Waves on deep water, I Lecture 13

Size: px
Start display at page:

Download "Waves on deep water, I Lecture 13"

Transcription

1 Waves on deep water, I Lecture 13 Main question: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? Main approximate model: i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 Nonlinear Schrödinger equation (NLS)

2 Waves on deep water (I,II) This lecture (13): A. Sketch derivation of NLS for waves on deep water B. Earlier work: Waves with 1-D surface patterns on deep water - existence and stability Next lecture (14): C. More recent work: Stability of waves with 2-D surface patterns Effect of small damping

3 A. Sketch derivation of NLS NLS describes the slow evolution of a train (or packet) of dispersive waves: of small or moderate amplitude travelling in nearly the same direction with nearly the same frequency. shallow water Linearized dispersion curve c p dispersive waves kh

4 Sketch derivation of NLS 1. Simplest case: Gravity waves only (no surface tension) Deep water ( ) kh " #

5 Sketch derivation of NLS 1. Simplest case: Gravity waves only (no surface tension) Deep water ( kh " #) 2. Small parameters (ε) Nearly monochromatic: Small amplitude: k 0 " = O(#)! k = (k 0,0) + O("), # = gk 0 + O("),

6 Sketch derivation of NLS 1. Simplest case: Gravity waves only (no surface tension) Deep water ( kh " #) 2. Small parameters (ε) Nearly monochromatic: Small amplitude: k 0 " = O(#)! k = (k 0,0) + O("), # = gk 0 + O("), 3. Look for: " = k 0 x #$(k 0 )t, "(x, y,t;#) = #[A(#x,#y,#t,# 2 t)e i$ + A * e %i$ ] +# 2 [stuff 2 ] + # 3 [stuff 3 ] + O(# 4 )

7 Sketch derivation of NLS 4. Insert formal expansions for η(x,y,t;ε), φ(x,y,z,t;ε) into full equations. Solve, order by order. 5. Algebra is fearsome. (Use maple or )

8 Sketch derivation of NLS 4. Insert formal expansions for η(x,y,t;ε), φ(x,y,z,t;ε) into full equations. Solve, order by order. 5. Algebra is fearsome. (Use maple or ) 6. Find: At O(ε): ω 2 = gk (linearized dispersion relation) At O(ε 2 ): expansion becomes disordered unless "A "(#t) + c g "A "(#x) = 0, (c g = group velocity) (Wave envelope travels at group velocity)

9 Sketch derivation of NLS 7. Recall " = #[A(#x,#y,#t,# 2 t)e i$ + A * e %i$ ] + O(# 2 ) Define: " = (#x) $ c g (#t), % = #y, & = # 2 t. 8. At O(ε 3 ), expansion becomes disordered (again) unless A(ξ,ζ,τ) satisfies i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 Nonlinear Schrödinger equation in 2-D (α, β, γ) are real numbers, defined by problem

10 B. History of NLS i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 This equation (or something equivalent) was derived by: Zakharov, 1968 water waves Ostrovsky, 1967 optics (& generalizations) Benjamin & Feir, 1967 water waves (nearby) Benney & Newell, 1967 general Whitham, 1967 his formulation was used by: Lighthill, 1965 had the basic idea Stokes, 1847 water waves (no spatial dependence) Zakharov & Ostrovsky, 2008 historical review

11 Q: Waves of permanent form on deep water? 1. Stokes (1847): Consider a spatially uniform train of plane waves "(x,t;#) = #[A(# 2 t)e i$ + A * e %i$ ] + O(# 2 ) i" # A + $ A 2 A = 0, $ = %4k 0 2

12 Q: Waves of permanent form on deep water? 1. Stokes (1847): Consider a spatially uniform train of plane waves "(x,t;#) = #[A(# 2 t)e i$ + A * e %i$ ] + O(# 2 ) i" # A + $ A 2 A = 0, $ = %4k 0 2 A(") = (A 0 e i# )e i$ A 0 2 "

13 Q: Waves of permanent form on deep water? 1. Stokes (1847): Consider a spatially uniform train of plane waves "(x,t;#) = #[A(# 2 t)e i$ + A * e %i$ ] + O(# 2 ) i" # A + $ A 2 A = 0, $ = %4k 0 2 A(") = (A 0 e i# )e i$ A 0 2 " "(x,t;#) = 2# A 0 cos{k 0 x $%(k 0 )t $ (2#k 0 A 0 ) 2 t} + O(# 2 ) Stokes nonlinear correction to frequency

14 Q: Do waves of permanent form exist on deep water? * Stokes (1847) found a nonlinear correction for water waves of permanent form, with finite amplitude. He did not prove that waves of permanent form exist.

15 Q: Do waves of permanent form exist on deep water? * Stokes (1847) found a nonlinear correction for water waves of permanent form, with finite amplitude. He did not prove that waves of permanent form exist. Nekrassov (1921) and Levi-Civita (1925) proved that such waves exist on deep water. Struik (1926) extended their result to water of any (constant) depth. Amick & Toland (1981a,b) obtained optimal results about existence of waves of permanent form in 2-D.

16 Q: Why don t we see uniform wave trains on deep water? Loch Ness Lake Superior

17 Are plane waves stable on deep water? Photos from Benjamin, 1967 (L = 2.3 m, h = 7.6 m, 60 m between photos) Benjamin & Feir: On the disintegration of wavetrains in deep water, Part 1, 1967

18 Stability of plane waves on deep water Zakharov (1968): NLS i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 For gravity waves on deep water, α < 0, β > 0, γ < 0 A(",#,$) = A 0 e i% A 0 2 $ Stokes wave, represents a uniform train of plane waves with finite amplitude in deep water Linearize NLS about a Stokes wave, and determine its linear stability in NLS

19 Linear stability of a Stokes wave NLS: i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 Linearize about a Stokes wave: A(",#,$) = e i% A 0 2 $ [ A 0 +µ & u(",#,$) + iµ & v(",#,$)] + O(µ 2 )

20 Linear stability of a Stokes wave NLS: i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 Linearize about a Stokes wave: A(",#,$) = e i% A 0 2 $ [ A 0 +µ & u(",#,$) + iµ & v(",#,$)] + O(µ 2 ) " # v = $" % 2 u + &" ' 2 u + 2( A 0 2 u, )" # u = $" % 2 v + &" ' 2 v.

21 Linear stability of a Stokes wave NLS: i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 Linearize about a Stokes wave: A(",#,$) = e i% A 0 2 $ [ A 0 +µ & u(",#,$) + iµ & v(",#,$)] + O(µ 2 ) " # v = $" % 2 u + &" ' 2 u + 2( A 0 2 u, )" # u = $" % 2 v + &" ' 2 v. Linear PDEs, constant coefficients Seek u = U " e im# +il$ +%& + (c.c.), v = V " e im# +il$ +%& + (c.c.).

22 Linear stability of a Stokes wave Algebraic equation determines linear stability: " 2 + (#m 2 + $l 2 )(#m 2 + $l 2 % 2& A 0 2 ) = 0 Re(Ω) > 0 linear instability

23 Linear stability of a Stokes wave Algebraic equation determines linear stability: " 2 + (#m 2 + $l 2 )(#m 2 + $l 2 % 2& A 0 2 ) = 0 Re(Ω) > 0 linear instability Unstable regions

24 Linear stability of a Stokes wave Result: In deep water, a uniform train of plane waves of finite amplitude is unstable! The most unstable mode has a growth rate: Ω max = γ Α 0 2. (Nonlinear instability in the sense that the growth rate depends on A 0. As A 0 " 0, # max " 0. )

25 Stability of a uniform wave train, according to NLS i" # A + $" 2 % A + &" 2 ' A + ( A 2 A = 0 For other applications: αβ < 0, αγ > 0 unstable αβ < 0, αγ < 0 unstable αβ > 0, αγ > 0 unstable αβ > 0, αγ < 0 stable

26 Instability of a uniform train of water waves -Benjamin & Feir L = 2.3 m, T = 1.2 s

27 Instability of a uniform train of EM waves in optical fiber -Tai, Hasegawa & Tomita (1986) L = 1.3*10-6 m, T = 4*10-15 s

28 Q: Are there stable wave patterns of permanent form on deep water? A#1 (Zakharov & others, about 1967) A uniform wave train is not stable

29 Q: Are there stable wave patterns of permanent form on deep water? A#1 (Zakharov & others, about 1967) A uniform wave train is not stable A#2 (Zakharov & Shabat, 1972) Consider NLS in 1-D i" # A = " $ 2 A + 2% A 2 A σ = +1 focussing (gravity waves on deep water) σ = -1 defocussing

30 Focussing NLS, in 1-D i" # A = " $ 2 A + 2 A 2 A Look for travelling waves of permanent form. Special case: A(",#) = 2a $ e %i(2a )2# sec h{2a(" + " 0 )} How does the free surface look? "(x,t;#) = #[Ae i$ + A * e %i$ ] + O(# 2 ) " = (2#a)sec h{(2#a)(x % c g t)}cos{kx %[&(k) + (2#a) 2 ]t} wave packet with special shape

31 i" # A = " $ 2 A + 2 A 2 A "(x,t;#) = 2(2#a)sec h{(2#a)(x $ c g t)}cos{kx $[%(k) + (2#a) 2 ]t}

32 i" # A = " $ 2 A + 2 A 2 A "(x,t;#) = 2(2#a)sec h{(2#a)(x $ c g t)}cos{kx $[%(k) + (2#a) 2 ]t} Nice, but so what?

33 i" # A = " $ 2 A + 2% A 2 A Zakharov & Shabat (1972): NLS in 1-D is completely integrable, for either sign of σ! Just like KdV. Conservation laws i" # ( A 2 ) = " $ (A * " $ A % A" $ A * ), i" # (A * " $ A % A" $ A * ) = " $ (...), i" # ( " $ A 2 +& A 4 ) = " $ (...), :

34 i" # A = " $ 2 A + 2% A 2 A Zakharov & Shabat (1972): Scattering problem: Time-dependence: Compatibility: " # v 1 = $i%v 1 + Av 2, " # v 2 = $&A * v 1 + i%v 2, " # v 1 = [2i$ 2 + i% A 2 ]v 1 + [2A$ + i" & A]v 2, " # v 2 = ['2%A * $ + i%" & A * ]v 1 '[2i$ 2 + i% A 2 ]v 2, % v 1 ( % v 1 ( " # " $ ' * = " $ " # ' * " & ) & ) v 2 v 2 i" # A = " $ 2 A + 2% A 2 A

35 i" # A = " $ 2 A + 2% A 2 A Zakharov & Shabat (1972): For σ = +1 (focussing NLS): Any smooth initial data, A(ξ,0), with A d" < # evolves under focussing NLS into a N envelope solitons, which persist forever, plus an oscillatory wavetrain that decays in amplitude as " # $ Envelope solitons are stable, within NLS in 1-D. $

36 Stability of envelope solitons - experimental evidence a) 6 m from wavemaker b) 30 m from Wavemaker k = 4 m -1 - Hammack

37 Stability of envelope solitons - 3 experiments by Yuen & Lake (1975)

38 Tentative conclusions According to NLS in 1-D or 2-D, a uniform train of plane waves is unstable in deep water. According to focussing NLS in 1-D with initial data in L 1, envelope solitons are stable in deep water. Experimental evidence seems to support these conclusions

39 Tentative conclusions According to NLS in 1-D or 2-D, a uniform train of plane waves is unstable in deep water. According to focussing NLS in 1-D with initial data in L 1, envelope solitons are stable in deep water. Experimental evidence seems to support these conclusions But wait for Lecture 14

Waves on deep water, II Lecture 14

Waves on deep water, II Lecture 14 Waves on deep water, II Lecture 14 Main question: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? Main approximate model: i" # A + $" % 2 A + &" ' 2 A +

More information

Modulational instability in the presence of damping

Modulational instability in the presence of damping Perspectives on Soliton Physics February 17, 2007 Modulational instability in the presence of damping Harvey Segur University of Colorado Joint work with: J. Hammack, D. Henderson, J. Carter, W. Craig,

More information

Lecture 15: Waves on deep water, II

Lecture 15: Waves on deep water, II Lecture 15: Waves on deep water, II Lecturer: Harvey Segur. Write-up: Andong He June 23, 2009 1 Introduction. In the previous lecture (Lecture 14) we sketched the derivation of the nonlinear Schrödinger

More information

Stabilizing the Benjamin Feir instability

Stabilizing the Benjamin Feir instability J. Fluid Mech. (5), vol. 539, pp. 9 71. c 5 Cambridge University Press doi:1.117/s115563x Printed in the United Kingdom 9 Stabilizing the Benjamin Feir instability By HARVEY SEGUR 1, IANE HENERSON, JOHN

More information

Experiments on extreme wave generation using the Soliton on Finite Background

Experiments on extreme wave generation using the Soliton on Finite Background Experiments on extreme wave generation using the Soliton on Finite Background René H.M. Huijsmans 1, Gert Klopman 2,3, Natanael Karjanto 3, and Andonawati 4 1 Maritime Research Institute Netherlands, Wageningen,

More information

Long-time solutions of the Ostrovsky equation

Long-time solutions of the Ostrovsky equation Long-time solutions of the Ostrovsky equation Roger Grimshaw Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, U.K. Karl Helfrich Woods Hole

More information

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves p. 1/1 Model Equation, Stability and Dynamics for Wavepacket Solitary Waves Paul Milewski Mathematics, UW-Madison Collaborator: Ben Akers, PhD student p. 2/1 Summary Localized solitary waves exist in the

More information

Concepts from linear theory Extra Lecture

Concepts from linear theory Extra Lecture Concepts from linear theory Extra Lecture Ship waves from WW II battleships and a toy boat. Kelvin s (1887) method of stationary phase predicts both. Concepts from linear theory A. Linearize the nonlinear

More information

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the soliton p. 7 The soliton concept in physics p. 11 Linear

More information

Nonlinear Waves, Solitons and Chaos

Nonlinear Waves, Solitons and Chaos Nonlinear Waves, Solitons and Chaos Eryk Infeld Institute for Nuclear Studies, Warsaw George Rowlands Department of Physics, University of Warwick 2nd edition CAMBRIDGE UNIVERSITY PRESS Contents Foreword

More information

Experimental observation of dark solitons on water surface

Experimental observation of dark solitons on water surface Experimental observation of dark solitons on water surface A. Chabchoub 1,, O. Kimmoun, H. Branger 3, N. Hoffmann 1, D. Proment, M. Onorato,5, and N. Akhmediev 6 1 Mechanics and Ocean Engineering, Hamburg

More information

Plane-wave solutions of a dissipative generalization of the vector nonlinear Schrödinger equation

Plane-wave solutions of a dissipative generalization of the vector nonlinear Schrödinger equation Plane-wave solutions of a dissipative generalization of the vector nonlinear Schrödinger equation John D. Carter Mathematics Department, Seattle University, 91 12th Avenue, Seattle, WA 98122 Abstract The

More information

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology What Is a Soliton? by Peter S. Lomdahl A bout thirty years ago a remarkable discovery was made here in Los Alamos. Enrico Fermi, John Pasta, and Stan Ulam were calculating the flow of energy in a onedimensional

More information

arxiv: v1 [nlin.cd] 21 Mar 2012

arxiv: v1 [nlin.cd] 21 Mar 2012 Approximate rogue wave solutions of the forced and damped Nonlinear Schrödinger equation for water waves arxiv:1203.4735v1 [nlin.cd] 21 Mar 2012 Miguel Onorato and Davide Proment Dipartimento di Fisica,

More information

Lecture 13: Triad (or 3-wave) resonances.

Lecture 13: Triad (or 3-wave) resonances. Lecture 13: Triad (or 3-wave) resonances. Lecturer: Harvey Segur. Write-up: Nicolas Grisouard June 22, 2009 1 Introduction The previous lectures have been dedicated to the study of specific nonlinear problems,

More information

The 3-wave PDEs for resonantly interac7ng triads

The 3-wave PDEs for resonantly interac7ng triads The 3-wave PDEs for resonantly interac7ng triads Ruth Mar7n & Harvey Segur Waves and singulari7es in incompressible fluids ICERM, April 28, 2017 What are the 3-wave equa.ons? What is a resonant triad?

More information

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS April 2, 2015 Based upon work supported by the NSF under grant DMS-1107476. Collaborators Harvey Segur, University of Colorado at Boulder Diane Henderson, Penn State University David George, USGS Vancouver

More information

DYNAMICALLY ORTHOGONAL REDUCED-ORDER MODELING OF STOCHASTIC NONLINEAR WATER WAVES

DYNAMICALLY ORTHOGONAL REDUCED-ORDER MODELING OF STOCHASTIC NONLINEAR WATER WAVES DYNAMICALLY ORTHOGONAL REDUCED-ORDER MODELING OF STOCHASTIC NONLINEAR WATER WAVES Saviz Mowlavi Supervisors Prof. Themistoklis Sapsis (MIT) & Prof. François Gallaire (EPFL) Submitted in partial fulfillment

More information

Derivation and Justification of the Nonlinear Schrödinger Equation

Derivation and Justification of the Nonlinear Schrödinger Equation Derivation and Justification of the Nonlinear Schrödinger Equation September 21, 2016 1. Maxwell s Equations (a) Reduction to a scalar equation (b) Non-local (in time) due to delay in response of material

More information

Bifurcations of solitons and their stability

Bifurcations of solitons and their stability 1 Bifurcations of solitons and their stability E. A. Kuznetsov 1,2,3 & F. Dias 4,5 1 P.N. Lebedev Physical Institute, 119991 Moscow, Russia 2 L.D. Landau Institute for Theoretical Physics, 119334 Moscow,

More information

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014 Steady Water Waves Walter Strauss Laboratoire Jacques-Louis Lions 7 November 2014 Joint work with: Adrian Constantin Joy Ko Miles Wheeler Joint work with: Adrian Constantin Joy Ko Miles Wheeler We consider

More information

Breather propagation in shallow water. 1 Introduction. 2 Mathematical model

Breather propagation in shallow water. 1 Introduction. 2 Mathematical model Breather propagation in shallow water O. Kimmoun 1, H.C. Hsu 2, N. Homann 3,4, A. Chabchoub 5, M.S. Li 2 & Y.Y. Chen 2 1 Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France 2 Tainan

More information

Spatial evolution of an initially narrow-banded wave train

Spatial evolution of an initially narrow-banded wave train DOI 10.1007/s40722-017-0094-6 RESEARCH ARTICLE Spatial evolution of an initially narrow-banded wave train Lev Shemer 1 Anna Chernyshova 1 Received: 28 February 2017 / Accepted: 26 July 2017 Springer International

More information

The role of dissipation in the evolution of ocean swell

The role of dissipation in the evolution of ocean swell JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 5074 5091, doi:10.1002/jgrc.20324, 2013 The role of dissipation in the evolution of ocean swell Diane M. Henderson 1 and Harvey Segur 2 Received 22 March

More information

Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations

Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations Miguel Onorato, Alfred R. Osborne, Marina Serio, and Tomaso Damiani Universitá di Torino, Via P. Giuria, - 025, Torino,

More information

Transactions on Engineering Sciences vol 9, 1996 WIT Press, ISSN

Transactions on Engineering Sciences vol 9, 1996 WIT Press,   ISSN Fundamentals concerning Stokes waves M. Rahman Department of Applied Mathematics, Technical University of Nova Scotia, Halifax, Nova Scotia, Canada B3J 2X4 Abstract In the study of water waves, it is well

More information

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups PROC. ITB Eng. Science Vol. 35 B, No., 3, 39-53 39 A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups W. N. Tan,* & Andonowati Fakulti Sains, Universiti Teknologi Malaysia

More information

Experimental and numerical study of spatial and temporal evolution of nonlinear wave groups

Experimental and numerical study of spatial and temporal evolution of nonlinear wave groups Nonlin. Processes Geophys., 15, 91 942, 28 www.nonlin-processes-geophys.net/15/91/28/ Author(s) 28. This work is distributed under the Creative Commons Attribution. License. Nonlinear Processes in Geophysics

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

Pattern formation in Nikolaevskiy s equation

Pattern formation in Nikolaevskiy s equation Stephen Cox School of Mathematical Sciences, University of Nottingham Differential Equations and Applications Seminar 2007 with Paul Matthews, Nottingham Outline What is Nikolaevskiy s equation? Outline

More information

arxiv: v3 [physics.flu-dyn] 16 Nov 2018

arxiv: v3 [physics.flu-dyn] 16 Nov 2018 Maximum temporal amplitude and designs of experiments for generation of extreme waves Marwan 1,2, Andonowati 1, and N. Karjanto 3 1 Department of Mathematics and Center for Mathematical Modelling and Simulation

More information

Lecture 6: Derivation of the KdV equation for surface and internal waves

Lecture 6: Derivation of the KdV equation for surface and internal waves Lecture 6: Derivation of the KdV equation for surface and internal waves Lecturer: Roger Grimshaw. Write-up: Erinna Chen, Hélène Scolan, Adrienne Traxler June 17, 2009 1 Introduction We sketch here a different

More information

Lecture 7: Oceanographic Applications.

Lecture 7: Oceanographic Applications. Lecture 7: Oceanographic Applications. Lecturer: Harvey Segur. Write-up: Daisuke Takagi June 18, 2009 1 Introduction Nonlinear waves can be studied by a number of models, which include the Korteweg de

More information

Enhancement of the Benjamin-Feir instability with dissipation. Abstract

Enhancement of the Benjamin-Feir instability with dissipation. Abstract Enhancement of the Benjamin-Feir instability with dissipation T.J. Bridges 1 and F. Dias 2 1 Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, England 2 CMLA, ENS Cachan, CNRS,

More information

Experiments on nonlinear gravity capillary waves

Experiments on nonlinear gravity capillary waves J. Fluid Mech. (1999), vol. 38, pp. 25 232. Printed in the United Kingdom c 1999 Cambridge University Press 25 Experiments on nonlinear gravity capillary waves By LEV SHEMER AND MELAD CHAMESSE Department

More information

The Benjamin Feir instability and propagation of swell across the Pacific

The Benjamin Feir instability and propagation of swell across the Pacific Available online at www.sciencedirect.com Mathematics and Computers in Simulation 82 (2012) 1172 1184 The Benjamin Feir instability and propagation of swell across the Pacific Diane Henderson a,, Harvey

More information

Formation of Three-Dimensional Surface Waves on Deep-Water Using Elliptic Solutions of Nonlinear Schrödinger Equation

Formation of Three-Dimensional Surface Waves on Deep-Water Using Elliptic Solutions of Nonlinear Schrödinger Equation Publications 7-015 Formation of Three-Dimensional Surface Waves on Deep-Water Using Elliptic Solutions of Nonlinear Schrödinger Equation Shahrdad G. Sajjadi Embry-Riddle Aeronautical University Stefan

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 20: Nonlinear Optics in Glass-Fundamentals Denise Krol Department of Applied Science University of California,

More information

Modeling and predicting rogue waves in deep water

Modeling and predicting rogue waves in deep water Modeling and predicting rogue waves in deep water C M Schober University of Central Florida, Orlando, Florida - USA Abstract We investigate rogue waves in the framework of the nonlinear Schrödinger (NLS)

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Asymptotic stability for solitons of the Gross-Pitaevskii and Landau-Lifshitz equations

Asymptotic stability for solitons of the Gross-Pitaevskii and Landau-Lifshitz equations Asymptotic stability for solitons of the Gross-Pitaevskii and Landau-Lifshitz equations Philippe Gravejat Cergy-Pontoise University Joint work with F. Béthuel (Paris 6), A. de Laire (Lille) and D. Smets

More information

Simulations and experiments of short intense envelope

Simulations and experiments of short intense envelope Simulations and experiments of short intense envelope solitons of surface water waves A. Slunyaev 1,), G.F. Clauss 3), M. Klein 3), M. Onorato 4) 1) Institute of Applied Physics, Nizhny Novgorod, Russia,

More information

Justification of the NLS Approximation for a Quasi-linear water waves model

Justification of the NLS Approximation for a Quasi-linear water waves model Justification of the NLS Approximation for a Quasi-linear water waves model C. E. Wayne November 15, 2011 Abstract I will describe an approximation theorem of a model for water waves which proves that

More information

Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation

Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation John D. Carter Mathematics Department Seattle University 901 12th Avenue Seattle, WA 98122 Cynthia

More information

No-hair and uniqueness results for analogue black holes

No-hair and uniqueness results for analogue black holes No-hair and uniqueness results for analogue black holes LPT Orsay, France April 25, 2016 [FM, Renaud Parentani, and Robin Zegers, PRD93 065039] Outline Introduction 1 Introduction 2 3 Introduction Hawking

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

Lecture 12: Transcritical flow over an obstacle

Lecture 12: Transcritical flow over an obstacle Lecture 12: Transcritical flow over an obstacle Lecturer: Roger Grimshaw. Write-up: Erinna Chen June 22, 2009 1 Introduction The flow of a fluid over an obstacle is a classical and fundamental problem

More information

Experiments on capillary-gravity waves of solitary type on deep water

Experiments on capillary-gravity waves of solitary type on deep water Experiments on capillary-gravity waves of solitary type on deep water Michael Longuet-Higgins Institute for Nonlinear Science, University of California San Diego, La Jolla, California 92093-0402 Xin Zhang

More information

IN RECENT years, the observation and analysis of microwave

IN RECENT years, the observation and analysis of microwave 2334 IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 4, JULY 1998 Calculation of the Formation Time for Microwave Magnetic Envelope Solitons Reinhold A. Staudinger, Pavel Kabos, Senior Member, IEEE, Hua Xia,

More information

The Nonlinear Schrodinger Equation

The Nonlinear Schrodinger Equation Catherine Sulem Pierre-Louis Sulem The Nonlinear Schrodinger Equation Self-Focusing and Wave Collapse Springer Preface v I Basic Framework 1 1 The Physical Context 3 1.1 Weakly Nonlinear Dispersive Waves

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

arxiv: v1 [physics.flu-dyn] 14 Jun 2014

arxiv: v1 [physics.flu-dyn] 14 Jun 2014 Observation of the Inverse Energy Cascade in the modified Korteweg de Vries Equation D. Dutykh and E. Tobisch LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex,

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Long-time dynamics of the modulational instability of deep water waves

Long-time dynamics of the modulational instability of deep water waves Physica D 152 153 (2001) 416 433 Long-time dynamics of the modulational instability of deep water waves M.J. Ablowitz a, J. Hammack b, D. Henderson b, C.M. Schober c, a Department of Applied Mathematics,

More information

c Copyright 2014 Olga Trichtchenko

c Copyright 2014 Olga Trichtchenko c Copyright 2014 Olga Trichtchenko On the instability of water waves with surface tension. Olga Trichtchenko A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Dispersion in Shallow Water

Dispersion in Shallow Water Seattle University in collaboration with Harvey Segur University of Colorado at Boulder David George U.S. Geological Survey Diane Henderson Penn State University Outline I. Experiments II. St. Venant equations

More information

A Propagating Wave Packet The Group Velocity

A Propagating Wave Packet The Group Velocity Lecture 7 A Propagating Wave Packet The Group Velocity Phys 375 Overview and Motivation: Last time we looked at a solution to the Schrödinger equation (SE) with an initial condition (,) that corresponds

More information

Waves Called Solitons

Waves Called Solitons Waves Called Solitons Concepts and Experiments Bearbeitet von Michel Remoissenet überarbeitet 2003. Buch. XXIII, 328 S. Hardcover ISBN 978 3 540 65919 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 1510 g Weitere

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

More information

Evolution of solitary waves for a perturbed nonlinear Schrödinger equation

Evolution of solitary waves for a perturbed nonlinear Schrödinger equation University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2010 Evolution of solitary waves for a perturbed nonlinear Schrödinger

More information

November 9, :4 WSPC/S JNOPM APPROXIMATE TECHNIQUES FOR DISPERSIVE SHOCK WAVES IN NONLINEAR MEDIA

November 9, :4 WSPC/S JNOPM APPROXIMATE TECHNIQUES FOR DISPERSIVE SHOCK WAVES IN NONLINEAR MEDIA Journal of Nonlinear Optical Physics & Materials Vol. 21, No. 3 (2012) 1250035 (18 pages) c World Scientific Publishing Company DOI: 10.1142/S021886351250035X APPROXIMATE TECHNIQUES FOR DISPERSIVE SHOCK

More information

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water By Tae-Chang Jo and Wooyoung Choi We study the dynamics of large amplitude internal solitary waves in shallow water by using a strongly

More information

Energy mode distribution: an analysis of the ratio of anti-stokes to Stokes amplitudes generated by a pair of counterpropagating Langmuir waves.

Energy mode distribution: an analysis of the ratio of anti-stokes to Stokes amplitudes generated by a pair of counterpropagating Langmuir waves. Energy mode distribution: an analysis of the ratio of anti-stokes to Stokes amplitudes generated by a pair of counterpropagating Langmuir waves. Fernando J. R. Simões Júnior a, M. Virgínia Alves a, Felipe

More information

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS)

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS) The shallow water equations Lecture 8 (photo due to Clark Little /SWNS) The shallow water equations This lecture: 1) Derive the shallow water equations 2) Their mathematical structure 3) Some consequences

More information

Note on Breather Type Solutions of the NLS as Models for Freak-Waves

Note on Breather Type Solutions of the NLS as Models for Freak-Waves Physica Scripta. Vol. T8, 48^5, 1999 Note on Breather Type Solutions of the NLS as Models for Freak-Waves Kristian B. Dysthe 1 and Karsten Trulsen y 1 Department of Mathematics, University of Bergen, Johs.Brunsgt.1,

More information

Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015 Review Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015 Chapter 7: Third-order nonlinear effects (continued) 7.6 Raman and Brillouin scattering 7.6.1 Focusing 7.6.2 Strong conversion 7.6.3

More information

Nonlinear Fourier Analysis

Nonlinear Fourier Analysis Nonlinear Fourier Analysis The Direct & Inverse Scattering Transforms for the Korteweg de Vries Equation Ivan Christov Code 78, Naval Research Laboratory, Stennis Space Center, MS 99, USA Supported by

More information

Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation

Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation J. Fluid Mech. (), vol. 7, pp. 7 9. Printed in the United Kingdom c Cambridge University Press 7 Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial

More information

Notes on the Inverse Scattering Transform and Solitons. November 28, 2005 (check for updates/corrections!)

Notes on the Inverse Scattering Transform and Solitons. November 28, 2005 (check for updates/corrections!) Notes on the Inverse Scattering Transform and Solitons Math 418 November 28, 2005 (check for updates/corrections!) Among the nonlinear wave equations are very special ones called integrable equations.

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Numerical Simulation of Water Waves Modulational Instability under the Effects of Wind s Stress and Gravity Force Relaxation

Numerical Simulation of Water Waves Modulational Instability under the Effects of Wind s Stress and Gravity Force Relaxation Open Journal of Marine Science, 016, 6, 93-10 Published Online January 016 in SciRes. http://www.scirp.org/journal/ojms http://dx.doi.org/10.436/ojms.016.61009 Numerical Simulation of Water Waves Modulational

More information

MAT 22B - Lecture Notes

MAT 22B - Lecture Notes MAT 22B - Lecture Notes 4 September 205 Solving Systems of ODE Last time we talked a bit about how systems of ODE arise and why they are nice for visualization. Now we'll talk about the basics of how to

More information

Evolution of a narrow-band spectrum of random surface gravity waves

Evolution of a narrow-band spectrum of random surface gravity waves J. Fluid Mech. (3), vol. 478, pp.. c 3 Cambridge University Press DOI:.7/S66 Printed in the United Kingdom Evolution of a narrow-band spectrum of random surface gravity waves By KRISTIAN B. DYSTHE, KARSTEN

More information

On deviations from Gaussian statistics for surface gravity waves

On deviations from Gaussian statistics for surface gravity waves On deviations from Gaussian statistics for surface gravity waves M. Onorato, A. R. Osborne, and M. Serio Dip. Fisica Generale, Università di Torino, Torino - 10125 - Italy Abstract. Here we discuss some

More information

Optical Solitons. Lisa Larrimore Physics 116

Optical Solitons. Lisa Larrimore Physics 116 Lisa Larrimore Physics 116 Optical Solitons An optical soliton is a pulse that travels without distortion due to dispersion or other effects. They are a nonlinear phenomenon caused by self-phase modulation

More information

Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne

More information

Landau damping and coherent structures in narrow-banded 1 1 deep water gravity waves

Landau damping and coherent structures in narrow-banded 1 1 deep water gravity waves Landau damping and coherent structures in narrow-banded 1 1 deep water gravity waves Miguel Onorato, 1 Alfred Osborne, 1 Renato Fedele, 2 and Marina Serio 1 1 Dipartimento di Fisica Generale, Università

More information

Modulation Instability of Optical Waves in the Cubic-Quintic Complex Ginzburg-Landau Equation with Fourth-Order Dispersion and Gain Terms

Modulation Instability of Optical Waves in the Cubic-Quintic Complex Ginzburg-Landau Equation with Fourth-Order Dispersion and Gain Terms Modulation Instability of Optical Waves in the Cubic-Quintic Complex Ginzburg-Landau Equation with Fourth-Order Dispersion and Gain Terms Woo-Pyo Hong and Seoung-Hwan Park Department of Physics, Catholic

More information

Numerical simulations of modulated waves in a higher-order Dysthe equation

Numerical simulations of modulated waves in a higher-order Dysthe equation Numerical simulations of modulated waves in a higher-order equation Alexey Slunyaev,) and Efim Pelinovsky -5) ) Institute of Applied Physics, Nizhny Novgorod, Russia ) Institute of Applied Physics, Nizhny

More information

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018)

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018) AST 553. Plasma Waves and Instabilities Course Outline (Dated: December 4, 2018) I. INTRODUCTION Basic concepts Waves in plasmas as EM field oscillations Maxwell s equations, Gauss s laws as initial conditions

More information

1 Introduction. A. M. Abourabia 1, K. M. Hassan 2, E. S. Selima 3

1 Introduction. A. M. Abourabia 1, K. M. Hassan 2, E. S. Selima 3 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(2010) No.4,pp.430-443 The Derivation and Study of the Nonlinear Schrödinger Equation for Long Waves in Shallow

More information

Vector Solitons and Their Internal Oscillations in Birefringent Nonlinear Optical Fibers

Vector Solitons and Their Internal Oscillations in Birefringent Nonlinear Optical Fibers Vector Solitons and Their Internal Oscillations in Birefringent Nonlinear Optical Fibers By Jianke Yang In this article, the vector solitons in birefringent nonlinear optical fibers are studied first.

More information

Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation

Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation Alex Veksler 1 and Yair Zarmi 1, Ben-Gurion University of the Negev, Israel 1 Department

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense

What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense Introduction to Waves and Solitons What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense i) It is localized, which means it

More information

Solitons : An Introduction

Solitons : An Introduction Solitons : An Introduction p. 1/2 Solitons : An Introduction Amit Goyal Department of Physics Panjab University Chandigarh Solitons : An Introduction p. 2/2 Contents Introduction History Applications Solitons

More information

Lecture 11: Internal solitary waves in the ocean

Lecture 11: Internal solitary waves in the ocean Lecture 11: Internal solitary waves in the ocean Lecturer: Roger Grimshaw. Write-up: Yiping Ma. June 19, 2009 1 Introduction In Lecture 6, we sketched a derivation of the KdV equation applicable to internal

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Numerical Study of Oscillatory Regimes in the KP equation

Numerical Study of Oscillatory Regimes in the KP equation Numerical Study of Oscillatory Regimes in the KP equation C. Klein, MPI for Mathematics in the Sciences, Leipzig, with C. Sparber, P. Markowich, Vienna, math-ph/"#"$"%& C. Sparber (generalized KP), personal-homepages.mis.mpg.de/klein/

More information

Macroscopic limits of microscopic models

Macroscopic limits of microscopic models Macroscopic limits of microscopic models The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Abeyaratne,

More information

Physics 11b Lecture #24. Quantum Mechanics

Physics 11b Lecture #24. Quantum Mechanics Physics 11b Lecture #4 Quantum Mechanics What We Did Last Time Theory of special relativity is based on two postulates: Laws of physics is the same in all reference frames Speed of light is the same in

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR GRAVITY-CAPILLARY WAVES IN THE PRESENCE OF A THIN THERMOCLINE IN DEEP WATER

FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR GRAVITY-CAPILLARY WAVES IN THE PRESENCE OF A THIN THERMOCLINE IN DEEP WATER ANZIAM J. 43(2002), 513 524 FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR GRAVITY-CAPILLARY WAVES IN THE PRESENCE OF A THIN THERMOCLINE IN DEEP WATER SUMA DEBSARMA 1 andk.p.das 1 (Received 23 March 1999)

More information

On a fourth-order envelope equation for deep-water waves

On a fourth-order envelope equation for deep-water waves J. Fluid Mech. (1983), val. 126, pp. 1-11 Printed in Great Britain 1 On a fourth-order envelope equation for deep-water waves By PETER A. E. M. JANSSENt Applied Mathematics, California nstitute of Technology,

More information

Korteweg-de Vries flow equations from Manakov equation by multiple scale method

Korteweg-de Vries flow equations from Manakov equation by multiple scale method NTMSCI 3, No. 2, 126-132 2015) 126 New Trends in Mathematical Sciences http://www.ntmsci.com Korteweg-de Vries flow equations from Manakov equation by multiple scale method Mehmet Naci Ozer 1 and Murat

More information

Oscillatory spatially periodic weakly nonlinear gravity waves on deep water

Oscillatory spatially periodic weakly nonlinear gravity waves on deep water J. Fluid Mech. (1988), vol. 191, pp. 341-372 Printed in Great Britain 34 1 Oscillatory spatially periodic weakly nonlinear gravity waves on deep water By JUAN A. ZUFIRIA Applied Mathematics, California

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Perturbation theory for the defocusing nonlinear Schrödinger equation

Perturbation theory for the defocusing nonlinear Schrödinger equation Perturbation theory for the defocusing nonlinear Schrödinger equation Theodoros P. Horikis University of Ioannina In collaboration with: M. J. Ablowitz, S. D. Nixon and D. J. Frantzeskakis Outline What

More information

On rotational effects in the modulations of weakly nonlinear water waves over finite depth

On rotational effects in the modulations of weakly nonlinear water waves over finite depth On rotational effects in the modulations of weakly nonlinear water waves over finite depth T. Colin 1 Centre de Mathématiques et de Leurs Applications CNRS URA 1611 et Ecole Normale Supérieure de Cachan

More information