the Unitary Polar Factor æ Ren-Cang Li P.O. Box 2008, Bldg 6012

Size: px
Start display at page:

Download "the Unitary Polar Factor æ Ren-Cang Li P.O. Box 2008, Bldg 6012"

Transcription

1 Relative Perturbation Bounds for the Unitary Polar actor Ren-Cang Li Mathematical Science Section Oak Ridge National Laboratory P.O. Box 2008, Bldg 602 Oak Ridge, TN LAPACK working notes è 83 èrst published July, 994, revised January, 996è Abstract Let B be an m n èm ç nè complex matrix. It is known that there is a unique polar decomposition B = QH, where Q Q = I, the n n identity matrix, and H is positive denite, provided B has full column rank. Existing perturbation bounds for complex matrices suggest that in the worst case, the change in Q be proportional to the reciprocal of the smallest singular value of B. However, there are situations where this unitary polar factor is much more accurately determined by the data than the existing perturbation bounds would indicate. In this paper the following question is addressed: how much mayqchange if B is perturbed to e B = D BD 2? Here D and D 2 are nonsingular and close to the identity matrices of suitable dimensions. It will be proved that for such kinds of perturbations, the change in Q is bounded only by the distances from D and D 2 to identity matrices, and thus independent of the singular values of B. This material is based in part upon work supported, during January, 992íAugust, 995, by Argonne National Laboratory under grant No and by the University of Tennessee through the Advanced Research Projects Agency under contract No. DAAL03-9-C-0047, by the National Science oundation under grant No. ASC , and by the National Science Infrastructure grants No. CDA and CDA-94056, and supported, since August, 995, by a Householder ellowship in Scientic Computing at Oak Ridge National Laboratory, supported by the Applied Mathematical Sciences Research Program, Oce of Energy Research, United States Department of Energy contract DE-AC05-84OR2400 with Lockheed Martin Energy System, Inc. Part of this work was done during summer of 994 while the author was at Department of Mathematics, University of California at Berkeley.

2 Ren-Cang Li: Relative Perturbation Bounds for the Unitary Polar actor 2 Let B be an m n èm ç nè complex matrix. It is known that there are Q with orthonormal column vectors, i.e., Q Q = I, and a unique positive semidenite H such that B = QH: èè Hereafter I denotes an identity matrix with appropriate dimensions which should be clear from the context or specied. The decomposition èè is called the polar decomposition of B. If, in addition, B has full column rank, then Q is uniquely determined also. In fact, H =èb Bè =2 ; Q=BèB Bè,=2 ; è2è where superscript ë " denotes conjugate transpose. The decomposition èè can also be computed from the singular value decomposition èsvdè B = UV by H = V V ; Q = U V ; è3è è! where U =èu ;U 2 è and V are unitary, U is mn,= and 0 = diag èç ;:::;ç n è is nonnegative. There are several published bounds stating how much the two factor matrices Q and H may change if entries of B are perturbed in arbitrary manner ë2, 3,6,8,9,, 2, 3, 4ë. In these papers, no assumption was made on how B was perturbed to B e except possibly an assumption on the smallness of kb e, Bk for some matrix norm kk. Roughly speaking, bounds in these published papers suggest that in the worst case, the change in Q be proportional to the reciprocal of the smallest singular value of B. In this paper, on the other hand, we study the change in Q, assuming B is complex and perturbed to B e = D BD 2, where D and D 2 are nonsingular and close to the identity matrices of suitable dimensions. Such perturbations covers, for example, component-wise relative perturbations to entries of symmetric tridiagonal matrices with zero diagonal ë5, 7ë, entries of bidiagonal and biacyclic matrices ë, 4, 5ë. Our results indicate that under such perturbations, the change in Q is independent of the smallest singular value of B. Assume that B has full column rank and so does B e = D BD 2. Let be the polar decompositions of B and e B respectively, and let B = QH; e B = e Q e H è4è B = UV ; e B = e U e e V è5è be the SVDs of B and e B, respectively, where e U =è e U ; e U 2 è, e U is m n, and e = and e = diag èeç ;:::;eç n è. Assume as usual that è e 0 ç ç ç ç n é0; and eç ç ç eç n é0: è6è It follows from è2è and è5è that Q = U V and e Q = e U e V.!

3 Ren-Cang Li: Relative Perturbation Bounds for the Unitary Polar actor 3 In what follows, kxk denotes the robenius norm which is the square root of the trace of X X. Notice that and eu è e B, BèV = e e V V, e U U; eu è e B, BèV = e U èd BD 2, D B + D B, BèV = e U h ebèi, D, 2 è+èd,ièb iv = e e V èi,d, 2 èv + e U èd,ièu; U è e B, Bè e V = U e U e, V e V; U èb,bè e V e = U èd BD 2, BD 2 + BD 2, BèV e h = U èi, D, è e B + BèD 2, Iè i V e to obtain two perturbation equations: = U èi, D, è e U e +V èd 2,Iè e V: e V e V, U e U = e V e èi, D, 2 èv + U e èd, IèU; è7è U U e e, V V e = U èi, D, U+V e èd 2,IèV: e è8è The rst n rows of equation è7è yields e e V V, e U U = e e V èi, D, 2 èv + e U èd, IèU : è9è The rst n rows of equation è8è yields U e U e, V V e = U èi, D, è e U e + V èd 2,IèV; e on taking conjugate transpose of which, one has e e U U, e V V = e e U èi, D, èu + e V èd 2, IèV : è0è Now subtracting è0è from è9è leads to e è e U U, e V V è+è e U U, e V Vè = e h eu èi, D, èu, e V èi, D, 2 èv i + To continue, we need a lemma from Li ë0ë. h ev èd 2, IèV, U e i èd, IèU : Lemma Let 2 C ss and, 2 C tt be two Hermitian matrices, and let E; 2 C st. If çèè T çè,è = ;, where çè è is the spectrum of a matrix, then q matrix equation X, X, =E+,has a unique solution, and moreover kxk ç kek 2 +. k k2 ç, where ç def = min!2çèè;2çè,è j!,j pj!j 2 +jj 2. èè

4 Ren-Cang Li: Relative Perturbation Bounds for the Unitary Polar actor 4 Apply this lemma to equation èè with = e,,=,, and X = e U U, e V V = e V è e V e U U V, IèV = e V è e Q Q, IèV; min E = U e èi, D, èu, V e èi, D, 2 èv; ee = V e èd 2, IèV, U e èd, IèU q kek 2 + k Ek e 2 =ç, where ç = to get kxk = k e Q Q, Ik ç q eç i +ç j çi; jçn eç 2 i +ç2 j Theorem Let B and B e = D BD 2 be two m n èm ç nè complex matrices having full column rank and with polar decompositions è4è. Then r ç kq, Qk e 2 ç ki, D, k + ki, D, 2 ç k +èkd2,ik +kd,ik è 2 ; è2è p q ç 2 ki, D, k2 + ki, D, 2 k2 + kd 2, Ik 2 + kd, Ik 2 : è3è Proof: Inequality è3è follows from è2è by the fact that è+è 2 ç 2è è for ; ç 0. Now we prove è2è. When m = n, both Q and e Q are unitary. Thus k e Q Q, Ik = k e Q èq, e Qèk = kq, e Qk. Inequality è2è is a consequence of kek çki,d, k +ki,d, 2 k and k e Ek çkd 2,Ik +kd,ik : è4è or the case mén, the last m, n rows of equation è8è produce that U 2 e U e =U 2èI,D, è e U e : Since e B has full column rank, e is nonsingular. We haveu 2 e U =U 2 èi,d, è e U : Thus ç. ku 2 e U k çku 2 èi,d, èk = kèi, D, èu 2k : è5è Notice that èu V ;U 2 è=èq; U 2 è is unitary. Hence U 2 Q = 0, and è kq, Qk e = kèq; U 2 è èq, Qèk e I, Q = e! Q,U e 2 Q = qki, Q Qk e 2 + e q k,u2 U V e k 2 ç kek 2 +ke Ek 2 e +ku 2U k 2: è6è By è5è, we get kek 2 + ku e ç ç 2 2 U k 2 ç kèi, D, èu k + ki, D, 2 k + kèi, D, èu 2k 2 = kèi, D, èu k 2 +2kèI,D, èu k ki,d, 2 k +ki,d, 2 k2 +kèi,d, èu 2k 2 ç kèi,d, èu k 2 +kèi,d, èu 2k 2 +2kI, D, k ki, D, 2 k + ki, D, 2 k2 = ki, D, k2 +2kI,D, k ki,d, 2 k +ki,d, 2 k2 = ç 2: ki,d, k +ki,d, 2 ç k

5 Ren-Cang Li: Relative Perturbation Bounds for the Unitary Polar actor 5 Inequality è2è is a consequence of è6è, è4è, and the above inequalities. Now we are in the position to apply Theorem to perturbations for one-side scaling. Here we consider two n n nonsingular matrices B = S G and B e = S G, e where S is a scaling matrix and usually diagonal. èbut this is not necessary to the theorem below.è The elements of S can vary wildly. G is nonsingular and usually better conditioned than B itself. Set G def = G e, G: eg is guaranteed nonsingular if kgk 2 kg, k 2 é which will be assumed henceforth. Notice that eb = S e G = S èg +Gè=S GèI+G, ègèè = BèI + G, ègèè: So applying Theorem with D = 0 and D 2 = I + G, ègè leads to Theorem 2 Let B = S G and e B = S e G be two n n nonsingular matrices with the polar decompositions è4è. If kgk 2 kg, k 2 é then kq, e Qk ç ç r kg, ègèk 2 + I, èi + G, ègèè, 2 ; s + è,kg, k 2 kgk 2 è 2 kg, k 2 kgk : One can deal with one-side scaling from the right in the same way. Acknowledgement: I thank Professor W. Kahan for his supervision and Professor J. Demmel for valuable discussions.

6 Ren-Cang Li: Relative Perturbation Bounds for the Unitary Polar actor 6 References ëë J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM Journal on Numerical Analysis, 27:762í79, 990. ë2ë A. Barrlund. Perturbation bounds on the polar decomposition BIT, 30:0í3, ë3ë C.-H. Chen and J.-G. Sun. Math., 7:397í40, 989. Perturbation bounds for the polar factors. J. Comp. ë4ë J. Demmel and W. Gragg. On computing accurate singular values and eigenvalues of matrices with acyclic graphs. Linear Algebra and its Application, 85:203í27, 993. ë5ë J. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM Journal on Scientic and Statistical Computing, :873í92, 990. ë6ë N. J. Higham. Computing the polar decompositioníwith applications. SIAM Journal on Scientic and Statistical Computing, 7:60í74, 986. ë7ë W. Kahan. Accurate eigenvalues of a symmetric tridiagonal matrix. Technical Report CS4, Computer Science Department, Stanford University, Stanford, CA, 966. èrevised June 968è. ë8ë C. Kenney and A. J. Laub. Polar decompostion and matrix sign function condition estimates. SIAM Journal on Scientic and Statistical Computing, 2:488í504, 99. ë9ë R.-C. Li. A perturbation bound for the generalized polar decomposition. BIT, 33:304í 308, 993. ë0ë R.-C. Li. Relative perturbation theory: èiiè eigenspace and singular subspace variations. Technical Report UCBèèCSD , Computer Science Division, Department of EECS, University of California at Berkeley, 994. èrevised January 996è. ëë R.-C. Li. New perturbation bounds for the unitary polar factor. SIAM J. Matrix Anal. Appl., 6:327í332, 995. ë2ë J.-Q. Mao. The perturbation analysis of the product of singular vector matrices UV H. J. Comp. Math., 4:245í248, 986. ë3ë R. Mathias. Perturbation bounds for the polar decomposition. SIAM J. Matrix Anal. Appl., 4:588í597, 993. ë4ë J.-G. Sun and C.-H. Chen. Generalized polar decomposition. Math. Numer. Sinica, :262í273, 989. In Chinese.

the Unitary Polar Factor æ Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 94720

the Unitary Polar Factor æ Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 94720 Relative Perturbation Bounds for the Unitary Polar Factor Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 9470 èli@math.berkeley.eduè July 5, 994 Computer

More information

deviation of D and D from similarity (Theorem 6.). The bound is tight when the perturbation is a similarity transformation D = D? or when ^ = 0. From

deviation of D and D from similarity (Theorem 6.). The bound is tight when the perturbation is a similarity transformation D = D? or when ^ = 0. From RELATIVE PERTURBATION RESULTS FOR EIGENVALUES AND EIGENVECTORS OF DIAGONALISABLE MATRICES STANLEY C. EISENSTAT AND ILSE C. F. IPSEN y Abstract. Let ^ and ^x be a perturbed eigenpair of a diagonalisable

More information

Key words. multiplicative perturbation, relative perturbation theory, relative distance, eigenvalue, singular value, graded matrix

Key words. multiplicative perturbation, relative perturbation theory, relative distance, eigenvalue, singular value, graded matrix SIAM J MATRIX ANAL APPL c 1998 Society for Industrial and Applied Mathematics Vol 19, No 4, pp 956 98, October 1998 009 RELATIVE PERTURBATION THEORY: I EIGENVALUE AND SINGULAR VALUE VARIATIONS REN-CANG

More information

A Note on Eigenvalues of Perturbed Hermitian Matrices

A Note on Eigenvalues of Perturbed Hermitian Matrices A Note on Eigenvalues of Perturbed Hermitian Matrices Chi-Kwong Li Ren-Cang Li July 2004 Let ( H1 E A = E H 2 Abstract and à = ( H1 H 2 be Hermitian matrices with eigenvalues λ 1 λ k and λ 1 λ k, respectively.

More information

Department of Mathematics Technical Report May 2000 ABSTRACT. for any matrix norm that is reduced by a pinching. In addition to known

Department of Mathematics Technical Report May 2000 ABSTRACT. for any matrix norm that is reduced by a pinching. In addition to known University of Kentucky Lexington Department of Mathematics Technical Report 2000-23 Pinchings and Norms of Scaled Triangular Matrices 1 Rajendra Bhatia 2 William Kahan 3 Ren-Cang Li 4 May 2000 ABSTRACT

More information

S.F. Xu (Department of Mathematics, Peking University, Beijing)

S.F. Xu (Department of Mathematics, Peking University, Beijing) Journal of Computational Mathematics, Vol.14, No.1, 1996, 23 31. A SMALLEST SINGULAR VALUE METHOD FOR SOLVING INVERSE EIGENVALUE PROBLEMS 1) S.F. Xu (Department of Mathematics, Peking University, Beijing)

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

On Computing Accurate Singular. Values and Eigenvalues of. Matrices with Acyclic Graphs. James W. Demmel. William Gragg.

On Computing Accurate Singular. Values and Eigenvalues of. Matrices with Acyclic Graphs. James W. Demmel. William Gragg. On Computing Accurate Singular Values and Eigenvalues of Matrices with Acyclic Graphs James W. Demmel William Gragg CRPC-TR943 199 Center for Research on Parallel Computation Rice University 61 South Main

More information

The skew-symmetric orthogonal solutions of the matrix equation AX = B

The skew-symmetric orthogonal solutions of the matrix equation AX = B Linear Algebra and its Applications 402 (2005) 303 318 www.elsevier.com/locate/laa The skew-symmetric orthogonal solutions of the matrix equation AX = B Chunjun Meng, Xiyan Hu, Lei Zhang College of Mathematics

More information

UMIACS-TR July CS-TR 2721 Revised March Perturbation Theory for. Rectangular Matrix Pencils. G. W. Stewart.

UMIACS-TR July CS-TR 2721 Revised March Perturbation Theory for. Rectangular Matrix Pencils. G. W. Stewart. UMIAS-TR-9-5 July 99 S-TR 272 Revised March 993 Perturbation Theory for Rectangular Matrix Pencils G. W. Stewart abstract The theory of eigenvalues and eigenvectors of rectangular matrix pencils is complicated

More information

Yimin Wei a,b,,1, Xiezhang Li c,2, Fanbin Bu d, Fuzhen Zhang e. Abstract

Yimin Wei a,b,,1, Xiezhang Li c,2, Fanbin Bu d, Fuzhen Zhang e. Abstract Linear Algebra and its Applications 49 (006) 765 77 wwwelseviercom/locate/laa Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices Application of perturbation theory

More information

arxiv: v1 [math.na] 1 Sep 2018

arxiv: v1 [math.na] 1 Sep 2018 On the perturbation of an L -orthogonal projection Xuefeng Xu arxiv:18090000v1 [mathna] 1 Sep 018 September 5 018 Abstract The L -orthogonal projection is an important mathematical tool in scientific computing

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

MULTIPLICATIVE PERTURBATION ANALYSIS FOR QR FACTORIZATIONS. Xiao-Wen Chang. Ren-Cang Li. (Communicated by Wenyu Sun)

MULTIPLICATIVE PERTURBATION ANALYSIS FOR QR FACTORIZATIONS. Xiao-Wen Chang. Ren-Cang Li. (Communicated by Wenyu Sun) NUMERICAL ALGEBRA, doi:10.3934/naco.011.1.301 CONTROL AND OPTIMIZATION Volume 1, Number, June 011 pp. 301 316 MULTIPLICATIVE PERTURBATION ANALYSIS FOR QR FACTORIZATIONS Xiao-Wen Chang School of Computer

More information

Multiplicative Perturbation Analysis for QR Factorizations

Multiplicative Perturbation Analysis for QR Factorizations Multiplicative Perturbation Analysis for QR Factorizations Xiao-Wen Chang Ren-Cang Li Technical Report 011-01 http://www.uta.edu/math/preprint/ Multiplicative Perturbation Analysis for QR Factorizations

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

arxiv: v3 [math.ra] 22 Aug 2014

arxiv: v3 [math.ra] 22 Aug 2014 arxiv:1407.0331v3 [math.ra] 22 Aug 2014 Positivity of Partitioned Hermitian Matrices with Unitarily Invariant Norms Abstract Chi-Kwong Li a, Fuzhen Zhang b a Department of Mathematics, College of William

More information

Total least squares. Gérard MEURANT. October, 2008

Total least squares. Gérard MEURANT. October, 2008 Total least squares Gérard MEURANT October, 2008 1 Introduction to total least squares 2 Approximation of the TLS secular equation 3 Numerical experiments Introduction to total least squares In least squares

More information

On Orthogonal Block Elimination. Christian Bischof and Xiaobai Sun. Argonne, IL Argonne Preprint MCS-P

On Orthogonal Block Elimination. Christian Bischof and Xiaobai Sun. Argonne, IL Argonne Preprint MCS-P On Orthogonal Block Elimination Christian Bischof and iaobai Sun Mathematics and Computer Science Division Argonne National Laboratory Argonne, IL 6439 fbischof,xiaobaig@mcs.anl.gov Argonne Preprint MCS-P45-794

More information

We first repeat some well known facts about condition numbers for normwise and componentwise perturbations. Consider the matrix

We first repeat some well known facts about condition numbers for normwise and componentwise perturbations. Consider the matrix BIT 39(1), pp. 143 151, 1999 ILL-CONDITIONEDNESS NEEDS NOT BE COMPONENTWISE NEAR TO ILL-POSEDNESS FOR LEAST SQUARES PROBLEMS SIEGFRIED M. RUMP Abstract. The condition number of a problem measures the sensitivity

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

2 and bound the error in the ith eigenvector in terms of the relative gap, min j6=i j i? jj j i j j 1=2 : In general, this theory usually restricts H

2 and bound the error in the ith eigenvector in terms of the relative gap, min j6=i j i? jj j i j j 1=2 : In general, this theory usually restricts H Optimal Perturbation Bounds for the Hermitian Eigenvalue Problem Jesse L. Barlow Department of Computer Science and Engineering The Pennsylvania State University University Park, PA 1682-616 e-mail: barlow@cse.psu.edu

More information

1 Quasi-definite matrix

1 Quasi-definite matrix 1 Quasi-definite matrix The matrix H is a quasi-definite matrix, if there exists a permutation matrix P such that H qd P T H11 H HP = 1 H1, 1) H where H 11 and H + H1H 11 H 1 are positive definite. This

More information

A fast randomized algorithm for overdetermined linear least-squares regression

A fast randomized algorithm for overdetermined linear least-squares regression A fast randomized algorithm for overdetermined linear least-squares regression Vladimir Rokhlin and Mark Tygert Technical Report YALEU/DCS/TR-1403 April 28, 2008 Abstract We introduce a randomized algorithm

More information

Bounding the Spectrum of Large Hermitian Matrices

Bounding the Spectrum of Large Hermitian Matrices Bounding the Spectrum of Large Hermitian Matrices Ren-Cang Li Yunkai Zhou Technical Report 2009-07 http://www.uta.edu/math/preprint/ Bounding the Spectrum of Large Hermitian Matrices Ren-Cang Li and Yunkai

More information

Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.)

Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.) page 121 Index (Page numbers set in bold type indicate the definition of an entry.) A absolute error...26 componentwise...31 in subtraction...27 normwise...31 angle in least squares problem...98,99 approximation

More information

For δa E, this motivates the definition of the Bauer-Skeel condition number ([2], [3], [14], [15])

For δa E, this motivates the definition of the Bauer-Skeel condition number ([2], [3], [14], [15]) LAA 278, pp.2-32, 998 STRUCTURED PERTURBATIONS AND SYMMETRIC MATRICES SIEGFRIED M. RUMP Abstract. For a given n by n matrix the ratio between the componentwise distance to the nearest singular matrix and

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY

OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY published in IMA Journal of Numerical Analysis (IMAJNA), Vol. 23, 1-9, 23. OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY SIEGFRIED M. RUMP Abstract. In this note we give lower

More information

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES HANYU LI, HU YANG College of Mathematics and Physics Chongqing University Chongqing, 400030, P.R. China EMail: lihy.hy@gmail.com,

More information

A DIVIDE-AND-CONQUER METHOD FOR THE TAKAGI FACTORIZATION

A DIVIDE-AND-CONQUER METHOD FOR THE TAKAGI FACTORIZATION SIAM J MATRIX ANAL APPL Vol 0, No 0, pp 000 000 c XXXX Society for Industrial and Applied Mathematics A DIVIDE-AND-CONQUER METHOD FOR THE TAKAGI FACTORIZATION WEI XU AND SANZHENG QIAO Abstract This paper

More information

Institute for Advanced Computer Studies. Department of Computer Science. On the Perturbation of. LU and Cholesky Factors. G. W.

Institute for Advanced Computer Studies. Department of Computer Science. On the Perturbation of. LU and Cholesky Factors. G. W. University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR{95{93 TR{3535 On the Perturbation of LU and Cholesky Factors G. W. Stewart y October, 1995

More information

Two Results About The Matrix Exponential

Two Results About The Matrix Exponential Two Results About The Matrix Exponential Hongguo Xu Abstract Two results about the matrix exponential are given. One is to characterize the matrices A which satisfy e A e AH = e AH e A, another is about

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Interlacing Inequalities for Totally Nonnegative Matrices

Interlacing Inequalities for Totally Nonnegative Matrices Interlacing Inequalities for Totally Nonnegative Matrices Chi-Kwong Li and Roy Mathias October 26, 2004 Dedicated to Professor T. Ando on the occasion of his 70th birthday. Abstract Suppose λ 1 λ n 0 are

More information

Designing Information Devices and Systems II

Designing Information Devices and Systems II EECS 16B Fall 2016 Designing Information Devices and Systems II Linear Algebra Notes Introduction In this set of notes, we will derive the linear least squares equation, study the properties symmetric

More information

Majorization for Changes in Ritz Values and Canonical Angles Between Subspaces (Part I and Part II)

Majorization for Changes in Ritz Values and Canonical Angles Between Subspaces (Part I and Part II) 1 Majorization for Changes in Ritz Values and Canonical Angles Between Subspaces (Part I and Part II) Merico Argentati (speaker), Andrew Knyazev, Ilya Lashuk and Abram Jujunashvili Department of Mathematics

More information

Positive Denite Matrix. Ya Yan Lu 1. Department of Mathematics. City University of Hong Kong. Kowloon, Hong Kong. Abstract

Positive Denite Matrix. Ya Yan Lu 1. Department of Mathematics. City University of Hong Kong. Kowloon, Hong Kong. Abstract Computing the Logarithm of a Symmetric Positive Denite Matrix Ya Yan Lu Department of Mathematics City University of Hong Kong Kowloon, Hong Kong Abstract A numerical method for computing the logarithm

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B

The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B International Journal of Algebra, Vol. 6, 0, no. 9, 903-9 The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B Qingfeng Xiao Department of Basic Dongguan olytechnic Dongguan 53808, China

More information

Linear Algebra in Actuarial Science: Slides to the lecture

Linear Algebra in Actuarial Science: Slides to the lecture Linear Algebra in Actuarial Science: Slides to the lecture Fall Semester 2010/2011 Linear Algebra is a Tool-Box Linear Equation Systems Discretization of differential equations: solving linear equations

More information

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated.

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated. Math 504, Homework 5 Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated 1 Find the eigenvalues and the associated eigenspaces

More information

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write 1 MATH FACTS 11 Vectors 111 Definition We use the overhead arrow to denote a column vector, ie, a number with a direction For example, in three-space, we write The elements of a vector have a graphical

More information

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection Filomat 30: 06, 37 375 DOI 0.98/FIL67M Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Multiplicative Perturbation Bounds of the Group

More information

Derivation of the Kalman Filter

Derivation of the Kalman Filter Derivation of the Kalman Filter Kai Borre Danish GPS Center, Denmark Block Matrix Identities The key formulas give the inverse of a 2 by 2 block matrix, assuming T is invertible: T U 1 L M. (1) V W N P

More information

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS Adv. Oper. Theory 3 (2018), no. 1, 53 60 http://doi.org/10.22034/aot.1702-1129 ISSN: 2538-225X (electronic) http://aot-math.org POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY

RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY ILSE C.F. IPSEN Abstract. Absolute and relative perturbation bounds for Ritz values of complex square matrices are presented. The bounds exploit quasi-sparsity

More information

Algorithms and Perturbation Theory for Matrix Eigenvalue Problems and the SVD

Algorithms and Perturbation Theory for Matrix Eigenvalue Problems and the SVD Algorithms and Perturbation Theory for Matrix Eigenvalue Problems and the SVD Yuji Nakatsukasa PhD dissertation University of California, Davis Supervisor: Roland Freund Householder 2014 2/28 Acknowledgment

More information

~ g-inverses are indeed an integral part of linear algebra and should be treated as such even at an elementary level.

~ g-inverses are indeed an integral part of linear algebra and should be treated as such even at an elementary level. Existence of Generalized Inverse: Ten Proofs and Some Remarks R B Bapat Introduction The theory of g-inverses has seen a substantial growth over the past few decades. It is an area of great theoretical

More information

Institute for Advanced Computer Studies. Department of Computer Science. On the Adjoint Matrix. G. W. Stewart y ABSTRACT

Institute for Advanced Computer Studies. Department of Computer Science. On the Adjoint Matrix. G. W. Stewart y ABSTRACT University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR{97{02 TR{3864 On the Adjoint Matrix G. W. Stewart y ABSTRACT The adjoint A A of a matrix A

More information

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION APPENDIX B EIGENVALUES AND SINGULAR VALUE DECOMPOSITION B.1 LINEAR EQUATIONS AND INVERSES Problems of linear estimation can be written in terms of a linear matrix equation whose solution provides the required

More information

MATH36001 Generalized Inverses and the SVD 2015

MATH36001 Generalized Inverses and the SVD 2015 MATH36001 Generalized Inverses and the SVD 201 1 Generalized Inverses of Matrices A matrix has an inverse only if it is square and nonsingular. However there are theoretical and practical applications

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 198 NOTES ON MATRIX METHODS 1. Matrix Algebra Margenau and Murphy, The Mathematics of Physics and Chemistry, Chapter 10, give almost

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n Electronic Journal of Linear Algebra ISSN 08-380 Volume 22, pp. 52-538, May 20 THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE WEI-WEI XU, LI-XIA CAI, AND WEN LI Abstract. In this

More information

Accuracy and Stability in Numerical Linear Algebra

Accuracy and Stability in Numerical Linear Algebra Proceedings of the 1. Conference on Applied Mathematics and Computation Dubrovnik, Croatia, September 13 18, 1999 pp. 105 112 Accuracy and Stability in Numerical Linear Algebra Zlatko Drmač Abstract. We

More information

PERTURBATION ANALYSIS OF THE EIGENVECTOR MATRIX AND SINGULAR VECTOR MATRICES. Xiao Shan Chen, Wen Li and Wei Wei Xu 1. INTRODUCTION A = UΛU H,

PERTURBATION ANALYSIS OF THE EIGENVECTOR MATRIX AND SINGULAR VECTOR MATRICES. Xiao Shan Chen, Wen Li and Wei Wei Xu 1. INTRODUCTION A = UΛU H, TAIWAESE JOURAL O MATHEMATICS Vol. 6, o., pp. 79-94, ebruary 0 This paper is available online at http://tjm.math.ntu.edu.tw PERTURBATIO AALYSIS O THE EIGEVECTOR MATRIX AD SIGULAR VECTOR MATRICES Xiao Shan

More information

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation Zheng-jian Bai Abstract In this paper, we first consider the inverse

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

Block Lanczos Tridiagonalization of Complex Symmetric Matrices

Block Lanczos Tridiagonalization of Complex Symmetric Matrices Block Lanczos Tridiagonalization of Complex Symmetric Matrices Sanzheng Qiao, Guohong Liu, Wei Xu Department of Computing and Software, McMaster University, Hamilton, Ontario L8S 4L7 ABSTRACT The classic

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models Bare minimum on matrix algebra Psychology 588: Covariance structure and factor models Matrix multiplication 2 Consider three notations for linear combinations y11 y1 m x11 x 1p b11 b 1m y y x x b b n1

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES olume 10 2009, Issue 2, Article 41, 10 pp. ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES HANYU LI, HU YANG, AND HUA SHAO COLLEGE OF MATHEMATICS AND PHYSICS CHONGQING UNIERSITY

More information

Mathematics. EC / EE / IN / ME / CE. for

Mathematics.   EC / EE / IN / ME / CE. for Mathematics for EC / EE / IN / ME / CE By www.thegateacademy.com Syllabus Syllabus for Mathematics Linear Algebra: Matrix Algebra, Systems of Linear Equations, Eigenvalues and Eigenvectors. Probability

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information

The Best Circulant Preconditioners for Hermitian Toeplitz Systems II: The Multiple-Zero Case Raymond H. Chan Michael K. Ng y Andy M. Yip z Abstract In

The Best Circulant Preconditioners for Hermitian Toeplitz Systems II: The Multiple-Zero Case Raymond H. Chan Michael K. Ng y Andy M. Yip z Abstract In The Best Circulant Preconditioners for Hermitian Toeplitz Systems II: The Multiple-ero Case Raymond H. Chan Michael K. Ng y Andy M. Yip z Abstract In [0, 4], circulant-type preconditioners have been proposed

More information

Some inequalities for sum and product of positive semide nite matrices

Some inequalities for sum and product of positive semide nite matrices Linear Algebra and its Applications 293 (1999) 39±49 www.elsevier.com/locate/laa Some inequalities for sum and product of positive semide nite matrices Bo-Ying Wang a,1,2, Bo-Yan Xi a, Fuzhen Zhang b,

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

On the eigenvalues of specially low-rank perturbed matrices

On the eigenvalues of specially low-rank perturbed matrices On the eigenvalues of specially low-rank perturbed matrices Yunkai Zhou April 12, 2011 Abstract We study the eigenvalues of a matrix A perturbed by a few special low-rank matrices. The perturbation is

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Distribution for the Standard Eigenvalues of Quaternion Matrices

Distribution for the Standard Eigenvalues of Quaternion Matrices International Mathematical Forum, Vol. 7, 01, no. 17, 831-838 Distribution for the Standard Eigenvalues of Quaternion Matrices Shahid Qaisar College of Mathematics and Statistics, Chongqing University

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

Perturbation results for nearly uncoupled Markov. chains with applications to iterative methods. Jesse L. Barlow. December 9, 1992.

Perturbation results for nearly uncoupled Markov. chains with applications to iterative methods. Jesse L. Barlow. December 9, 1992. Perturbation results for nearly uncoupled Markov chains with applications to iterative methods Jesse L. Barlow December 9, 992 Abstract The standard perturbation theory for linear equations states that

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Multiple eigenvalues

Multiple eigenvalues Multiple eigenvalues arxiv:0711.3948v1 [math.na] 6 Nov 007 Joseph B. Keller Departments of Mathematics and Mechanical Engineering Stanford University Stanford, CA 94305-15 June 4, 007 Abstract The dimensions

More information

On condition numbers for the canonical generalized polar decompostion of real matrices

On condition numbers for the canonical generalized polar decompostion of real matrices Electronic Journal of Linear Algebra Volume 26 Volume 26 (2013) Article 57 2013 On condition numbers for the canonical generalized polar decompostion of real matrices Ze-Jia Xie xiezejia2012@gmail.com

More information

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m Eigensystems We will discuss matrix diagonalization algorithms in umerical Recipes in the context of the eigenvalue problem in quantum mechanics, A n = λ n n, (1) where A is a real, symmetric Hamiltonian

More information

onto the column space = I P Zj. Embed PZ j

onto the column space = I P Zj. Embed PZ j EIGENVALUES OF AN ALIGNMENT MATRIX IN NONLINEAR MANIFOLD LEARNING CHI-KWONG LI, REN-CANG LI, AND QIANG YE Abstract Alignment algorithm is an effective method recently proposed for nonlinear manifold learning

More information

Is there a Small Skew Cayley Transform with Zero Diagonal?

Is there a Small Skew Cayley Transform with Zero Diagonal? Is there a Small Skew Cayley Transform with Zero Diagonal? Abstract The eigenvectors of an Hermitian matrix H are the columns of some complex unitary matrix Q. For any diagonal unitary matrix Ω the columns

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

1. The Polar Decomposition

1. The Polar Decomposition A PERSONAL INTERVIEW WITH THE SINGULAR VALUE DECOMPOSITION MATAN GAVISH Part. Theory. The Polar Decomposition In what follows, F denotes either R or C. The vector space F n is an inner product space with

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 435 (2011) 480 493 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Bounding the spectrum

More information

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors Chapter 6 Eigenvalues and eigenvectors An eigenvalue of a square matrix represents the linear operator as a scaling of the associated eigenvector, and the action of certain matrices on general vectors

More information

or H = UU = nx i=1 i u i u i ; where H is a non-singular Hermitian matrix of order n, = diag( i ) is a diagonal matrix whose diagonal elements are the

or H = UU = nx i=1 i u i u i ; where H is a non-singular Hermitian matrix of order n, = diag( i ) is a diagonal matrix whose diagonal elements are the Relative Perturbation Bound for Invariant Subspaces of Graded Indenite Hermitian Matrices Ninoslav Truhar 1 University Josip Juraj Strossmayer, Faculty of Civil Engineering, Drinska 16 a, 31000 Osijek,

More information

Ann. Funct. Anal. 5 (2014), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 5 (2014), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann Funct Anal 5 (2014), no 2, 127 137 A nnals of F unctional A nalysis ISSN: 2008-8752 (electronic) URL:wwwemisde/journals/AFA/ THE ROOTS AND LINKS IN A CLASS OF M-MATRICES XIAO-DONG ZHANG This paper

More information

Singular Value Decomposition and Principal Component Analysis (PCA) I

Singular Value Decomposition and Principal Component Analysis (PCA) I Singular Value Decomposition and Principal Component Analysis (PCA) I Prof Ned Wingreen MOL 40/50 Microarray review Data per array: 0000 genes, I (green) i,i (red) i 000 000+ data points! The expression

More information

A note on eigenvalue computation for a tridiagonal matrix with real eigenvalues Akiko Fukuda

A note on eigenvalue computation for a tridiagonal matrix with real eigenvalues Akiko Fukuda Journal of Math-for-Industry Vol 3 (20A-4) pp 47 52 A note on eigenvalue computation for a tridiagonal matrix with real eigenvalues Aio Fuuda Received on October 6 200 / Revised on February 7 20 Abstract

More information

Applied Numerical Linear Algebra. Lecture 8

Applied Numerical Linear Algebra. Lecture 8 Applied Numerical Linear Algebra. Lecture 8 1/ 45 Perturbation Theory for the Least Squares Problem When A is not square, we define its condition number with respect to the 2-norm to be k 2 (A) σ max (A)/σ

More information

Distance Geometry-Matrix Completion

Distance Geometry-Matrix Completion Christos Konaxis Algs in Struct BioInfo 2010 Outline Outline Tertiary structure Incomplete data Tertiary structure Measure diffrence of matched sets Def. Root Mean Square Deviation RMSD = 1 n x i y i 2,

More information

Eigenvalue and Eigenvector Problems

Eigenvalue and Eigenvector Problems Eigenvalue and Eigenvector Problems An attempt to introduce eigenproblems Radu Trîmbiţaş Babeş-Bolyai University April 8, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems

More information