Forensicability Xiaoyu Chu, Member, IEEE, Yan Chen, Senior

More information

Department of Electrical Engineering, Polytechnic University, Brooklyn Fall 05 EL DIGITAL IMAGE PROCESSING (I) Final Exam 1/5/06, 1PM-4PM

Department of Electrical Engineering, Polytechnic University, Brooklyn Fall 05 EL DIGITAL IMAGE PROCESSING (I) Final Exam 1/5/06, 1PM-4PM Department of Electrical Engineering, Polytechnic University, Brooklyn Fall 05 EL512 --- DIGITAL IMAGE PROCESSING (I) Y. Wang Final Exam 1/5/06, 1PM-4PM Your Name: ID Number: Closed book. One sheet of

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

4x4 Transform and Quantization in H.264/AVC

4x4 Transform and Quantization in H.264/AVC Video compression design, analysis, consulting and research White Paper: 4x4 Transform and Quantization in H.264/AVC Iain Richardson / VCodex Limited Version 1.2 Revised November 2010 H.264 Transform and

More information

Kernel methods, kernel SVM and ridge regression

Kernel methods, kernel SVM and ridge regression Kernel methods, kernel SVM and ridge regression Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Collaborative Filtering 2 Collaborative Filtering R: rating matrix; U: user factor;

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Generative Models Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart 1 Motivation and Problem In Lecture 1 we briefly saw how histograms

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

INFORMATION THEORETICAL LIMIT OF COMPRESSION FORENSICS

INFORMATION THEORETICAL LIMIT OF COMPRESSION FORENSICS 24 IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP) INFORATION THEORETICAL LIIT OF COPRESSION FORENSICS Xiaoyu Chu, Yan Chen 2, atthew C. Stamm #3 and K. J. Ray Liu 4 Dept.

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: Bayesian Estimation Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk 17 October, 2017 1 / 28

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Lecture 3: Machine learning, classification, and generative models

Lecture 3: Machine learning, classification, and generative models EE E6820: Speech & Audio Processing & Recognition Lecture 3: Machine learning, classification, and generative models 1 Classification 2 Generative models 3 Gaussian models Michael Mandel

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

T Machine Learning: Basic Principles

T Machine Learning: Basic Principles Machine Learning: Basic Principles Bayesian Networks Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK) Autumn 2007

More information

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density Marginal density If the unknown is of the form x = x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density πx 1 y) = πx 1, x 2 y)dx 2 = πx 2 )πx 1 y, x 2 )dx 2 needs to be

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Image Compression - JPEG

Image Compression - JPEG Overview of JPEG CpSc 86: Multimedia Systems and Applications Image Compression - JPEG What is JPEG? "Joint Photographic Expert Group". Voted as international standard in 99. Works with colour and greyscale

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Bayesian Inference. Introduction

Bayesian Inference. Introduction Bayesian Inference Introduction The frequentist approach to inference holds that probabilities are intrinsicially tied (unsurprisingly) to frequencies. This interpretation is actually quite natural. What,

More information

Celeste: Variational inference for a generative model of astronomical images

Celeste: Variational inference for a generative model of astronomical images Celeste: Variational inference for a generative model of astronomical images Jerey Regier Statistics Department UC Berkeley July 9, 2015 Joint work with Jon McAulie (UCB Statistics), Andrew Miller, Ryan

More information

John Ashburner. Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.

John Ashburner. Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK. FOR MEDICAL IMAGING John Ashburner Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK. PIPELINES V MODELS PROBABILITY THEORY MEDICAL IMAGE COMPUTING

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 8: Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk Based on slides by Sharon Goldwater October 14, 2016 Frank Keller Computational

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

CSC411 Fall 2018 Homework 5

CSC411 Fall 2018 Homework 5 Homework 5 Deadline: Wednesday, Nov. 4, at :59pm. Submission: You need to submit two files:. Your solutions to Questions and 2 as a PDF file, hw5_writeup.pdf, through MarkUs. (If you submit answers to

More information

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256 General Models for Compression / Decompression -they apply to symbols data, text, and to image but not video 1. Simplest model (Lossless ( encoding without prediction) (server) Signal Encode Transmit (client)

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 9: Expectation Maximiation (EM) Algorithm, Learning in Undirected Graphical Models Some figures courtesy

More information

Image Data Compression

Image Data Compression Image Data Compression Image data compression is important for - image archiving e.g. satellite data - image transmission e.g. web data - multimedia applications e.g. desk-top editing Image data compression

More information

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543 K-Means, Expectation Maximization and Segmentation D.A. Forsyth, CS543 K-Means Choose a fixed number of clusters Choose cluster centers and point-cluster allocations to minimize error can t do this by

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

GWAS IV: Bayesian linear (variance component) models

GWAS IV: Bayesian linear (variance component) models GWAS IV: Bayesian linear (variance component) models Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS IV: Bayesian

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information