Invariant Histograms and Signatures for Object Recognition and Symmetry Detection

 Sharlene Ramsey
 10 days ago
 Views:
Transcription
1 Invariant Histograms and Signatures for Object Recognition and Symmetry Detection Peter J. Olver University of Minnesota olver North Carolina, October, 2011
2 References Boutin, M., & Kemper, G., On reconstructing npoint configurations from the distribution of distances or areas, Adv. Appl. Math. 32 (2004) Brinkman, D., & Olver, P.J., Invariant histograms, Amer. Math. Monthly 118 (2011) Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., & Haker, S., Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision 26 (1998)
3 The Distance Histogram Definition. The distance histogram of a finite set of points P = {z 1,..., z n } V is the function η P (r) = # { (i, j) 1 i < j n, d(zi, z j ) = r }.
4 The Distance Set The support of the histogram function, supp η P = P R + is the distance set of P. Erdös distinct distances conjecture (1946): If P R m, then # P c m,ε (# P ) 2/m ε
5 Characterization of Point Sets Note: If P = g P is obtained from P R m by a rigid motion g E(n), then they have the same distance histogram: η P = η P. Question: Can one uniquely characterize, up to rigid motion, a set of points P {z 1,..., z n } R m by its distance histogram? = Tinkertoy problem.
6 Yes: η = 1, 1, 1, 1, 2, 2.
7 No: Kite Trapezoid η = 2, 2, 2, 10, 10, 4.
8 No: P = {0, 1, 4, 10, 12, 17} Q = {0, 1, 8, 11, 13, 17} R η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17 = G. Bloom, J. Comb. Theory, Ser. A 22 (1977)
9 Theorem. (Boutin Kemper) Suppose n 3 or n m + 2. Then there is a Zariski dense open subset in the space of n point configurations in R m that are uniquely characterized, up to rigid motion, by their distance histograms. = M. Boutin, G. Kemper, Adv. Appl. Math. 32 (2004)
10 Limiting Curve Histogram
11 Limiting Curve Histogram
12 Limiting Curve Histogram
13 Sample Point Histograms Cumulative distance histogram: n = #P : Λ P (r) = 1 n + 2 n 2 s r η P (s) = 1 n 2 # { (i, j) d(zi, z j ) r }, Note η(r) = 1 2 n2 [ Λ P (r) Λ P (r δ) ] δ 1. Local distance histogram: λ P (r, z) = 1 n # { j d(z, zj ) r } = 1 n #(P B r (z)) Ball of radius r centered at z: B r (z) = { v V d(v, z) r } Note: Λ P (r) = 1 n z P λ P (r, z) = 1 n 2 z P #(P B r (z)).
14 Limiting Curve Histogram Functions Length of a curve l(c) = Local curve distance histogram function C ds < h C (r, z) = l(c B r (z)) l(c) z V = The fraction of the curve contained in the ball of radius r centered at z. Global curve distance histogram function: H C (r) = 1 l(c) h C (r, z(s)) ds. C
15 Convergence Theorem. Let C be a regular plane curve. Then, for both uniformly spaced and randomly chosen sample points P C, the cumulative local and global histograms converge to their continuous counterparts: λ P (r, z) h C (r, z), Λ P (r) H C (r), as the number of sample points goes to infinity.
16 Square Curve Histogram with Bounds
17 Kite and Trapezoid Curve Histograms
18 Histogram Based Shape Recognition 500 sample points Shape (a) (b) (c) (d) (e) (f) (a) triangle (b) square (c) circle (d) 2 3 rectangle (e) 1 3 rectangle (f) star
19 Curve Histogram Conjecture Two sufficiently regular plane curves C and C have identical global distance histogram functions, so H C (r) = H C(r) for all r 0, if and only if they are rigidly equivalent: C C.
20 Proof Strategies Show that any polygon obtained from (densely) discretizing a curve does not lie in the Boutin Kemper exceptional set. Polygons with obtuse angles: taking r small, one can recover (i) the set of angles and (ii) the shortest side length from H C (r). Further increasing r leads to further geometric information about the polygon... Expand H C (r) in a Taylor series at r = 0 and show that the corresponding integral invariants characterize the curve.
21 Taylor Expansions Local distance histogram function: L h C (r, z) = 2r κ2 r 3 + ( 1 40 κκ ss κ2 s κ4 ) r 5 +. Global distance histogram function: H C (r) = 2r L + r3 12L 2 C κ2 ds + r5 40L 2 C ( 3 8 κ4 1 9 κ2 s ) ds +.
22 Space Curves Saddle curve: z(t) = (cos t, sin t, cos 2t), 0 t 2π. Convergence of global curve distance histogram function:
23 Surfaces Local and global surface distance histogram functions: h S (r, z) = area (S B r (z)) area (S) Convergence for sphere:, H S (r) = 1 area (S) S h S (r, z) ds.
24 Area Histograms Rewrite global curve distance histogram function: H C (r) = 1 L h C (r, z(s)) ds = 1 C L 2 χ r (d(z(s), C C z(s )) ds ds { 1, t r, where χ r (t) = 0, t > r, Global curve area histogram function A C (r) = 1 L 3 χ r (area (z(ŝ), C C C z(ŝ ), z(ŝ )) dŝ dŝ dŝ, dŝ equiaffine arc length element L = Discrete cumulative area histogram 1 A P (r) = n(n 1)(n 2) z z z P χ r (area (z, z, z )), Boutin & Kemper: the area histogram uniquely determines generic point sets P R 2 up to equiaffine motion C dŝ
25 Area Histogram for Circle Joint invariant histograms convergence???
26 Triangle Distance Histograms Z = (... z i...) M sample points on a subset M R n (curve, surface, etc.) T i,j,k triangle with vertices z i, z j, z k. Side lengths: σ(t i,j,k ) = ( d(z i, z j ), d(z i, z k ), d(z j, z k ) ) Discrete triangle histogram: Triangle inequality cone S = σ(t ) K K = { (x, y, z) x, y, z 0, x + y z, x + z y, y + z x } R 3.
27 Triangle Histogram Distributions Circle Triangle Square = Madeleine Kotzagiannidis
28 Practical Object Recognition Scaleinvariant feature transform (SIFT) (Lowe) Shape contexts (Belongie Malik Puzicha) Integral invariants (Krim, Kogan, Yezzi, Pottman,... ) Shape distributions (Osada Funkhouser Chazelle Dobkin) Surfaces: distances, angles, areas, volumes, etc. Gromov Hausdorff and GromovWasserstein distances (Mémoli) = lower bounds
29 Signature Curves Definition. The signature curve S R 2 of a curve C R 2 is parametrized by the two lowest order differential invariants S = { ( κ, dκ ds ) } R 2 = One can recover the signature curve from the Taylor expansion of the local distance histogram function.
30 Other Signatures Euclidean space curves: C R 3 S = { ( κ, κ s, τ ) } R 3 Euclidean surfaces: S R 3 (generic) S = { ( H, K, H,1, H,2, K,1, K,2 ) } κ curvature, τ torsion R 3 H mean curvature, K Gauss curvature Equi affine surfaces: S R 3 (generic) S = { ( P, P,1, P,2, P,11 ) } R 3 P Pick invariant
31 Equivalence and Signature Curves Theorem. Two regular curves C and C are equivalent: C = g C if and only if their signature curves are identical: S = S = object recognition
32 Symmetry and Signature Theorem. The dimension of the symmetry group G N = { g g N N } of a nonsingular submanifold N M equals the codimension of its signature: dim G N = dim N dim S
33 Discrete Symmetries Definition. The index of a submanifold N equals the number of points in N which map to a generic point of its signature: ι N = min { # Σ 1 {w} } w S = Self intersections Theorem. The cardinality of the symmetry group of a submanifold N equals its index ι N. = Approximate symmetries
34 The Index Σ N S
35 = Steve Haker
36
37
38 Signature Metrics Hausdorff Monge Kantorovich transport Electrostatic repulsion Latent semantic analysis (Shakiban) Histograms (Kemper Boutin) Diffusion metric Gromov Hausdorff
39 Signatures κ s Classical Signature κ s Original curve κ Differential invariant signature
40 Signatures κ s Classical Signature κ s Original curve κ Differential invariant signature
41 Occlusions κ s Classical Signature κ s Original curve κ Differential invariant signature
42 The Baffler Jigsaw Puzzle
43 The Baffler Solved = Dan Hoff
44 Advantages of the Signature Curve Purely local no ambiguities Symmetries and approximate symmetries Extends to surfaces and higher dimensional submanifolds Occlusions and reconstruction Main disadvantage: Noise sensitivity due to dependence on high order derivatives.
45 Noise Reduction Use lower order invariants to construct a signature: joint invariants joint differential invariants integral invariants topological invariants...
46 Joint Invariants A joint invariant is an invariant of the kfold Cartesian product action of G on M M: I(g z 1,..., g z k ) = I(z 1,..., z k ) A joint differential invariant or semidifferential invariant is an invariant depending on the derivatives at several points z 1,..., z k N on the submanifold: I(g z (n) 1,..., g z (n) k ) = I(z(n) 1,..., z (n) k )
47 Joint Euclidean Invariants Theorem. Every joint Euclidean invariant is a function of the interpoint distances d(z i, z j ) = z i z j z j z i
48 Joint Equi Affine Invariants Theorem. Every planar joint equi affine invariant is a function of the triangular areas [ i j k ] = 1 2 (z i z j ) (z i z k ) z j z i z k
49 Joint Projective Invariants Theorem. Every joint projective invariant is a function of the planar crossratios [ z i, z j, z k, z l, z m ] = A B C D A D C B
50 Three point projective joint differential invariant tangent triangle ratio: [ ] [ ] [ ] [ ] [ ] [ ] z 0 z 1 z 0 z 1 z 2 z 2
51 Joint Invariant Signatures If the invariants depend on k points on a pdimensional submanifold, then you need at least l > k p distinct invariants I 1,..., I l in order to construct a syzygy. Typically, the number of joint invariants is l = k m r = (#points) (dim M) dim G Therefore, a purely joint invariant signature requires at least r k m p + 1 points on our pdimensional submanifold N M.
52 Joint Euclidean Signature z 0 a z 1 b e c d z 3 f z 2
53 Joint signature map: Σ : C 4 S R 6 a = z 0 z 1 b = z 0 z 2 c = z 0 z 3 d = z 1 z 2 e = z 1 z 3 f = z 2 z 3 = six functions of four variables Syzygies: Φ 1 (a, b, c, d, e, f) = 0 Φ 2 (a, b, c, d, e, f) = 0 Universal Cayley Menger syzygy C R 2 det 2a 2 a 2 + b 2 d 2 a 2 + c 2 e 2 a 2 + b 2 d 2 2b 2 b 2 + c 2 f 2 a 2 + c 2 e 2 b 2 + c 2 f 2 2c 2 = 0
54 Joint Equi Affine Signature Requires 7 triangular areas: [ ], [ ], [ ], [ ], [ ], [ ], [ ] z 1 z 2 z 0 z 5 z 3 z 4
55 Joint Invariant Signatures The joint invariant signature subsumes other signatures, but resides in a higher dimensional space and contains a lot of redundant information. Identification of landmarks can significantly reduce the redundancies (Boutin) It includes the differential invariant signature and semidifferential invariant signatures as its coalescent boundaries. Invariant numerical approximations to differential invariants and semidifferential invariants are constructed (using moving frames) near these coalescent boundaries.
56 Statistical Sampling Idea: Replace high dimensional joint invariant signatures by increasingly dense point clouds obtained by multiply sampling the original submanifold. The equivalence problem requires direct comparison of signature point clouds. Continuous symmetry detection relies on determining the underlying dimension of the signature point clouds. Discrete symmetry detection relies on determining densities of the signature point clouds.
Shape Matching: A Metric Geometry Approach. Facundo Mémoli. CS 468, Stanford University, Fall 2008.
Shape Matching: A Metric Geometry Approach Facundo Mémoli. CS 468, Stanford University, Fall 2008. 1 The Problem of Shape/Object Matching databases of objects objects can be many things: proteins molecules
More informationA new proof of Gromov s theorem on groups of polynomial growth
A new proof of Gromov s theorem on groups of polynomial growth Bruce Kleiner Courant Institute NYU Groups as geometric objects Let G a group with a finite generating set S G. Assume that S is symmetric:
More informationSome topics in subriemannian geometry
Some topics in subriemannian geometry Luca Rizzi CNRS, Institut Fourier Mathematical Colloquium Universität Bern  December 19 2016 SubRiemannian geometry Known under many names: CarnotCarathéodory
More informationClassical differential geometry of twodimensional surfaces
Classical differential geometry of twodimensional surfaces 1 Basic definitions This section gives an overview of the basic notions of differential geometry for twodimensional surfaces. It follows mainly
More informationGeometry of the CalabiYau Moduli
Geometry of the CalabiYau Moduli Zhiqin Lu 2012 AMS Hawaii Meeting Department of Mathematics, UC Irvine, Irvine CA 92697 March 4, 2012 Zhiqin Lu, Dept. Math, UCI Geometry of the CalabiYau Moduli 1/51
More informationOrigin, Development, and Dissemination of Differential Geometry in Mathema
Origin, Development, and Dissemination of Differential Geometry in Mathematical History The Borough of Manhattan Community College The City University of New York Fall 2016 Meeting of the Americas Section
More informationAlgebraic approximation of semianalytic sets
Algebraic approximation of semianalytic sets M. Ferrarotti, E. Fortuna and L. Wilson Politecnico di Torino Università di Pisa University of Hawai i at Mānoa Liverpool, June 2012 An algebraic set in R n
More informationarxiv: v2 [math.mg] 24 Oct 2017
Farthest points on most Alexandrov surfaces arxiv:1412.1465v2 [math.mg] 24 Oct 2017 Joël Rouyer October 25, 2017 Abstract Costin Vîlcu We study global maxima of distance functions on most Alexandrov surfaces
More informationHilbert s Metric and Gromov Hyperbolicity
Hilbert s Metric and Gromov Hyperbolicity Andrew Altman May 13, 2014 1 1 HILBERT METRIC 2 1 Hilbert Metric The Hilbert metric is a distance function defined on a convex bounded subset of the ndimensional
More informationStratification of 3 3 Matrices
Stratification of 3 3 Matrices Meesue Yoo & Clay Shonkwiler March 2, 2006 1 Warmup with 2 2 Matrices { Best matrices of rank 2} = O(2) S 3 ( 2) { Best matrices of rank 1} S 3 (1) 1.1 Viewing O(2) S 3 (
More informationQUASIMETRIC AND METRIC SPACES
CONFORMAL GEOMETRY AND DYNAMICS An Electronic Journal of the American Mathematical Society Volume 10, Pages 355 360 (December 26, 2006) S 10884173(06)055X QUASIMETRIC AND METRIC SPACES VIKTOR SCHROEDER
More informationGeometric Inference for Probability distributions
Geometric Inference for Probability distributions F. Chazal 1 D. CohenSteiner 2 Q. Mérigot 2 1 Geometrica, INRIA Saclay, 2 Geometrica, INRIA SophiaAntipolis 2009 June 1 Motivation What is the (relevant)
More informationDIFFERENTIAL GEOMETRY. LECTURE 1213,
DIFFERENTIAL GEOMETRY. LECTURE 1213, 3.07.08 5. Riemannian metrics. Examples. Connections 5.1. Length of a curve. Let γ : [a, b] R n be a parametried curve. Its length can be calculated as the limit of
More informationExercise 1 (Formula for connection 1forms) Using the first structure equation, show that
1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the lefthand side is the integral
More informationRICCI CURVATURE: SOME RECENT PROGRESS A PROGRESS AND OPEN QUESTIONS
RICCI CURVATURE: SOME RECENT PROGRESS AND OPEN QUESTIONS Courant Institute September 9, 2016 1 / 27 Introduction. We will survey some recent (and less recent) progress on Ricci curvature and mention some
More information(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.
1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of
More informationON CONVERGENCE RATES OF GIBBS SAMPLERS FOR UNIFORM DISTRIBUTIONS
The Annals of Applied Probability 1998, Vol. 8, No. 4, 1291 1302 ON CONVERGENCE RATES OF GIBBS SAMPLERS FOR UNIFORM DISTRIBUTIONS By Gareth O. Roberts 1 and Jeffrey S. Rosenthal 2 University of Cambridge
More informationSome Background Material
Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary  but important  material as a way of dipping our toes in the water. This chapter also introduces important
More informationTangent spaces, normals and extrema
Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3space, with a point a S where S looks smooth, i.e., without any fold or cusp or selfcrossing, we can intuitively define the tangent
More informationGeometric Modelling Summer 2016
Geometric Modelling Summer 2016 Exercises Benjamin Karer M.Sc. http://gfx.unikl.de/~gm Benjamin Karer M.Sc. Geometric Modelling Summer 2016 1 Dierential Geometry Benjamin Karer M.Sc. Geometric Modelling
More informationLecture Notes Introduction to Vector Analysis MATH 332
Lecture Notes Introduction to Vector Analysis MATH 332 Instructor: Ivan Avramidi Textbook: H. F. Davis and A. D. Snider, (WCB Publishers, 1995) New Mexico Institute of Mining and Technology Socorro, NM
More informationTwo simple ideas from calculus applied to Riemannian geometry
Calibrated Geometries and Special Holonomy p. 1/29 Two simple ideas from calculus applied to Riemannian geometry Spiro Karigiannis karigiannis@math.uwaterloo.ca Department of Pure Mathematics, University
More informationNATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30
NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 25, 2010 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS
More informationthe neumanncheeger constant of the jungle gym
the neumanncheeger constant of the jungle gym Itai Benjamini Isaac Chavel Edgar A. Feldman Our jungle gyms are dimensional differentiable manifolds M, with preferred Riemannian metrics, associated to
More informationFUNDAMENTAL GROUPS. Alex Suciu. Northeastern University. Joint work with Thomas Koberda (U. Virginia) arxiv:
RESIDUAL FINITENESS PROPERTIES OF FUNDAMENTAL GROUPS Alex Suciu Northeastern University Joint work with Thomas Koberda (U. Virginia) arxiv:1604.02010 Number Theory and Algebraic Geometry Seminar Katholieke
More informationTHE DIMENSION OF A CUT LOCUS ON A SMOOTH RIEMANNIAN MANIFOLD
Tόhoku Math. J. 50 (1998), 571575 THE DIMENSION OF A CUT LOCUS ON A SMOOTH RIEMANNIAN MANIFOLD JINICHI ITOH* AND MINORU TANAKA (Received April 9, 1997, revised September 12, 1997) Abstract. In this note
More informationarxiv: v1 [math.ap] 30 Jul 2015
Counterexamples in multimarginal optimal transport with Coulomb cost and spherically symmetric data Maria Colombo Federico Stra July, 05 arxiv:507.085v [math.ap] 0 Jul 05 Abstract We disprove a conjecture
More informationMIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP CALCULUS BC
Curricular Requirement 1: The course teaches all topics associated with Functions, Graphs, and Limits; Derivatives; Integrals; and Polynomial Approximations and Series as delineated in the Calculus BC
More informationChapter 4. The First Fundamental Form (Induced Metric)
Chapter 4. The First Fundamental Form (Induced Metric) We begin with some definitions from linear algebra. Def. Let V be a vector space (over IR). A bilinear form on V is a map of the form B : V V IR which
More informationII. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES
II. DIFFERENTIABLE MANIFOLDS Washington Mio Anuj Srivastava and Xiuwen Liu (Illustrations by D. Badlyans) CENTER FOR APPLIED VISION AND IMAGING SCIENCES Florida State University WHY MANIFOLDS? Nonlinearity
More informationMath 205C  Topology Midterm
Math 205C  Topology Midterm Erin Pearse 1. a) State the definition of an ndimensional topological (differentiable) manifold. An ndimensional topological manifold is a topological space that is Hausdorff,
More informationGeodesics. (Com S 477/577 Notes) YanBin Jia. Nov 2, 2017
Geodesics (om S 477/577 Notes YanBin Jia Nov 2, 2017 Geodesics are the curves in a surface that make turns just to stay on the surface and never move sideways. A bug living in the surface and following
More informationgoing vertically down, L 2 going horizontal. Observer O' outside the lift. Cut the lift wire lift accelerates wrt
PC4771 Gravitation Lectures 3&4 Einstein lift experiment Observer O in a lift, with light L 1 going vertically down, L 2 going horizontal Observer O outside the lift Cut the lift wire lift accelerates
More informationLecture 8: Interest Point Detection. Saad J Bedros
#1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:
More informationDIAMETER, VOLUME, AND TOPOLOGY FOR POSITIVE RICCI CURVATURE
J. DIFFERENTIAL GEOMETRY 33(1991) 743747 DIAMETER, VOLUME, AND TOPOLOGY FOR POSITIVE RICCI CURVATURE J.H. ESCHENBURG Dedicated to Wilhelm Klingenberg on the occasion of his 65th birthday 1. Introduction
More informationEfficient packing of unit squares in a square
Loughborough University Institutional Repository Efficient packing of unit squares in a square This item was submitted to Loughborough University's Institutional Repository by the/an author. Additional
More informationProblem Solving 1: Line Integrals and Surface Integrals
A. Line Integrals MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 1: Line Integrals and Surface Integrals The line integral of a scalar function f ( xyz),, along a path C is
More information+ 2gx + 2fy + c = 0 if S
CIRCLE DEFINITIONS A circle is the locus of a point which moves in such a way that its distance from a fixed point, called the centre, is always a constant. The distance r from the centre is called the
More informationResearch in Mathematical Analysis Some Concrete Directions
Research in Mathematical Analysis Some Concrete Directions Anthony Carbery School of Mathematics University of Edinburgh Prospects in Mathematics, Durham, 9th January 2009 Anthony Carbery (U. of Edinburgh)
More informationWhat is a Space Curve?
What is a Space Curve? A space curve is a smooth map γ : I R R 3. In our analysis of defining the curvature for space curves we will be able to take the inclusion (γ, 0) and have that the curvature of
More informationK12 MATH HIGH ACHIEVEMENT OUTCOMES
K12 MATH HIGH ACHIEVEMENT OUTCOMES Mission Statement: By working individually and cooperatively, students in math will apply mathematical concepts, demonstrate computational skills, and use technological
More information1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.
. If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r
More informationDIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZMINKOWSKI SPACE
International Electronic Journal of Geometry Volume 7 No. 1 pp. 44107 (014) c IEJG DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZMINKOWSKI SPACE RAFAEL LÓPEZ Dedicated to memory of Proffessor
More informationON THE BEHAVIOR OF A CAPILLARY SURFACE AT A REENTRANT CORNER
PACIFIC JOURNAL OF MATHEMATICS Vol 88, No 2, 1980 ON THE BEHAVIOR OF A CAPILLARY SURFACE AT A REENTRANT CORNER NICHOLAS J KOREVAAR Changes in a domain's geometry can force striking changes in the capillary
More informationPrentice Hall Algebra Correlated to: Hawaii Mathematics Content and Performances Standards (HCPS) II (Grades 912)
Prentice Hall Hawaii Mathematics Content and Performances Standards (HCPS) II (Grades 912) Hawaii Content and Performance Standards II* NUMBER AND OPERATIONS STANDARD 1: Students understand numbers, ways
More informationRemoving the Noise from Chaos Plus Noise
Removing the Noise from Chaos Plus Noise Steven P. Lalley Department of Statistics University of Chicago November 5, 2 Abstract The problem of extracting a signal x n generated by a dynamical system from
More informationHow big is the family of stationary null scrolls?
How big is the family of stationary null scrolls? Manuel Barros 1 and Angel Ferrández 2 1 Departamento de Geometría y Topología, Facultad de Ciencias Universidad de Granada, 1807 Granada, Spain. Email
More informationGromov hyperbolicity of Denjoy domains
Universidad Carlos III de Madrid Repositorio institucional earchivo Grupo de Análisis Matemático Aplicado (GAMA) http://earchivo.uc3m.es DM  GAMA  Artículos de Revistas 200608 Gromov hyperbolicity
More informationRelativistic Mechanics
Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion
More informationMATH H53 : MidTerm1
MATH H53 : MidTerm1 22nd September, 215 Name: You have 8 minutes to answer the questions. Use of calculators or study materials including textbooks, notes etc. is not permitted. Answer the questions
More informationAsk class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1)
1 Tensor manipulations One final thing to learn about tensor manipulation is that the metric tensor is what allows you to raise and lower indices. That is, for example, v α = g αβ v β, where again we use
More informationThe Theorem of GaußBonnet in Complex Analysis 1
The Theorem of GaußBonnet in Complex Analysis 1 Otto Forster Abstract. The theorem of GaußBonnet is interpreted within the framework of Complex Analysis of one and several variables. Geodesic triangles
More informationOptimal transport paths and their applications
Optimal transport paths and their applications Qinglan Xia University of California at Davis March 4, 2009 Outline MongeKantorovich optimal transportation (Classical) Ramified optimal transportation Motivation
More informationRigidity and Nonrigidity Results on the Sphere
Rigidity and Nonrigidity Results on the Sphere Fengbo Hang Xiaodong Wang Department of Mathematics Michigan State University Oct., 00 1 Introduction It is a simple consequence of the maximum principle
More informationNsphere chord length distribution
1 Nsphere chord length distribution Panagiotis Sidiropoulos Abstract This work studies the chord length distribution, in the case where both ends lie on a Ndimensional hypersphere (N ). Actually, after
More informationMinimal surfaces with the area growth of two planes; the case of infinite symmetry
arxiv:math/0501110v1 [math.dg] 8 Jan 005 Minimal surfaces with the area growth of two planes; the case of infinite symmetry William H. Meeks III Department of Mathematics University of Massachusetts Amherst,
More informationCENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC
CENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC Udo Simon November 2015, Granada We study centroaffine hyperovaloids with centroaffine Einstein metric. We prove: the hyperovaloid must be a hyperellipsoid..
More informationTANGENT BUNDLE EMBEDDINGS OF MANIFOLDS IN EUCLIDEAN SPACE
TANGENT BUNDLE EMBEDDINGS OF MANIFOLDS IN EUCLIDEAN SPACE MOHAMMAD GHOMI Abstract. For a given ndimensional manifold M n we study the problem of finding the smallest integer N(M n ) such that M n admits
More information39.1 Absolute maxima/minima
Module 13 : Maxima, Minima Saddle Points, Constrained maxima minima Lecture 39 : Absolute maxima / minima [Section 39.1] Objectives In this section you will learn the following : The notion of absolute
More informationCalculus  Chapter 2 Solutions
Calculus  Chapter Solutions. a. See graph at right. b. The velocity is decreasing over the entire interval. It is changing fastest at the beginning and slowest at the end. c. A = (95 + 85)(5) = 450 feet
More informationLozilike maps. M. Misiurewicz and S. Štimac. May 13, 2017
Lozilike maps M. Misiurewicz and S. Štimac May 13, 017 Abstract We define a broad class of piecewise smooth plane homeomorphisms which have properties similar to the properties of Lozi maps, including
More informationAlberta Mathematics Kindergarten to Grade 12 Scope and Sequence 2017
Alberta Mathematics Kindergarten to Grade 12 Scope and Sequence 2017 Alberta Mathematics Kindergarten to Grade 12 Scope and Sequence ISBN 9781460134849 Questions or concerns regarding this document
More informationLogarithmic Sobolev Inequalities
Logarithmic Sobolev Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France logarithmic Sobolev inequalities what they are, some history analytic, geometric, optimal transportation proofs
More informationGeneral Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang
General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special
More informationMath 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >
Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)
More informationMA 323 Geometric Modelling Course Notes: Day 11 Barycentric Coordinates and de Casteljau s algorithm
MA 323 Geometric Modelling Course Notes: Day 11 Barycentric Coordinates and de Casteljau s algorithm David L. Finn December 16th, 2004 Today, we introduce barycentric coordinates as an alternate to using
More informationFINITELY GENERATED SUBGROUPS OF LATTICES IN PSL 2 C
FINITELY GENERATED SUBGROUPS OF LATTICES IN PSL 2 C YAIR GLASNER, JUAN SOUTO, AND PETER STORM Abstract. Let Γ be a lattice in PSL 2 (C). The pronormal topology on Γ is defined by taking all cosets of
More informationIntensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis
Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 5 Topic Overview 1) Introduction/Unvariate Statistics 2) Bootstrapping/Monte Carlo Simulation/Kernel
More informationarxiv: v1 [math.sg] 6 Nov 2015
A CHIANGTYPE LAGRANGIAN IN CP ANA CANNAS DA SILVA Abstract. We analyse a simple Chiangtype lagrangian in CP which is topologically an RP but exhibits a distinguishing behaviour under reduction by one
More informationSect Formulas and Applications of Geometry:
72 Sect 2.6  Formulas and Applications of Geometry: Concept # Solving Literal Equations for a particular variable. Now, we will examine solving formulas for a particular variable. Sometimes it is useful
More informationPETER HÄSTÖ, RIKU KLÉN, SWADESH KUMAR SAHOO, AND MATTI VUORINEN
GEOMETRIC PROPERTIES OF ϕuniform DOMAINS PETER HÄSTÖ, RIKU KLÉN, SWADESH KUMAR SAHOO, AND MATTI VUORINEN Abstract. We consider proper subdomains G of R n and their images G = fg under quasiconformal mappings
More informationCommon Core State Standards for Mathematics  High School
to the Common Core State Standards for  High School I Table of Contents Number and Quantity... 1 Algebra... 1 Functions... 3 Geometry... 6 Statistics and Probability... 8 Copyright 2013 Pearson Education,
More informationHOMEWORK 2 SOLUTIONS
HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,
More informationA FourBody Convex Central Configuration with Perpendicular Diagonals Is Necessarily a Kite
A FourBody Convex Central Configuration with Perpendicular Diagonals Is Necessarily a Kite arxiv:1610.08654v1 [math.ca] 27 Oct 2016 Montserrat Corbera Josep M. Cors Gareth E. Roberts November 22, 2017
More informationIntroduction to Information Geometry
Introduction to Information Geometry based on the book Methods of Information Geometry written by ShunIchi Amari and Hiroshi Nagaoka Yunshu Liu 20120217 Outline 1 Introduction to differential geometry
More informationη = (e 1 (e 2 φ)) # = e 3
Research Statement My research interests lie in differential geometry and geometric analysis. My work has concentrated according to two themes. The first is the study of submanifolds of spaces with riemannian
More informationADAPTED COMPLEX STRUCTURES AND GEOMETRIC QUANTIZATION
R. Szőke Nagoya Math. J. Vol. 154 1999), 171 183 ADAPTED COMPLEX STRUCTURES AND GEOMETRIC QUANTIZATION RÓBERT SZŐKE Abstract. A compact Riemannian symmetric space admits a canonical complexification. This
More informationA Mathematical Trivium
A Mathematical Trivium V.I. Arnold 1991 1. Sketch the graph of the derivative and the graph of the integral of a function given by a freehand graph. 2. Find the limit lim x 0 sin tan x tan sin x arcsin
More informationGAUSSIAN MEASURE OF SECTIONS OF DILATES AND TRANSLATIONS OF CONVEX BODIES. 2π) n
GAUSSIAN MEASURE OF SECTIONS OF DILATES AND TRANSLATIONS OF CONVEX BODIES. A. ZVAVITCH Abstract. In this paper we give a solution for the Gaussian version of the BusemannPetty problem with additional
More informationCorners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros
Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?
More informationChapter 1. Smooth Manifolds
Chapter 1. Smooth Manifolds Theorem 1. [Exercise 1.18] Let M be a topological manifold. Then any two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.
More informationTHE GEOMETRY OF SPECIAL RELATIVITY. Tevian Dray Department of Mathematics, Oregon State University
THE GEOMETRY OF SPECIAL RELATIVITY Tevian Dray Department of Mathematics, Oregon State University tevian@math.orst.edu DRAFT, October 4, 2002 Lorentz transformations are just hyperbolic rotations. Copyright
More informationPREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO
PREPRINT 2010:25 Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS
More informationThe padic numbers. Given a prime p, we define a valuation on the rationals by
The padic numbers There are quite a few reasons to be interested in the padic numbers Q p. They are useful for solving diophantine equations, using tools like Hensel s lemma and the Hasse principle,
More informationIntroduction to ChernSimons forms in Physics  II
Introduction to ChernSimons forms in Physics  II 7th Aegean Summer School Paros September  2013 Jorge Zanelli Centro de Estudios Científicos CECs  Valdivia z@cecs.cl Lecture I: 1. Topological invariants
More informationSome topological properties of fuzzy cone metric spaces
Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 2016, 799 805 Research Article Some topological properties of fuzzy cone metric spaces Tarkan Öner Department of Mathematics, Faculty of Sciences,
More informationRigidity of Differentiable Structure for New Class of Line Arrangements 1
communications in analysis and geometry Volume 13, Number 5, 10571075, 2005 Rigidity of Differentiable Structure for New Class of Line Arrangements 1 Shaobo Wang, Stephen S.T. Yau 2 An arrangement of
More informationPACKINGDIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION
PACKINGDIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION DAVAR KHOSHNEVISAN AND YIMIN XIAO Abstract. In order to compute the packing dimension of orthogonal projections Falconer and Howroyd 997) introduced
More informationRefined ChernSimons Theory, Topological Strings and Knot Homology
Refined ChernSimons Theory, Topological Strings and Knot Homology Based on work with Shamil Shakirov, and followup work with Kevin Scheaffer arxiv: 1105.5117 arxiv: 1202.4456 ChernSimons theory played
More information1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3
Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,
More information1 Introduction: connections and fiber bundles
[under construction] 1 Introduction: connections and fiber bundles Two main concepts of differential geometry are those of a covariant derivative and of a fiber bundle (in particular, a vector bundle).
More informationOn some nonconformal fractals
On some nonconformal fractals arxiv:1004.3510v1 [math.ds] 20 Apr 2010 Micha l Rams Institute of Mathematics, Polish Academy of Sciences ul. Śniadeckich 8, 00950 Warszawa, Poland email: rams@impan.gov.pl
More informationFeature Vector Similarity Based on Local Structure
Feature Vector Similarity Based on Local Structure Evgeniya Balmachnova, Luc Florack, and Bart ter Haar Romeny Eindhoven University of Technology, P.O. Box 53, 5600 MB Eindhoven, The Netherlands {E.Balmachnova,L.M.J.Florack,B.M.terHaarRomeny}@tue.nl
More informationAn upper bound for curvature integral
An upper bound for curvature integral Anton Petrunin Abstract Here I show that the integral of scalar curvature of a closed Riemannian manifold can be bounded from above in terms of its dimension, diameter,
More informationINTRODUCTION TO THE HODGE CONJECTURE
INTRODUCTION TO THE HODGE CONJECTURE JIM BROWN Abstract. These are notes from a talk introducing the Hodge conjecture to undergraduates attending the 2009 Clemson REU. The description given here of the
More informationIntroduction Curves Surfaces Curves on surfaces. Curves and surfaces. Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway
Curves and surfaces Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway What is algebraic geometry? IMA, April 13, 2007 Outline Introduction Curves Surfaces Curves on surfaces
More informationRemarks on the GaussGreen Theorem. Michael Taylor
Remarks on the GaussGreen Theorem Michael Taylor Abstract. These notes cover material related to the GaussGreen theorem that was developed for work with S. Hofmann and M. Mitrea, which appeared in [HMT].
More informationCALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use.
CALCULUS: Math 2C, Fall 200 Final Exam: Solutions. [25 pts] Do the following series converge or diverge? State clearly which test you use. (a) (d) n(n + ) ( ) cos n n= n= (e) (b) n= n= [ cos ( ) n n (c)
More informationL6: Almost complex structures
L6: Almost complex structures To study general symplectic manifolds, rather than Kähler manifolds, it is helpful to extract the homotopytheoretic essence of having a complex structure. An almost complex
More informationGravitation: Tensor Calculus
An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013
More information