Chapter 16. Properties of Electric Charge. electric charge is + or -. like charges repel unlike charges attract

Size: px
Start display at page:

Download "Chapter 16. Properties of Electric Charge. electric charge is + or -. like charges repel unlike charges attract"

Transcription

1 Section 1 Electric Charge Properties of Electric Charge electric charge is + or -. like charges repel unlike charges attract Electric charge is conserved. Atomic Charges Protons (+)charged particles. neutronsuncharged particles. Electrons (-) charged particles.

2 Section 1 Electric Charge Electric Charge

3 Section 1 Electric Charge Properties of Electric Charge, continued Charge is measured in coulombs (C). fundamental unit of charge= e, charge of a single electron or proton. e = x C

4 Section 1 Electric Charge The Milikan Experiment

5 Section 1 Electric Charge Milikan s Oil Drop Experiment

6 Section 1 Electric Charge Transfer of Electric Charge An electrical conductor is a material in which charges can move freely. An electrical insulator is a material in which charges cannot move freely. Charge will remain where it was placed. Ground- often the ground reservoir of electrons, can donate or absorb.

7 Section 1 Electric Charge Transfer of Electric Charge, continued Insulators and conductors can be charged by contact. Conductors can be charged by induction. Induction charging a conductor by bringing it near another charged object and grounding the conductor.

8 Section 1 Electric Charge Charging by Induction

9 Section 1 Electric Charge Transfer of Electric Charge, continued A surface charge can be induced on insulators by polarization. With polarization, the charges within individual molecules are realigned such that the molecule has a slight charge separation.

10 Section 2 Electric Force Objectives Calculate electric force using Coulomb s law. Compare electric force with gravitational force. Apply the superposition principle to find the resultant force on a charge and to find the position at which the net force on a charge is zero.

11 Section 2 Electric Force Coulomb s Law, continued The electrical force is a field force. A field force = force exerted by one object on another with no physical contact between them

12 Section 2 Electric Force Coulomb s Law Two charges near one another exert a force on one another called the electric force. K c= 8.99 E 9 n m 2 /C 2 Coulomb s law qq 1 2 kc 2 r electric force = Coulomb constant F electric charge 1 charge 2 distance 2

13 Section 2 Electric Force Coulomb s Law, continued The resultant force on a charge is the vector sum of the individual forces on that charge. equilibrium, the net external force acting on that body is zero.

14 Section 2 Electric Force Superposition Principle

15 Section 2 Electric Force Sample Problem The Superposition Principle Consider three point charges at the corners of a triangle, as shown at right, where q 1 = C, q 2 = C, and q 3 = C. Find the magnitude and direction of the resultant force on q 3.

16 Section 2 Electric Force Sample Problem, continued The Superposition Principle 1. Define the problem, and identify the known variables. Given: q 1 = C r 2,1 = 3.00 m q 2 = C r 3,2 = 4.00 m q 3 = C r 3,1 = 5.00 m q = 37.0º Unknown: F 3,tot =? Diagram:

17 Section 2 Electric Force Sample Problem, continued The Superposition Principle 3. Calculate the magnitudes of the forces with Coulomb s law. F F F F C C ,1 kc , N C C ,2 kc ,1 qq Nm ( r3,1) C 5.00 m qq Nm ( r3,2) C 4.00m N

18 Section 2 Electric Force Sample Problem, continued The Superposition Principle 4. Find the x and y components of each force. At this point, the direction each component must be taken into account. F 3,1 : F x = (F 3,1 )(cos 37.0º) = ( N)(cos 37.0º) F 3,2 : F x = N F y = (F 3,1 )(sin 37.0º) = ( N)(sin 37.0º) F y = N F x = F 3,2 = N F y = 0 N

19 Section 2 Electric Force Sample Problem, continued The Superposition Principle 5. Calculate the magnitude of the total force acting in both directions. F x,tot = N N = N F y,tot = N + 0 N = N

20 Section 2 Electric Force Sample Problem, continued The Superposition Principle 6. Use the Pythagorean theorem to find the magnitude of the resultant force. F ( F ) ( F ) ( N) ( N) , tot x, tot y, tot F 3, tot N

21 Section 2 Electric Force Sample Problem, continued The Superposition Principle 7. Use a suitable trigonometric function to find the direction of the resultant force. In this case, you can use the inverse tangent function: F tan F 65.2º y, tot x, tot N N

22 Section 3 The Electric Field Objectives Calculate electric field strength. Draw and interpret electric field lines. Identify the four properties associated with a conductor in electrostatic equilibrium.

23 Section 3 The Electric Field Electric Field Strength An electric field = region where an electric force on a test charge would be detected. Test charge= + charge with no magnitude units of electric field, E, (N/C). direction of electric field vector= E, the direction the electric force exerted on a small positive test charge.

24 Section 3 The Electric Field Electric Fields and Test Charges

25 Section 3 The Electric Field Electric Field Strength, continued Electric field strength Electric Field Strength Due to a Point Charge E q kc r 2 electric field strength = Coulomb constant charge producing the field distance 2 Or E=F/q 1(test charge)

26 Section 3 The Electric Field Electric Field Diagrams, continued Use arrows to represent lines. Originate on + Terminate on Never cross Number represents relative charge ratios

27 Section 3 The Electric Field Rules for Drawing Electric Field Lines

28 Section 3 The Electric Field Rules for Sketching Fields Created by Several Charges

29 Section 3 The Electric Field Calculating Net Electric Field

30 Section 3 The Electric Field Sample Problem Electric Field Strength A charge q 1 = µc is at the origin, and a charge q 2 = 5.00 µc is on the x- axis m from the origin, as shown at right. Find the electric field strength at point P,which is on the y-axis m from the origin.

31 Section 3 The Electric Field Sample Problem, continued Electric Field Strength 1. Define the problem, and identify the known variables. Given: q 1 = µc = C r 1 = m q 2 = 5.00 µc = C r 2 = m q = 53.1º Unknown: E at P (y = m) Tip: Apply the principle of superposition. You must first calculate the electric field produced by each charge individually at point P and then add these fields together as vectors.

32 Section 3 The Electric Field Sample Problem, continued Electric Field Strength 2. Calculate the electric field strength produced by each charge. Because we are finding the magnitude of the electric field, we can neglect the sign of each charge. E q C N m /C N/C kc r (0.400 m) q E k r C N m /C N/C C (0.500 m)

33 Section 3 The Electric Field Sample Problem, continued Electric Field Strength 3. Analyze the signs of the charges. The field vector E 1 at P due to q 1 is directed vertically upward, as shown in the figure, because q 1 is positive. Likewise, the field vector E 2 at P due to q 2 is directed toward q 2 because q 2 is negative.

34 Section 3 The Electric Field Sample Problem, continued Electric Field Strength 4. Find the x and y components of each electric field vector. For E 1 : E x,1 = 0 N/C E y,1 = N/C For E 2 : E x,2 = ( N/C)(cos 53.1º) = N/C E y,1 = ( N/C)(sin 53.1º)= N/C

35 Section 3 The Electric Field Sample Problem, continued Electric Field Strength 5. Calculate the total electric field strength in both directions. E x,tot = E x,1 + E x,2 = 0 N/C N/C = N/C E y,tot = E y,1 + E y,2 = N/C N/C = N/C

36 Section 3 The Electric Field Sample Problem, continued Electric Field Strength 6. Use the Pythagorean theorem to find the magnitude of the resultant electric field strength vector. 2 E E E tot x, tot y, tot 2 E tot N/C N/C E tot N/C

37 Section 3 The Electric Field Sample Problem, continued Electric Field Strength 7. Use a suitable trigonometric function to find the direction of the resultant electric field strength vector. In this case, you can use the inverse tangent function: tan E E 66.0 y, tot x, tot N/C N/C

38 Section 3 The Electric Field Conductors in Electrostatic Equilibrium Any charge on an isolated conductor is on the conductor s outer surface only. (Faradays cage) electric field outside a charged conductor is perpendicular to the conductor s surface. On an irregularly shaped conductor, charge accumulate at sharp points. St Elmo s fire page&v=ufkmrskfrds

39 Standardized Test Prep Multiple Choice 1. In which way is the electric force similar to the gravitational force? A. Electric force is proportional to the mass of the object. B. Electric force is similar in strength to gravitational force. C. Electric force is both attractive and repulsive. D. Electric force decreases in strength as the distance between the charges increases.

40 Standardized Test Prep Multiple Choice, continued 1. In which way is the electric force similar to the gravitational force? A. Electric force is proportional to the mass of the object. B. Electric force is similar in strength to gravitational force. C. Electric force is both attractive and repulsive. D. Electric force decreases in strength as the distance between the charges increases.

41 Standardized Test Prep Multiple Choice, continued 2. What must the charges be for A and B in the figure so that they produce the electric field lines shown? F. A and B must both be positive. G. A and B must both be negative. H. A must be negative, and B must be positive. J. A must be positive, and B must be negative.

42 Standardized Test Prep Multiple Choice, continued 2. What must the charges be for A and B in the figure so that they produce the electric field lines shown? F. A and B must both be positive. G. A and B must both be negative. H. A must be negative, and B must be positive. J. A must be positive, and B must be negative.

43 Standardized Test Prep Multiple Choice, continued 3. Which activity does not produce the same results as the other three? A. sliding over a plastic-covered automobile seat B. walking across a woolen carpet C. scraping food from a metal bowl with a metal spoon D. brushing dry hair with a plastic comb

44 Standardized Test Prep Multiple Choice, continued 3. Which activity does not produce the same results as the other three? A. sliding over a plastic-covered automobile seat B. walking across a woolen carpet C. scraping food from a metal bowl with a metal spoon D. brushing dry hair with a plastic comb

45 Standardized Test Prep Multiple Choice, continued 4. By how much does the electric force between two charges change when the distance between them is doubled? F. G. H. J

46 Standardized Test Prep Multiple Choice, continued 4. By how much does the electric force between two charges change when the distance between them is doubled? F. G. H. J

47 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 5 6. A negatively charged object is brought close to the surface of a conductor, whose opposite side is then grounded. 5. What is this process of charging called? A. charging by contact B. charging by induction C. charging by conduction D. charging by polarization

48 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 5 6. A negatively charged object is brought close to the surface of a conductor, whose opposite side is then grounded. 5. What is this process of charging called? A. charging by contact B. charging by induction C. charging by conduction D. charging by polarization

49 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 5 6. A negatively charged object is brought close to the surface of a conductor, whose opposite side is then grounded. 6. What kind of charge is left on the conductor s surface? F. neutral G. negative H. positive J. both positive and negative

50 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 5 6. A negatively charged object is brought close to the surface of a conductor, whose opposite side is then grounded. 6. What kind of charge is left on the conductor s surface? F. neutral G. negative H. positive J. both positive and negative

51 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 7. What is the electric field strength 2.0 m from the center of the conducting sphere? A. 0 N/C B N/C C N/C D N/C

52 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 7. What is the electric field strength 2.0 m from the center of the conducting sphere? A. 0 N/C B N/C C N/C D N/C

53 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 8. What is the strength of the electric field at the surface of the conducting sphere? F. 0 N/C G N/C H N/C J N/C

54 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 8. What is the strength of the electric field at the surface of the conducting sphere? F. 0 N/C G N/C H N/C J N/C

55 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 9. What is the strength of the electric field inside the conducting sphere? A. 0 N/C B N/C C N/C D N/C

56 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 9. What is the strength of the electric field inside the conducting sphere? A. 0 N/C B N/C C N/C D N/C

57 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 10. What is the radius of the conducting sphere? F. 0.5 m G. 1.0 m H. 1.5 m J. 2.0 m

58 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions The graph shows the electric field strength at different distances from the center of the charged conducting sphere of a Van de Graaff generator. 10. What is the radius of the conducting sphere? F. 0.5 m G. 1.0 m H. 1.5 m J. 2.0 m

59 Standardized Test Prep Short Response 11. Three identical charges (q = +5.0 mc) are along a circle with a radius of 2.0 m at angles of 30, 150, and 270, as shown in the figure.what is the resultant electric field at the center?

60 Standardized Test Prep Short Response, continued 11. Three identical charges (q = +5.0 mc) are along a circle with a radius of 2.0 m at angles of 30, 150, and 270, as shown in the figure.what is the resultant electric field at the center? Answer: 0.0 N/C

61 Standardized Test Prep Short Response, continued 12. If a suspended object is attracted to another object that is charged, can you conclude that the suspended object is charged? Briefly explain your answer.

62 Standardized Test Prep Short Response, continued 12. If a suspended object is attracted to another object that is charged, can you conclude that the suspended object is charged? Briefly explain your answer. Answer: not necessarily; The suspended object might have a charge induced on it, but its overall charge could be neutral.

63 Standardized Test Prep Short Response, continued 13. One gram of hydrogen contains atoms, each with one electron and one proton. Suppose that 1.00 g of hydrogen is separated into protons and electrons, that the protons are placed at Earth s north pole, and that the electrons are placed at Earth s south pole. Assuming the radius of Earth to be m, what is the magnitude of the resulting compressional force on Earth?

64 Standardized Test Prep Short Response, continued 13. One gram of hydrogen contains atoms, each with one electron and one proton. Suppose that 1.00 g of hydrogen is separated into protons and electrons, that the protons are placed at Earth s north pole, and that the electrons are placed at Earth s south pole. Assuming the radius of Earth to be m, what is the magnitude of the resulting compressional force on Earth? Answer: N

65 Standardized Test Prep Short Response, continued 14. Air becomes a conductor when the electric field strength exceeds N/C. Determine the maximum amount of charge that can be carried by a metal sphere 2.0 m in radius.

66 Standardized Test Prep Short Response, continued 14. Air becomes a conductor when the electric field strength exceeds N/C. Determine the maximum amount of charge that can be carried by a metal sphere 2.0 m in radius. Answer: C

67 Standardized Test Prep Extended Response Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 15. What is the magnitude of the acceleration of the proton?

68 Standardized Test Prep Extended Response, continued Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 15. What is the magnitude of the acceleration of the proton? Answer: m/s 2

69 Standardized Test Prep Extended Response, continued Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 16. How long does it take the proton to reach this speed?

70 Standardized Test Prep Extended Response, continued Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 16. How long does it take the proton to reach this speed? Answer: s

71 Standardized Test Prep Extended Response, continued Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 17. How far has it moved in this time interval?

72 Standardized Test Prep Extended Response, continued Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 17. How far has it moved in this time interval? Answer: 12 m

73 Standardized Test Prep Extended Response, continued Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 18. What is its kinetic energy at the later time?

74 Standardized Test Prep Extended Response, continued Use the information below to answer questions A proton, which has a mass of kg, accelerates from rest in a uniform electric field of 640 N/C. At some time later, its speed is m/s. 18. What is its kinetic energy at the later time? Answer: J

75 Standardized Test Prep Extended Response, continued 19. A student standing on a piece of insulating material places her hand on a Van de Graaff generator. She then turns on the generator. Shortly thereafter, her hairs stand on end. Explain how charge is or is not transferred in this situation, why the student is not shocked, and what causes her hairs to stand up after the generator is started.

76 Standardized Test Prep Extended Response, continued 19. (See previous slide for question.) Answer: The charge on the sphere of the Van de Graaff generator is transferred to the student by means of conduction. This charge remains on the student because she is insulated from the ground. As there is no path between the student and the generator and the student and the ground by which charge can escape, the student is not shocked. The accumulation of charges of the same sign on the strands of the student s hair causes the strands to repel each other and so stand on end.

77 Section 1 Electric Charge Charging By Induction

78 Section 1 Electric Charge Transfer of Electric Charge

79 Section 3 The Electric Field Electric Field Lines

Chapter 16. Properties of Electric Charge. Electric Charge. The Milikan Experiment. Properties of Electric Charge, continued

Chapter 16. Properties of Electric Charge. Electric Charge. The Milikan Experiment. Properties of Electric Charge, continued Properties of Electric Charge Electric Charge There are two kinds of electric charge. like charges repel unlike charges attract Electric charge is conserved. Positively charged particles are called protons.

More information

CHAPTER 15 PRE-TEST: ELECTRIC FORCE AND FIELDS

CHAPTER 15 PRE-TEST: ELECTRIC FORCE AND FIELDS Class: Date: CHAPTER 5 PRE-TEST: ELECTRIC FORCE AND FIELDS Multiple Choice Identify the choice that best completes the statement or answers the question.. What happens when a rubber rod is rubbed with

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Physics Notes Chapter 17 Electric Forces and Fields

Physics Notes Chapter 17 Electric Forces and Fields Physics Notes Chapter 17 Electric Forces and Fields I. Basic rules and ideas related to electricity a. electricity is about charges or charged objects where they are and how they move electrostatics is

More information

Ch 16 practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch 16 practice. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch 16 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What happens when a rubber rod is rubbed with a piece of fur, giving it a negative charge?

More information

Electric Forces and Fields

Electric Forces and Fields CHAPTER 16 Electric Forces and Fields In this factory in Bowling Green, Kentucky, a fresh coat of paint is being applied to an automobile by spray guns.with ordinary spray guns, any paint that does not

More information

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4 Chapter 16 Part 1: Electric Forces and Electric Fields Dr. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC

More information

Electrostatics. Electrical properties generated by static charges. Introduction

Electrostatics. Electrical properties generated by static charges. Introduction Electrostatics Electrical properties generated by static charges Introduction First Greek discovery Found that amber, when rubbed, became electrified and attracted pieces of straw or feathers Introduction

More information

Electric Charges & Electric Forces Chapter 20 Structure of atom

Electric Charges & Electric Forces Chapter 20 Structure of atom Electric Charges & Electric Forces Chapter 20 Electric Charges & Electric Forces Chapter 20 Structure of atom Mass (kg) Charge (Coulombs) Proton 1.673X10-27 +1.60X10-19 Neutron 1.675X10-27 0 = + e Electron

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Studies Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces of

More information

Review of Static Electricity

Review of Static Electricity Name: Block: Date: IP 614 Review of Static Electricity Central Concept: Stationary and moving charged particles result in the phenomena known as electricity and magnetism. 5.1 Recognize that an electric

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Introduction Syllabus and teaching strategy Electricity and Magnetism Properties of electric charges Insulators and conductors Coulomb s law Lecture 1. Chapter 15 1 Lecturer:

More information

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian Chapter 25-26 Electric Forces and Electric Fields Prof. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified

More information

Review of Static Electricity

Review of Static Electricity Name: KEY lock: Date: IP 670 Match each of the following terms with the appropriate description. Write the letter of the best answer to the left. Terms Description C 1. atom a. a small, negatively charged

More information

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy The Atom Chapter Questions 1. Which part on an atom carries a positive charge? Which carries the negative charge? 2. How many types of electric charge are there? 3. When a neutral atom captures a free

More information

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number. Name: Physics Chapter 16 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: e = 1.6"10 #19 C mass electron = 9.11"10 #31

More information

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy Electric Charge Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there? What are

More information

Electric Force and Field Chapter Questions

Electric Force and Field Chapter Questions Electric Force and Field Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there?

More information

Electric Force and Electric Field Practice Problems PSI AP Physics 1

Electric Force and Electric Field Practice Problems PSI AP Physics 1 Electric Force and Electric Field Practice Problems PSI AP Physics 1 Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Chapter 21 Electric Charge and Electric Field

Chapter 21 Electric Charge and Electric Field Chapter 21 Electric Charge and Electric Field Electric charge Conductors and insulators Coulomb s Law Electric Fields Phys 2435: Chap 21, Pg 1 Electric Charge There are two kinds of charge: positive (+)

More information

Chapter 20. Static Electricity

Chapter 20. Static Electricity Chapter 20 Static Electricity Chapter 20 Static Electricity In this chapter you will: Observe the behavior of electric charges and analyze how these charges interact with matter. Examine the forces that

More information

AP Physics 1 Electrostatics Practice Problems. Multiple Choice

AP Physics 1 Electrostatics Practice Problems. Multiple Choice AP Physics 1 Electrostatics Practice Problems Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool: (A) acquires an

More information

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field? EXERCISES Conceptual Questions 1. Explain why a neutral object can be attracted to a charged object. Why can this neutral object not be repelled by a charged object? 2. What is the function of an electroscope?

More information

electric charge Multiple Choice Identify the choice that best completes the statement or answers the question.

electric charge Multiple Choice Identify the choice that best completes the statement or answers the question. electric charge Multiple hoice Identify the choice that best completes the statement or answers the question. 1. What happens when a rubber rod is rubbed with a piece of fur, giving it a negative charge?

More information

CHAPTER 15 ELECTRIC FORCE & FIELDS

CHAPTER 15 ELECTRIC FORCE & FIELDS CHAPTER 15 ELECTRIC FORCE & FIELDS We will look at the basic properties of electric charge. Electric charge comes in discrete units The total charge in the universe remains constant The force law that

More information

Chapter 17 & 18. Electric Field and Electric Potential

Chapter 17 & 18. Electric Field and Electric Potential Chapter 17 & 18 Electric Field and Electric Potential Electric Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object

More information

Electrostatics. Electrostatics the study of electrical charges that can be collected and held in one place. Also referred to as Static Electricity

Electrostatics. Electrostatics the study of electrical charges that can be collected and held in one place. Also referred to as Static Electricity Electrostatics 169 Electrostatics Electrostatics the study of electrical charges that can be collected and held in one place. Types of Charge Also referred to as Static Electricity Benjamin Franklin noticed

More information

Electrostatics and Electric Potential - Outline

Electrostatics and Electric Potential - Outline Electrostatics and Electric Potential - Outline 1. Understand the basic properties of electric charge, including conservation of charge and that charges are quantized. 2. Differentiate between conductors

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

Chapter 20 Electric Fields and Forces

Chapter 20 Electric Fields and Forces Chapter 20 Electric Fields and Forces Chapter Goal: To develop a basic understanding of electric phenomena in terms of charges, forces, and fields. Slide 20-1 Chapter 20 Preview Looking Ahead: Charges

More information

Chapter 21 Electric Charge and Electric Field

Chapter 21 Electric Charge and Electric Field Chapter 21 Electric Charge and Electric Field 21-1 Static Electricity; Electric Charge and Its Conservation Objects can be charged by rubbing 21-1 Static Electricity; Electric Charge and Its Conservation

More information

SOWETO/DIEPKLOOF P.O.BOX BOOYSENS 2016!!! " /7 #

SOWETO/DIEPKLOOF P.O.BOX BOOYSENS 2016!!!  /7 # ! SOWETO/DIEPKLOOF P.O.BOX 39067 BOOYSENS 2016!!! " 011 9381666/7 # 011 9383603 email: sec@global.co.za Content Page Electrostatics: Summary of Relevant Theory 1 4 Worksheet 1: Multiple Choice Questions

More information

Book page. Coulombs Law

Book page. Coulombs Law Book page Coulombs Law A Coulomb torsion balance A Coulomb torsion balance is used to measure the force between two charged objects Coulomb's Torsion Balance Two conducting spheres fixed on insulating

More information

EL FORCE and EL FIELD HW-PRACTICE 2016

EL FORCE and EL FIELD HW-PRACTICE 2016 1 EL FORCE and EL FIELD HW-PRACTICE 2016 1.A difference between electrical forces and gravitational forces is that electrical forces include a. separation distance. b. repulsive interactions. c. the inverse

More information

2: What is the magnitude of the electric charge of an electron? 3: What is the law of conservation of electric charge?

2: What is the magnitude of the electric charge of an electron? 3: What is the law of conservation of electric charge? Chapter 18 Discussion January-03-15 8:58 PM Electric Forces and Electric Fields Reading Review 1: What is the SI unit of electric charge? 2: What is the magnitude of the electric charge of an electron?

More information

Problem 1. What is the force between two small charged spheres that have charges of C and C and are placed 30 cm apart in air?

Problem 1. What is the force between two small charged spheres that have charges of C and C and are placed 30 cm apart in air? 5. NAME: Problem 1. What is the force between two small charged spheres that have charges of 2 10 7 C and 3 10 7 C and are placed 30 cm apart in air? 2. What is the value of charge of a body that carries

More information

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments Learning Outcomes from Last Time Class 3 Electrostatic Forces Physics 106 Winter 2018 Press CTRL-L to view as a slide show. You should be able to answer these questions: What is science? What is physics?

More information

Chapter 20 Review Questions

Chapter 20 Review Questions Chapter 20 Review Questions Name 20.1 I can define the basics of electrostatics, conservation and charge interactions 1. If an object is attracted by a positively charged rod, we can be sure that the body

More information

TALLER DE ELECTROSTÁTICA

TALLER DE ELECTROSTÁTICA TALLER DE ELECTROSTÁTICA MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If two objects are electrically attracted to each other, 1) A) the objects

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9. Electrostatics 1) electric charge: 2 types of electric charge: positive and negative 2) charging by friction: transfer of electrons from one object to another 3) positive object: lack of electrons negative

More information

PHYSICS 30 ELECTRIC FIELDS ASSIGNMENT 1 55 MARKS

PHYSICS 30 ELECTRIC FIELDS ASSIGNMENT 1 55 MARKS For each of the following questions complete communication must be shown. Communication consists of an introduction to the physics of the situation, diagrams, word explanations and calculations in a well

More information

Electrostatics. The Nature of Electric Charge

Electrostatics. The Nature of Electric Charge Electrostatics GIRL SAFELY CHARGED TO SEVERAL HUNDRED THOUSAND VOLTS GIRL IN GREAT DANGER AT SEVERAL THOUSAND VOLTS The Nature of Electric Charge Discovery of charge The Greeks first noticed electric charges

More information

Electrostatics. Do Now: Describe the Concept of charge

Electrostatics. Do Now: Describe the Concept of charge Electrostatics Do Now: Describe the Concept of charge Electrostatics The study of electrical charges that can be collected and held in one place Also referred to as static electricity Types of Charge:

More information

Charge and Coulomb s Law

Charge and Coulomb s Law /3/014 Charge and Coulomb s Law AP Physics B Electric Charge Charge is a property of subatomic particles. Facts about charge: There are types basically, positive (protons and negative (electrons LIKE charges

More information

1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool

1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool Electric Force and Electric Field PSI AP Physics 2 Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool (A) acquires

More information

PHYS102 Previous Exam Problems. Electric Fields

PHYS102 Previous Exam Problems. Electric Fields PHYS102 Previous Exam Problems CHAPTER 22 Electric Fields Electric field Point charge in an electric field Electric dipole 1. Two identical charges, each of charge Q, are positioned at points A (5.0 m,

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Electrical Phenomena TUTORIAL 1 Coulomb's Inverse Square Law 1 A charge of 2.0 x 10-8 C is placed a distance of 2.0

More information

c. They have electric charges that move freely d. Electrons are added to the rod a. charges are of unlike signs b. charges are of like signs

c. They have electric charges that move freely d. Electrons are added to the rod a. charges are of unlike signs b. charges are of like signs Physics Review Chapter 17 & 18 Name: Date: Period: 1. What sentence best characterizes electron conductors? a. They have low mass density b. They have high tensile strength c. They have electric charges

More information

IB-1 Physics Electrostatics Practice Questions. e +4e A. B. C. D.

IB-1 Physics Electrostatics Practice Questions. e +4e A. B. C. D. 1. A plastic rod is rubbed with a cloth. At the end of the process, the rod is found to be positively charged and the cloth is found to be uncharged. This involves the movement of A. positive charge from

More information

47 CHARGE. 1. What are the basic particles of charge?

47 CHARGE. 1. What are the basic particles of charge? 47 CHARGE 1. What are the basic particles of charge? 2. There are three variables for charge listed to the right. Tell the typical circumstances when each is used. 3. Charge What are the units of charge?

More information

Physics 11 Chapter 18: Electric Forces and Electric Fields

Physics 11 Chapter 18: Electric Forces and Electric Fields Physics 11 Chapter 18: Electric Forces and Electric Fields Yesterday is not ours to recover, but tomorrow is ours to win or lose. Lyndon B. Johnson When I am anxious it is because I am living in the future.

More information

General Physics II. Electric Charge, Forces & Fields

General Physics II. Electric Charge, Forces & Fields General Physics II Electric Charge, Forces & Fields Electric Charge Recall that fundamental particles carry something called electric charge protons have exactly one unit of positive charge +1.602 x 10-19

More information

SELAQUI INTERNATIONAL SCHOOL, DEHRADUN

SELAQUI INTERNATIONAL SCHOOL, DEHRADUN CLASS XII Write Short Note: Q.1: Q.2: Q.3: SELAQUI INTERNATIONAL SCHOOL, DEHRADUN ELECTROSTATICS SUBJECT: PHYSICS (a) A truck carrying explosive has a metal chain touching the ground. Why? (b) Electric

More information

OUT OF BOOK QUESTION. Sphere Y is now moved away from X, as in Figure (b).

OUT OF BOOK QUESTION. Sphere Y is now moved away from X, as in Figure (b). X and Y are two uncharged metal spheres on insulating stands, and are in contact with each other. A positively charged rod R is brought close to X as shown in Figure (a). Sphere Y is now moved away from

More information

8/24/2018. Charge Polarization. Charge Polarization. Charge Polarization

8/24/2018. Charge Polarization. Charge Polarization. Charge Polarization Charge Polarization The figure shows how a charged rod held close to an electroscope causes the leaves to repel each other. How do charged objects of either sign exert an attractive force on a neutral

More information

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields uiz Four point charges, each of the same magnitude, with varying signs as specified, are arranged at the corners of a square as shown. Which of the arrows

More information

LAST NAME FIRST NAME DATE

LAST NAME FIRST NAME DATE LAST NAME FIRST NAME DATE CJ - Assignment 1 18.1 The Origin of Electricity 18.2 Charged Objects & the Electric Force 18.3 Conductors & Insulators 18.4 Charging by Contact & by Induction Conceptual Question

More information

Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate.

Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate. Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate. 1. If a charged rod A attracts another rod B, you can conclude that a.

More information

Exam 1--PHYS 102--S14

Exam 1--PHYS 102--S14 Class: Date: Exam 1--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The magnitude of the charge on an electron is approximately: a. 10-23

More information

Chapter 18 Electrostatics Electric Forces and Fields

Chapter 18 Electrostatics Electric Forces and Fields Chapter 18 Electrostatics Electric Forces and Fields Electrical charges that does not flow through an object, but sit stationary on the surface of an object. Usually it is isolated on the surface, but

More information

PHYS 2426 Brooks INTRODUCTION. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

PHYS 2426 Brooks INTRODUCTION.  Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli PHYS 2426 Brooks INTRODUCTION http://iws.ccccd.edu/mbrooks Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Chapter 21 Electric Charge and Electric Field Static Electricity;

More information

Measuring the Electric Force

Measuring the Electric Force Measuring the Electric Force Recall Newton s Law of Universal Gravitation: mm 1 2 Fg G r 2 Newton said: Imagine a hollow earth (a thin shell of uniform thickness) and a small object of mass m somewhere

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

1040 Phys Lecture 1. Electric Force. The electromagnetic force between charged particles is one of the fundamental forces of nature.

1040 Phys Lecture 1. Electric Force. The electromagnetic force between charged particles is one of the fundamental forces of nature. Electric Force The electromagnetic force between charged particles is one of the fundamental forces of nature. 1- Properties of Electric Charges A number of simple experiments demonstrate the existence

More information

SECTION 1: SHADE IN THE LETTER OF THE BEST ANSWER ON THE BUBBLE SHEET. (60%)

SECTION 1: SHADE IN THE LETTER OF THE BEST ANSWER ON THE BUBBLE SHEET. (60%) PHYSICS 3204 Unit 2 Test #1 NAME: SECTION 1: SHADE IN THE LETTER OF THE BEST ANSWER ON THE BUBBLE SHEET. (60%) 1 The elementary charge is the amount of charge on -?-. A) an atom B) a proton C) an electron

More information

Chapter 16 Electric Charge and Electric Field

Chapter 16 Electric Charge and Electric Field Chapter 16 Electric Charge and Electric Field 16.1 Static Electricity; Electric Charge and Its Conservation Objects can be charged by rubbing 16.1 Static Electricity; Electric Charge and Its Conservation

More information

Physics 1214 Chapter 17: Electric Charge and Electric Field

Physics 1214 Chapter 17: Electric Charge and Electric Field Physics 1214 Chapter 17: Electric Charge and Electric Field Introduction electrostatic interactions interactions between electric charges at rest in our frame of reference modeled by Coulomb s equation

More information

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References Phys102 Lecture 2 Phys102 Lecture 2-1 Coulomb s Law Key Points Coulomb s Law The electric field (E is a vector!) References SFU Ed: 21-5,6,7,8,9,10. 6 th Ed: 16-6,7,8,9,+. Phys102 Lecture 2 Phys102 Lecture

More information

CPS lesson Electric Field ANSWER KEY

CPS lesson Electric Field ANSWER KEY CPS lesson Electric Field ANSWER KEY 1. A positively charged rod is brought near a conducting sphere on an insulated base. The opposite side of the sphere is briefly grounded. If the rod is now withdrawn,

More information

Chapter 10. Electrostatics

Chapter 10. Electrostatics Chapter 10 Electrostatics 3 4 AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A solid conducting sphere

More information

Exercises Electrical Forces and Charges (pages )

Exercises Electrical Forces and Charges (pages ) Exercises 321 Electrical Forces and Charges (pages 645 646) 1 Circle the letter beside the correct comparison of the strengths of the gravitational force and the electrical force a The gravitational force

More information

Physics Electrostatics

Physics Electrostatics Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

Electric Charge and Force

Electric Charge and Force CHAPTER 17 21 SECTION Electricity Electric Charge and Force KEY IDEAS As you read this section, keep these questions in mind: What are the different kinds of electric charge? How do materials become electrically

More information

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Electric Charges Coulomb s Law and Electric force The Electric Field Electric Field Lines Electric flux Gauss Law and applications of Gauss Law

More information

Now for something totally (?) different

Now for something totally (?) different Now for something totally (?) different OUR FIRST REAL FORCE LAW: F = -G m M / r 2 Universal gravitational force (Newton) Acting between any two masses Proportional to both of these masses Inversely proportional

More information

Two. ( ) :. ; J.. v ( -I ) f - ) N. 1 o f.., J e. ( b) Like c a.,,9"s ref" ti. iocl, c, Qi' (f) .. i:1: ti,: f. c; (. c\... '1 t e-' r

Two. ( ) :. ; J.. v ( -I ) f - ) N. 1 o f.., J e. ( b) Like c a.,,9s ref ti. iocl, c, Qi' (f) .. i:1: ti,: f. c; (. c\... '1 t e-' r r (. Two + fes. ( ) :. ; J.. v ( -I ) ( b) N. 1 o f.., J e f - ) Like c a.,,9"s ref" ti iocl, c, Qi'.. i:1: ti,: f. c; (. ej Or (f) e e c\... '1 t e-' r......... e Electric charge and the structure of

More information

Physics Dellamorte 06_15 Electricity and Magnetism Review Packet Part 1: Electrostatic Charge and Coulomb s Law

Physics Dellamorte 06_15 Electricity and Magnetism Review Packet Part 1: Electrostatic Charge and Coulomb s Law Physics Dellamorte 06_15 Electricity and Magnetism Review Packet Part 1: Electrostatic Charge and Coulomb s Law Name Two particles are interacting with each other, which of the below would be true? a.

More information

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website: Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Ling @ Fiona Website: http://yslphysics.weebly.com/ Chapter 1: Electrostatics The study of electric charges at rest, the forces between them and the

More information

(a) This cannot be determined since the dimensions of the square are unknown. (b) 10 7 N/C (c) 10 6 N/C (d) 10 5 N/C (e) 10 4 N/C

(a) This cannot be determined since the dimensions of the square are unknown. (b) 10 7 N/C (c) 10 6 N/C (d) 10 5 N/C (e) 10 4 N/C 1. 4 point charges (1 C, 3 C, 4 C and 5 C) are fixed at the vertices of a square. When a charge of 10 C is placed at the center of the square, it experiences a force of 10 7 N. What is the magnitude of

More information

AP Physics 2012 Practice Quiz 4, Conduction & Electric Fields

AP Physics 2012 Practice Quiz 4, Conduction & Electric Fields Name: Class: Date: ID: A AP Physics 01 Practice Quiz 4, Conduction & Electric Fields Multiple Choice Identify the choice that best completes the statement or answers the question. 1. ( points) A repelling

More information

PHYSICS. Chapter 22 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 22 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 22 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 22 Electric Charges and Forces IN THIS CHAPTER, you will learn that

More information

Some differences: Some basic similarities: Charges. Electrons vs. Protons 3/25/12. Chapters 22-25: Electromagnetism!

Some differences: Some basic similarities: Charges. Electrons vs. Protons 3/25/12. Chapters 22-25: Electromagnetism! Chapters 22-25: Electromagnetism! Electric Force vs. Gravitational Force What properties does the gravitational force depend on? What properties does the electric force depend on? F grav = G*m 1 *m 2 /d

More information

Welcome to PHYS2002!

Welcome to PHYS2002! Welcome to PHYS00! Physics I Done! We are now all experts in mechanics. Mechanics Mass M Interaction: mm F = G r 1 G = 6.67 10 Nm/ kg r M 11 1 We never said what mass is, only how it behaves. New Semester

More information

Chapter 20 & 21: Electrostatics

Chapter 20 & 21: Electrostatics There are four forces that exist in nature: 1. 2. 3. 4. Chapter 20 & 21: Electrostatics, that is, they only act over very small distances. and can act over very large distances. Rules of Electrostatics:

More information

Intro Video: n What is charge? n v=dvlpasdwxpy

Intro Video: n What is charge? n   v=dvlpasdwxpy Electrostatics Intro Video: n What is charge? n https://www.youtube.com/watch? v=dvlpasdwxpy What is electrostatics? n Electrostatics or electricity at rest n Involves electric charges, the forces between

More information

Chapter Assignment Solutions

Chapter Assignment Solutions Chapter 20-21 Assignment Solutions Table of Contents Page 558 #22, 24, 29, 31, 36, 37, 40, 43-48... 1 Lightning Worksheet (Transparency 20-4)... 4 Page 584 #42-46, 58-61, 66-69, 76-79, 84-86... 5 Chapter

More information

C Electric Force & Field Practice Problems PSI Physics

C Electric Force & Field Practice Problems PSI Physics C Electric Force & Field Practice Problems PSI Physics Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a positive charge and the wool:

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

Now for something totally (?) different

Now for something totally (?) different Now for something totally (?) different OUR FIRST REAL FORCE LAW: F = G m M / r 2 Universal gravitational force (Newton) Acting between any two masses Proportional to both of these masses Inversely proportional

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

Section 1: Electric Charge and Force

Section 1: Electric Charge and Force Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines Key Ideas What are

More information

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements Course Website: http://jmschwarztheorygroup.org/phy101/ HW 7 on Chapters 9 and 16 is due on Friday at 5PM in your

More information

Greeks noticed when they rubbed things against amber an invisible force of attraction occurred.

Greeks noticed when they rubbed things against amber an invisible force of attraction occurred. Ben Franklin, 1750 Kite Experiment link between lightening and sparks Electrostatics electrical fire from the clouds Greeks noticed when they rubbed things against amber an invisible force of attraction

More information

6 Three rods, X, Y. and Z are charged by friction. Rod X attracts rod Y, but repels rod Z. What are the signs of the charges on each of these rods?

6 Three rods, X, Y. and Z are charged by friction. Rod X attracts rod Y, but repels rod Z. What are the signs of the charges on each of these rods? Physics 3204 ssignment 1: Electrostatics Name: 1 What causes an object to obtain a positive charge? gain of electrons gain of protons loss of electrons loss of protons 2 When a glass rod is rubbed with

More information

P Q 2 = -3.0 x 10-6 C

P Q 2 = -3.0 x 10-6 C 1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which

More information

Strand G. Electricity. Unit 1. Electrostatics. Text. Charge 2 Forces Between Charges 4 Electric Field 10

Strand G. Electricity. Unit 1. Electrostatics. Text. Charge 2 Forces Between Charges 4 Electric Field 10 Strand G. Electricity Unit 1. Electrostatics Contents Page Charge 2 Forces Between Charges 4 Electric Field 10 G.1.1. Charge An atom was once considered the building block of matter, although we know now

More information

Electric Fields and Forces. AP Physics B

Electric Fields and Forces. AP Physics B lectric ields and orces AP Physics B lectric Charge Charge is a property of subatomic particles. acts about charge: There are types basically, positive (protons and negative (electrons LIK charges RPL

More information