BDD Based Upon Shannon Expansion

Size: px
Start display at page:

Download "BDD Based Upon Shannon Expansion"

Transcription

1 Boolean Function Manipulation OBDD and more BDD Based Upon Shannon Expansion Notations f(x, x 2,, x n ) - n-input function, x i = or f xi=b (x,, x n ) = f(x,,x i-,b,x i+,,x n ), b= or Shannon Expansion fix a variable f = x i f xi= (x,, x n ) + x i f xi= (x,, x n )

2 Example f = x x2 + x4 + x x2 x5 f(x=) = x4 + x2 x5 f(x=) = x2 + x4 f = x ( x4 + x2 x5) + x (x2 + x4) Similarly f = x2 ( x4) + x2 (x + x4 + x x5) To represent f, we use a divide-and-conquer approach to represent f(xi=) and f(xi=) xi f(xi=) f(xi=) f = x x2 + Decision Tree f = x (x2 + ) + x () g = x2 () + x2 () g2 = x2 g g2 x x2 g2 f g In f, g2 appears twice, appears 3 times, and appears twice 2

3 OBDD From root (x) to a terminal vertex ( or ), the ordering of the splitting variables is the same Each sub-function appears only once two sub-functions are the same iff their OBDD graphs are the same canonical representation Also known as read-once branch program in comp. theory x x 2X+3=5 x2 x2 3 f 2n+ vertices Classical OBDD Example Variable ordering is not important... x x2 f = x x2... xn xn even s odd # of s 3

4 Classical OBDD Example To represent a symmetric function variable ordering is not important at level i, we need at most i vertices total nodes is < O(n 2 ) no s s 2 s 3 s Ordering Example f = x x2 + x4 + x5 x6 ordering : x x2 x4 x5 x6 (linear result) If (x x2)=, f = no need to read further! Otherwise we can forget about x x2 The memoryless effect makes BDD small A node in a BDD is a memory cell to remember the intermediate results during the computation of the function ordering 2 : x x5 x2 x4 x6 (exponential result) If (x==x5=) we need to remember them all! Because nothing can be decided based upon the information we have 4

5 Ordering and OBDD Size A node in a function graph is a place to remember important information about the computation f = x x 2 + x 3 x x (n-) x n proceed in this direction when reach x 2 need to remember the value of x when reach x 3 only when x x 2 = if x x 2 =, then x x 2 can be ignored and from x 3 the computation restarts fresh OBDD Size f = x x n/2+ + x 2 x n/ x n/2 x n proceed ordering as x x 2 x 3 x 4 x (n-) x n when reach x n/2 all values in x x 2 x 3 x (n-)/2 will need to be remembered because a different assignment may lead to different result nothing can be ignored and nothing for sure to be said about the evaluation yet need a complete binary tree for (n-)/2 variables exponential result 5

6 Satisfiability Satisfy-one: find a path from to the root Satisfy-all : find all different paths from to the root Satisfy-count : count the # of satisfying assignments Computing OBDDs x xn Circuit Initialize all Pis Compute the result of a boolean operation as merging two OBDDs and, or, xor, etc. Use procedures Apply and Reduce Follow topological order until reaching all POs 6

7 Worst-Case Example Worst-case example - multiplication f = A*B for any input ordering, OBDD(f) requires an exponential number of nodes (a n a n- a ) * (b n b n- b ) π is an ordering Theorem: for any π, OBDD size 2 n/8 Potential solutions word-level BDD Binary moment diagram (BMD) Idea of Proof No matter how you order the input variables, you can always find a cut that The width is O(n) The information flow is O(n/8) Input set Input set 2 O(n/8) 7

8 Equivalent to Say Need to remember O(n/8) different states More Terminology Composition f(xi=g)(x xn) = f(x,, g(x xn),, xn) ex. f=xx2+x4 and g=x2+ f(x=g) = x2 + x2 + x4 = x2 + x4 Dependency Set I f = { i f(xi=) f(xi=) } f depends on xi f = x x2 + x x2 f is independent of x Satisfying Set S f = { (x xn) f(x xn) = } all assignments that made f = 8

9 OBDD Operation Complexity Reduce (make canonical, minimal form) - O(G log G) (DA) graphs isomorphism Apply (merge two OBDDs) - O(G G 2 ) Boolean operation = {Apply Reduce} Restrict {f(xi=b)} - O(G log G) Compose {f(xi=g)} - O(G 2 G 2 ) Satisfy-One - O(n) Satisfy-all - O(n S f ) Satisfy-Count - O(G) This is a #P-complete problem Apply and Reduce OBDD op OBDD2 The basic algorithms to do so are Apply(OBDD, OBDD2) -> BDD3 Reduce(BDD3) -> OBDD3 9

10 f op f 2 = Apply x i [ f (x i =) op f 2 (x i =) ] + x i [ f (x i =) op f 2 (x i =) ] op = T T2 T3 T4 T op T3 T2 op T4 Example 2 Apply = 3 3 F= X + X X3 2 Reduce

11 Complexity of Apply i nodes op j nodes = k nodes k i * j i nodes represent i different sub-functions the worst case - (each of i nodes) op (each of j nodes) are different Total complexity O(G G2) Hash table in Apply Apply ( ), T T2 a T3 T4 b Apply(T, T3) Apply(T2, T4) Apply(a,b) When doing Apply(T,T3), we have done Apply(a,b) Apply(a,b) should not be repeated Need a hash table to store results of from Apply of all sub-functions.

12 Reduce DA Graph Isomorphism we can do a pair-wise comparison for all nodes but that is too slow instead: by labeling bottom-up = = 6 (4,5) 4 (3,2) 5 (,2) 3 (,2) () (2) Each graph has a unique labeling scheme same label at the root = same graph Labeling Scheme i i... i i+ i+ i+... i+2 i+2... i+2 i = i a b c d iff a=c && b=d Why working bottom-up? So that when working at level i, each node below already points to a unique graph already 2

13 Redundant Nodes Removal i+ i i i = i+ i+ i i i- i- i+ i+ i+ = At each level, how do we know how many nodes are identical in the labeling scheme? by sorting the labels at that level O(n log n) time complexity An Example (4,3) (,3) 2 2 (3,3) 2 3 (,2) 3 (,2) 3 () (2) () (2) 3

14 Other BDDs Function Decomposition Rules OBDD f = x f(x=) + x f(x=) Reed-Muller Decomposition f = f(x=) x [ f(x=) f(x=) ] f = f(x=) x [ f(x=) f(x=) ] Ordered Functional Decision Diagram x f(x=) f(x=) f(x=) 4

15 F = (x x2) F(=) = F(=) = x x2 difference D3 = x x2 D3(x2=) = x D3(x2=) = x difference D2 = OFDD x2 x OFDD requires a different Reduction rule For some functions, OFDD can be exponentially smaller than OBDD and vice verse Evaluation of the graph is different from OBDD Can no longer be simply tracing from root to s or s Free BDD The ordering along each path can be different Main issues Deciding that two trees are representing the same functions can not be done by graph isomorphism. It can only be done via a probabilistic algorithms Free BDD give flexibility in the representation but sacrifice in the complexity of manipulate the BDD date structures 5

16 Represent Numeric-Valued Functions eg. f=x +2x +4x 2 Arithmetic Decision Diagram (ADD) Associate more values as terminal nodes Edge-Valued BDD (EVBDD) Bring values from the terminal nodes to edges Binary Moment Diagram (BMD) Decomposition : f = f(x=) + x (δf/δx) Linearly Inductive BDD Linearly Inductive Function Recursively Defined X i : the inputs to the i-instance function F i : the i-instance function B i : an arbitrary boolean function F = B (x ) and F i = B i (X i, G i- ) B i = B j for all i,j Example - Adder Sum = a b c_in Sum i = ai bi Carry i- Carry = a b + (a+b) c_in Carry i = ai bi + (ai+bi) Carry i- 6

17 LIBDD Require different rules for Apply and Reduce Applicable to special case when good sequentiality can be captured Function definition has to be known in advance Inspiration Zero-Suppressed BDD To represent a collection of bit vectors eg. () () () Such a representation is often encountered in some combinatorial problems Usually, the s in the bit vectors is sparse ZBDD Change the Reduction rule A node can be removed iff the -edge points to x 7

18 x2 ZBDD Interpretation x x x x In ZBDD sense A = {, } and B = {,, } ZBDD is good for sets manipulation ZBDD can be used to represent a function as a collection of cube sets x,x2,={-,-,-} => {,,} To ensure sparse => :, :, -: 8

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams Sungho Kang Yonsei University Outline Representing Logic Function Design Considerations for a BDD package Algorithms 2 Why BDDs BDDs are Canonical (each Boolean function has its

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams Logic Circuits Design Seminars WS2010/2011, Lecture 2 Ing. Petr Fišer, Ph.D. Department of Digital Design Faculty of Information Technology Czech Technical University in Prague

More information

Binary Decision Diagrams Boolean Functions

Binary Decision Diagrams Boolean Functions Binary Decision Diagrams Representation of Boolean Functions BDDs, OBDDs, ROBDDs Operations Model-Checking over BDDs 72 Boolean functions:b = {0,1}, f :B B B Boolean Functions Boolean expressions: t ::=

More information

Binary Decision Diagrams. Graphs. Boolean Functions

Binary Decision Diagrams. Graphs. Boolean Functions Binary Decision Diagrams Graphs Binary Decision Diagrams (BDDs) are a class of graphs that can be used as data structure for compactly representing boolean functions. BDDs were introduced by R. Bryant

More information

Polynomial Methods for Component Matching and Verification

Polynomial Methods for Component Matching and Verification Polynomial Methods for Component Matching and Verification James Smith Stanford University Computer Systems Laboratory Stanford, CA 94305 1. Abstract Component reuse requires designers to determine whether

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams Literature Some pointers: H.R. Andersen, An Introduction to Binary Decision Diagrams, Lecture notes, Department of Information Technology, IT University of Copenhagen Tools: URL:

More information

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for?

Overview. Discrete Event Systems Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for? Computer Engineering and Networks Overview Discrete Event Systems Verification of Finite Automata Lothar Thiele Introduction Binary Decision Diagrams Representation of Boolean Functions Comparing two circuits

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: Lintao Zhang Announcement Project proposals due

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams Binary Decision Diagrams (BDDs) are a class of graphs that can be used as data structure for compactly representing boolean functions. BDDs were introduced by R. Bryant in 1986.

More information

Boolean decision diagrams and SAT-based representations

Boolean decision diagrams and SAT-based representations Boolean decision diagrams and SAT-based representations 4th July 200 So far we have seen Kripke Structures 2 Temporal logics (and their semantics over Kripke structures) 3 Model checking of these structures

More information

Title. Citation Information Processing Letters, 112(16): Issue Date Doc URLhttp://hdl.handle.net/2115/ Type.

Title. Citation Information Processing Letters, 112(16): Issue Date Doc URLhttp://hdl.handle.net/2115/ Type. Title Counterexamples to the long-standing conjectur Author(s) Yoshinaka, Ryo; Kawahara, Jun; Denzumi, Shuhei Citation Information Processing Letters, 112(16): 636-6 Issue Date 2012-08-31 Doc URLhttp://hdl.handle.net/2115/50105

More information

Computational Boolean Algebra. Pingqiang Zhou ShanghaiTech University

Computational Boolean Algebra. Pingqiang Zhou ShanghaiTech University Computational Boolean Algebra Pingqiang Zhou ShanghaiTech University Announcements Written assignment #1 is out. Due: March 24 th, in class. Programming assignment #1 is out. Due: March 24 th, 11:59PM.

More information

Circuits. Lecture 11 Uniform Circuit Complexity

Circuits. Lecture 11 Uniform Circuit Complexity Circuits Lecture 11 Uniform Circuit Complexity 1 Recall 2 Recall Non-uniform complexity 2 Recall Non-uniform complexity P/1 Decidable 2 Recall Non-uniform complexity P/1 Decidable NP P/log NP = P 2 Recall

More information

COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS

COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS QUALITATIVE ANALYIS METHODS, OVERVIEW NET REDUCTION STRUCTURAL PROPERTIES COMPRESSED STATE SPACE REPRESENTATIONS - BINARY DECISION DIAGRAMS LINEAR PROGRAMMING place / transition invariants state equation

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate

More information

hexadecimal-to-decimal conversion

hexadecimal-to-decimal conversion OTHER NUMBER SYSTEMS: octal (digits 0 to 7) group three binary numbers together and represent as base 8 3564 10 = 110 111 101 100 2 = (6X8 3 ) + (7X8 2 ) + (5X8 1 ) + (4X8 0 ) = 6754 8 hexadecimal (digits

More information

Symbolic Model Checking with ROBDDs

Symbolic Model Checking with ROBDDs Symbolic Model Checking with ROBDDs Lecture #13 of Advanced Model Checking Joost-Pieter Katoen Lehrstuhl 2: Software Modeling & Verification E-mail: katoen@cs.rwth-aachen.de December 14, 2016 c JPK Symbolic

More information

Reduced Ordered Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams Reduced Ordered Binary Decision Diagrams Lecture #13 of Advanced Model Checking Joost-Pieter Katoen Lehrstuhl 2: Software Modeling & Verification E-mail: katoen@cs.rwth-aachen.de June 5, 2012 c JPK Switching

More information

Bounds on the OBDD-Size of Integer Multiplication via Universal Hashing

Bounds on the OBDD-Size of Integer Multiplication via Universal Hashing Bounds on the OBDD-Size of Integer Multiplication via Universal Hashing Philipp Woelfel Dept. of Computer Science University Dortmund D-44221 Dortmund Germany phone: +49 231 755-2120 fax: +49 231 755-2047

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Spring 2017-2018 Outline 1 Sorting Algorithms (contd.) Outline Sorting Algorithms (contd.) 1 Sorting Algorithms (contd.) Analysis of Quicksort Time to sort array of length

More information

Equivalence Checking of Sequential Circuits

Equivalence Checking of Sequential Circuits Equivalence Checking of Sequential Circuits Sanjit Seshia EECS UC Berkeley With thanks to K. Keutzer, R. Rutenbar 1 Today s Lecture What we know: How to check two combinational circuits for equivalence

More information

COMP 382: Reasoning about algorithms

COMP 382: Reasoning about algorithms Fall 2014 Unit 4: Basics of complexity analysis Correctness and efficiency So far, we have talked about correctness and termination of algorithms What about efficiency? Running time of an algorithm For

More information

Exercises - Solutions

Exercises - Solutions Chapter 1 Exercises - Solutions Exercise 1.1. The first two definitions are equivalent, since we follow in both cases the unique path leading from v to a sink and using only a i -edges leaving x i -nodes.

More information

Anand Raghunathan MSEE 348

Anand Raghunathan MSEE 348 ECE 595Z: Digital VLSI Design Automation, Spring 2012 2012 Anand Raghunathan 1 ECE 595Z Digital Systems Design Automation Module 2 (Lectures 3-5) : Advanced Boolean Algebra Lecture 5 Anand Raghunathan

More information

Reduced Ordered Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams Reduced Ordered Binary Decision Diagrams Lecture #12 of Advanced Model Checking Joost-Pieter Katoen Lehrstuhl 2: Software Modeling & Verification E-mail: katoen@cs.rwth-aachen.de December 13, 2016 c JPK

More information

Basing Decisions on Sentences in Decision Diagrams

Basing Decisions on Sentences in Decision Diagrams Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence Basing Decisions on Sentences in Decision Diagrams Yexiang Xue Department of Computer Science Cornell University yexiang@cs.cornell.edu

More information

Binary Decision Diagrams

Binary Decision Diagrams Binar Decision Diagrams Ma 3, 2004 1 Overview Boolean functions Possible representations Binar decision trees Binar decision diagrams Ordered binar decision diagrams Reduced ordered binar decision diagrams

More information

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu Analysis of Algorithm Efficiency Dr. Yingwu Zhu Measure Algorithm Efficiency Time efficiency How fast the algorithm runs; amount of time required to accomplish the task Our focus! Space efficiency Amount

More information

BOOLEAN ALGEBRA INTRODUCTION SUBSETS

BOOLEAN ALGEBRA INTRODUCTION SUBSETS BOOLEAN ALGEBRA M. Ragheb 1/294/2018 INTRODUCTION Modern algebra is centered around the concept of an algebraic system: A, consisting of a set of elements: ai, i=1, 2,, which are combined by a set of operations

More information

Multi-Terminal Multi-Valued Decision Diagrams for Characteristic Function Representing Cluster Decomposition

Multi-Terminal Multi-Valued Decision Diagrams for Characteristic Function Representing Cluster Decomposition 22 IEEE 42nd International Symposium on Multiple-Valued Logic Multi-Terminal Multi-Valued Decision Diagrams for Characteristic Function Representing Cluster Decomposition Hiroki Nakahara, Tsutomu Sasao,

More information

Counter Examples to the Conjecture on the Complexity of BDD Binary Operations

Counter Examples to the Conjecture on the Complexity of BDD Binary Operations TCS -TR-A-11-52 TCS Technical Report Counter Examples to the Conjecture on the Complexity of BDD Binary Operations by Ryo Yoshinaka, Jun Kawahara, Shuhei Denzumi, Hiroki Arimura and Shin-ichi Minato Division

More information

Representations of All Solutions of Boolean Programming Problems

Representations of All Solutions of Boolean Programming Problems Representations of All Solutions of Boolean Programming Problems Utz-Uwe Haus and Carla Michini Institute for Operations Research Department of Mathematics ETH Zurich Rämistr. 101, 8092 Zürich, Switzerland

More information

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 EECS5 - Digital Design Lecture - Combinational Logic Circuits Part Feburary 26, 22 John Wawrzynek Spring 22 EECS5 - Lec-cl Page Combinational Logic (CL) Defined y i = f i (x,...., xn-), where x, y are

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

1188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

1188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006 1188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006 Taylor Expansion Diagrams: A Canonical Representation for Verification of Data Flow Designs Maciej Ciesielski, Senior Member, IEEE, Priyank

More information

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 Computational complexity studies the amount of resources necessary to perform given computations.

More information

Decision Procedures for Satisfiability and Validity in Propositional Logic

Decision Procedures for Satisfiability and Validity in Propositional Logic Decision Procedures for Satisfiability and Validity in Propositional Logic Meghdad Ghari Institute for Research in Fundamental Sciences (IPM) School of Mathematics-Isfahan Branch Logic Group http://math.ipm.ac.ir/isfahan/logic-group.htm

More information

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL.

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL. 2017-18 XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL HALF ADDER 1. The circuit that performs addition within the Arithmetic and Logic Unit of the CPU are called adders. 2. A unit that adds two

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

CTL Model Checking. Wishnu Prasetya.

CTL Model Checking. Wishnu Prasetya. CTL Model Checking Wishnu Prasetya wishnu@cs.uu.nl www.cs.uu.nl/docs/vakken/pv Background Example: verification of web applications à e.g. to prove existence of a path from page A to page B. Use of CTL

More information

The Separation Problem for Binary Decision Diagrams

The Separation Problem for Binary Decision Diagrams The Separation Problem for Binary Decision Diagrams J. N. Hooker Joint work with André Ciré Carnegie Mellon University ISAIM 2014 Separation Problem in Optimization Given a relaxation of an optimization

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

A Lower Bound Technique for Nondeterministic Graph-Driven Read-Once-Branching Programs and its Applications

A Lower Bound Technique for Nondeterministic Graph-Driven Read-Once-Branching Programs and its Applications A Lower Bound Technique for Nondeterministic Graph-Driven Read-Once-Branching Programs and its Applications Beate Bollig and Philipp Woelfel FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany

More information

Stochastic Decision Diagrams

Stochastic Decision Diagrams Stochastic Decision Diagrams John Hooker CORS/INFORMS Montréal June 2015 Objective Relaxed decision diagrams provide an generalpurpose method for discrete optimization. When the problem has a dynamic programming

More information

CHAPTER1: Digital Logic Circuits Combination Circuits

CHAPTER1: Digital Logic Circuits Combination Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits Combination Circuits 1 PRIMITIVE LOGIC GATES Each of our basic operations can be implemented in hardware using a primitive logic gate.

More information

Optimization Bounds from Binary Decision Diagrams

Optimization Bounds from Binary Decision Diagrams Optimization Bounds from Binary Decision Diagrams J. N. Hooker Joint work with David Bergman, André Ciré, Willem van Hoeve Carnegie Mellon University ICS 203 Binary Decision Diagrams BDDs historically

More information

Lecture 22: Counting

Lecture 22: Counting CS 710: Complexity Theory 4/8/2010 Lecture 22: Counting Instructor: Dieter van Melkebeek Scribe: Phil Rydzewski & Chi Man Liu Last time we introduced extractors and discussed two methods to construct them.

More information

Cardinality Networks: a Theoretical and Empirical Study

Cardinality Networks: a Theoretical and Empirical Study Constraints manuscript No. (will be inserted by the editor) Cardinality Networks: a Theoretical and Empirical Study Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell Received:

More information

Parallelism and Machine Models

Parallelism and Machine Models Parallelism and Machine Models Andrew D Smith University of New Brunswick, Fredericton Faculty of Computer Science Overview Part 1: The Parallel Computation Thesis Part 2: Parallelism of Arithmetic RAMs

More information

Decision Diagrams for Discrete Optimization

Decision Diagrams for Discrete Optimization Decision Diagrams for Discrete Optimization Willem Jan van Hoeve Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/ Acknowledgments: David Bergman, Andre Cire, Samid

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Subquadratic space complexity multiplier for a class of binary fields using Toeplitz matrix approach

Subquadratic space complexity multiplier for a class of binary fields using Toeplitz matrix approach Subquadratic space complexity multiplier for a class of binary fields using Toeplitz matrix approach M A Hasan 1 and C Negre 2 1 ECE Department and CACR, University of Waterloo, Ontario, Canada 2 Team

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams An Introduction and Some Applications Manas Thakur PACE Lab, IIT Madras Manas Thakur (IIT Madras) BDDs 1 / 25 Motivating Example Binary decision tree for a truth table Manas Thakur

More information

Integer Linear Programming

Integer Linear Programming Integer Linear Programming Solution : cutting planes and Branch and Bound Hugues Talbot Laboratoire CVN April 13, 2018 IP Resolution Gomory s cutting planes Solution branch-and-bound General method Resolution

More information

WEEK 2.1 BOOLEAN ALGEBRA

WEEK 2.1 BOOLEAN ALGEBRA WEEK 2.1 BOOLEAN ALGEBRA 1 Boolean Algebra Boolean algebra was introduced in 1854 by George Boole and in 1938 was shown by C. E. Shannon to be useful for manipulating Boolean logic functions. The postulates

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

A Lower Bound Technique for Restricted Branching Programs and Applications

A Lower Bound Technique for Restricted Branching Programs and Applications A Lower Bound Technique for Restricted Branching Programs and Applications (Extended Abstract) Philipp Woelfel FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany woelfel@ls2.cs.uni-dortmund.de

More information

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Part a: You are given a graph G = (V,E) with edge weights w(e) > 0 for e E. You are also given a minimum cost spanning tree (MST) T. For one particular edge

More information

Fault Collapsing in Digital Circuits Using Fast Fault Dominance and Equivalence Analysis with SSBDDs

Fault Collapsing in Digital Circuits Using Fast Fault Dominance and Equivalence Analysis with SSBDDs Fault Collapsing in Digital Circuits Using Fast Fault Dominance and Equivalence Analysis with SSBDDs Raimund Ubar, Lembit Jürimägi (&), Elmet Orasson, and Jaan Raik Department of Computer Engineering,

More information

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review Chapter 4 Test Review Students will be able to (SWBAT): Write an explicit and a recursive function rule for a linear table of values. Write an explicit function rule for a quadratic table of values. Determine

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 NEW SOUTH WALES Algorithms: COMP3121/3821/9101/9801 Aleks Ignjatović School of Computer Science and Engineering University of New South Wales LECTURE 9: INTRACTABILITY COMP3121/3821/9101/9801 1 / 29 Feasibility

More information

On the Relative Efficiency of DPLL and OBDDs with Axiom and Join

On the Relative Efficiency of DPLL and OBDDs with Axiom and Join On the Relative Efficiency of DPLL and OBDDs with Axiom and Join Matti Järvisalo University of Helsinki, Finland September 16, 2011 @ CP M. Järvisalo (U. Helsinki) DPLL and OBDDs September 16, 2011 @ CP

More information

= = = = = =

= = = = = = PARTITION THEORY (notes by M. Hlynka, University of Windsor) Definition: A partition of a positive integer n is an expression of n as a sum of positive integers. Partitions are considered the same if the

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 4 Following the slides of Dr. Ahmed H. Madian محرم 439 ه Winter 28

More information

Chapter 7 Logic Circuits

Chapter 7 Logic Circuits Chapter 7 Logic Circuits Goal. Advantages of digital technology compared to analog technology. 2. Terminology of Digital Circuits. 3. Convert Numbers between Decimal, Binary and Other forms. 5. Binary

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Binary Search Introduction Problem Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Strategy 1: Random Search Randomly select a page until the page containing

More information

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds Lecturer: Toniann Pitassi Scribe: Robert Robere Winter 2014 1 Switching

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms REVIEW QUESTIONS Chapter 1: Foundations: Sets, Logic, and Algorithms 1. Why can t a Venn diagram be used to prove a statement about sets? 2. Suppose S is a set with n elements. Explain why the power set

More information

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162 COMPUTER ARITHMETIC 13/05/2010 cryptography - math background pp. 1 / 162 RECALL OF COMPUTER ARITHMETIC computers implement some types of arithmetic for instance, addition, subtratction, multiplication

More information

Binary decision diagrams for security protocols

Binary decision diagrams for security protocols for Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 4 czerwca 2012 roku 1 2 3 4 Infrastructure with Intruder Threat template 5 References BDD definition Definition An BDD G

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

Reduced Ordered Binary Decision Diagram with Implied Literals: A New knowledge Compilation Approach

Reduced Ordered Binary Decision Diagram with Implied Literals: A New knowledge Compilation Approach Reduced Ordered Binary Decision Diagram with Implied Literals: A New knowledge Compilation Approach Yong Lai, Dayou Liu, Shengsheng Wang College of Computer Science and Technology Jilin University, Changchun

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1 Ch 2. Combinational Logic II - Combinational Logic Contemporary Logic Design 1 Combinational logic Define The kind of digital system whose output behavior depends only on the current inputs memoryless:

More information

CS6840: Advanced Complexity Theory Mar 29, Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K.

CS6840: Advanced Complexity Theory Mar 29, Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K. CS684: Advanced Complexity Theory Mar 29, 22 Lecture 46 : Size lower bounds for AC circuits computing Parity Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K. Theme: Circuit Complexity Lecture Plan: Proof

More information

CS226 Mid-Semester Examination (Spring 2016)

CS226 Mid-Semester Examination (Spring 2016) CS226 Mid-Semester Examination (Spring 2016) Max marks: 60 Time: 120 mins The exam is open book and notes brought to the exam hall. Be brief, complete and stick to what has been asked. Unless asked for

More information

Combinatorial Enumeration. Jason Z. Gao Carleton University, Ottawa, Canada

Combinatorial Enumeration. Jason Z. Gao Carleton University, Ottawa, Canada Combinatorial Enumeration Jason Z. Gao Carleton University, Ottawa, Canada Counting Combinatorial Structures We are interested in counting combinatorial (discrete) structures of a given size. For example,

More information

Physical Mapping. Restriction Mapping. Lecture 12. A physical map of a DNA tells the location of precisely defined sequences along the molecule.

Physical Mapping. Restriction Mapping. Lecture 12. A physical map of a DNA tells the location of precisely defined sequences along the molecule. Computat onal iology Lecture 12 Physical Mapping physical map of a DN tells the location of precisely defined sequences along the molecule. Restriction mapping: mapping of restriction sites of a cutting

More information

PATH BUNDLES ON n-cubes

PATH BUNDLES ON n-cubes PATH BUNDLES ON n-cubes MATTHEW ELDER Abstract. A path bundle is a set of 2 a paths in an n-cube, denoted Q n, such that every path has the same length, the paths partition the vertices of Q n, the endpoints

More information

Binary Decision Diagrams and Symbolic Model Checking

Binary Decision Diagrams and Symbolic Model Checking Binary Decision Diagrams and Symbolic Model Checking Randy Bryant Ed Clarke Ken McMillan Allen Emerson CMU CMU Cadence U Texas http://www.cs.cmu.edu/~bryant Binary Decision Diagrams Restricted Form of

More information

Algorithms and Data Structures 2016 Week 5 solutions (Tues 9th - Fri 12th February)

Algorithms and Data Structures 2016 Week 5 solutions (Tues 9th - Fri 12th February) Algorithms and Data Structures 016 Week 5 solutions (Tues 9th - Fri 1th February) 1. Draw the decision tree (under the assumption of all-distinct inputs) Quicksort for n = 3. answer: (of course you should

More information

CS151 Complexity Theory

CS151 Complexity Theory Introduction CS151 Complexity Theory Lecture 5 April 13, 2004 Power from an unexpected source? we know PEXP, which implies no polytime algorithm for Succinct CVAL poly-size Boolean circuits for Succinct

More information

Antonina Kolokolova Memorial University of Newfoundland

Antonina Kolokolova Memorial University of Newfoundland 6 0 1 5 2 4 3 Antonina Kolokolova Memorial University of Newfoundland Understanding limits of proof techniques: Diagonalization Algebrization (limits of arithmetization technique) Natural proofs Power

More information

Sequential Equivalence Checking - I

Sequential Equivalence Checking - I Sequential Equivalence Checking - I Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab. Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in

More information

COL 730: Parallel Programming

COL 730: Parallel Programming COL 730: Parallel Programming PARALLEL SORTING Bitonic Merge and Sort Bitonic sequence: {a 0, a 1,, a n-1 }: A sequence with a monotonically increasing part and a monotonically decreasing part For some

More information

FORMAL METHODS LECTURE VI BINARY DECISION DIAGRAMS (BDD S)

FORMAL METHODS LECTURE VI BINARY DECISION DIAGRAMS (BDD S) Alessandro Artale (FM First Semester 2009/2010) p. 1/38 FORMAL METHODS LECTURE VI BINARY DECISION DIAGRAMS (BDD S) Alessandro Artale Faulty of Computer Siene Free University of Bolzano artale@inf.unibz.it

More information

Lecture 2: Divide and conquer and Dynamic programming

Lecture 2: Divide and conquer and Dynamic programming Chapter 2 Lecture 2: Divide and conquer and Dynamic programming 2.1 Divide and Conquer Idea: - divide the problem into subproblems in linear time - solve subproblems recursively - combine the results in

More information

QuIDD-Optimised Quantum Algorithms

QuIDD-Optimised Quantum Algorithms QuIDD-Optimised Quantum Algorithms by S K University of York Computer science 3 rd year project Supervisor: Prof Susan Stepney 03/05/2004 1 Project Objectives Investigate the QuIDD optimisation techniques

More information

1 The Low-Degree Testing Assumption

1 The Low-Degree Testing Assumption Advanced Complexity Theory Spring 2016 Lecture 17: PCP with Polylogarithmic Queries and Sum Check Prof. Dana Moshkovitz Scribes: Dana Moshkovitz & Michael Forbes Scribe Date: Fall 2010 In this lecture

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Allocation of multiple processors to lazy boolean function trees justification of the magic number 2/3

Allocation of multiple processors to lazy boolean function trees justification of the magic number 2/3 Allocation of multiple processors to lazy boolean function trees justification of the magic number 2/3 Alan Dix Computer Science Department University of York, York, YO1 5DD, U.K. alan@uk.ac.york.minster

More information

Ma/CS 117c Handout # 5 P vs. NP

Ma/CS 117c Handout # 5 P vs. NP Ma/CS 117c Handout # 5 P vs. NP We consider the possible relationships among the classes P, NP, and co-np. First we consider properties of the class of NP-complete problems, as opposed to those which are

More information