Date: Tuesday, 8 October :00AM

Size: px
Start display at page:

Download "Date: Tuesday, 8 October :00AM"

Transcription

1 The Particle Odyssey: Visions of the subatomic world Transcript Date: Tuesday, 8 October :00AM

2 The Particle Odyssey: Visions of the subatomic world Professor Frank Close OBE (The numbers refer to figures in The Particle Odyssey, available from booksellers or via Gresham College at a discount price of I hope this talk and set of images whet your appetite; the thousand questions that they raise will, I hope, be answered in the book; in this brief survey I can only give a first glimpse) 0. BOOK COVER 1.21 Why does the devil have all the best tunes? Why does NASA have all the best pictures? Somewhere in the 1980s I began to get increasingly annoyed at the perception that, in the words of a BBC producer: "you cannot interest people in particles; they're too small to see". A long fight ensued, culminating in my BBC2 Royal Institution Christmas Lectures in 1993, which proved that particles can be made visible and the results are interesting too: there is a strange beauty in the world "beyond (normal) vision". By extending our senses we can reveal it and produce art. And only last month, images of data from the subatomic world won awards at the Daily Telegraph/Novartis competition. The images of the microworld are so extraordinary, and can bring its characters to life, that in 1988 we produced The Particle Explosion, a collection of classic images from the 20th century. It won awards and a couple of years ago we were asked to produce a follow-up. It was a shock to realize that LEP had not begun when we produced "Explosion"; in "Odyssey", LEP plays a major role. But this is also a storybook, so let's start at the beginning. 1. THEN AND NOW How things have changed in a hundred years. In 1897 Thomson discovered the electron with a simple piece of apparatus, in his laboratory in Cambridge. Today we recreate the conditions of the Big Bang; you don't buy a piece of suitable apparatus from the science catalogues, you must make them from scratch. It takes teams of hundreds in accelerators that are miles in size. Compare this in the following images (numbers refer to the figures in the book). cambridge 1.2 (low) thomson apparatus 1.3 (low) fermilab 6.1 p.80 (low res) apparatus evolve p.1 and 1.17 (low res) or 8.1 Thomson discovered the electron, the constituent of all atoms and driver of chemistry biology and life. In a magnetic field an electron will spiral and leave a characteristic trace. We can see this in images taken some ninety years ago in a cloud chamber, fifty years ago in a bubble chamber and a recent image in a modern electronic detector. The autograph is common; the means of producing it has evolved. electrons: cld chamber 3.5 bub ch spiral 5.1 modern 9.6 The quantum theory tells us that electrons, like all particles, have an enigmatic duality, sometimes acting as particles, other times as waves. We can even see this with modern microscopes. A ring of individual atoms are collected and placed on the surface of a piece of copper. Copper is a conductor and electrons flow freely at its surface. But those trapped inside the atomic ring form standing waves, seen as the set of concentric circles in the image. So here we are seeing atoms and even the quantum wave nature of electrons.

3 electron waves in copper 2.1 (low res) The antiworld can be seen in this simple image. The positron is the antiparticle of the electron. Same mass and size, but opposite sign of electric charge cause the positron to spiral in the opposite direction to that of the electron. This image shows this subtle symmetry. It has a raw beauty akin to a primitive cave drawing whereas in fact it is an image from the frontiers of science. Electron positron "primitive" 5.2 You can almost see the effect of electrons in a plasma ball. As electrons swarm through the gas, they shake light out along their path. It was the discovery of such eerie glows in the 19th century that led to the discovery of X rays, radioactivity, the electron and modern science. plasma 3.6 gives cue to how it all began: 2. OLD DAYS Rontgen discovered X-rays and produced one of the most famous images in history. In turn this led to the discovery of radioactivity. Alpha particles are pieces of atomic nuclei (actually the nuclei of helium) that can be ejected spontaneously by some elements. They are emitted with a characteristic specific energy and will travel a finite distance before they are slowed to a halt by collisions with atoms in the material. They will leave trails in photographic emulsion: this shows the powerful radioactivity of a speck of radium. The first images of alpha trails in a cloud chamber 90 years ago are tenuous; once you know what to look for the ability to reveal things rapidly improves. This is seen in the very clear image of alphas that have shot out in random directions, but always reaching the same distance. roentgen visible radioactivity alphas in emulsion 2.9; first alphas 2.26; gets nicer = bullets 2.20 It was the fact that alphas travel a common distance that showed that they have a fixed energy. This was a key that Rutherford used in his discovery of the atomic nucleus. He used alphas as bullets; knowing their energies, and measuring their deflection, enabled him to calculate the electrical forces acting on them. This in turn proved that these forces were located in a compact nucleus at the heart of the atom (this was described in my talk last year). They are scattered by small or large angles when they hit heavy or light nuclei. As a football will knock a ping pong ball sharply forward, so an alpha knocks a proton at a shallow angle. And as a ping pong ball will bounce back sharply from a football, so do alphas recoil at large angles from heavy nuclei of iron. Balls of the same mass will bounce apart at right angles; the same is true for protons. So from these images of different atomic nuclei bouncing off one another, one begins to measure the relative masses of the nuclei of different elements. rutherford notes 2.19 application to scattering protons at 90degrees SCATTERING electrons knocked out of atoms 3.3, 3.4 e beams slac 6.37;6.41 HERA 8.39; 8.40; 7.22 (e scatter version of 7.23?) q jets at HERA 9.19; at LEP 9.27; "see them" 7.23 [also see q in UA ISR, 8.26 UA1, 8.27] Electrons occur in all atoms and are easily ejected. A passing alpha particle knocks out electrons from the atoms of the

4 emulsion (cloud chamber?) - they are the little nodules along the trail of the alpha. A high energy cosmic ray imparts huge momentum to the atomic electrons and knocks one far out, where its path is curved by a magnetic field. Electrons being electrically charged can be accelerated by electric fields. In the 3 km long linear accelerator at the Stanford Linear Accelerator Center (SLAC), the electrons start off from an electron 'gun' where they are released from a heated filament, at the end of the machine near the bottom of the picture. The electrons in effect surf ride along radio waves set up in a chain of cylindrical copper 'cavities', about 12 cm in diameter. The machine is aligned to 0.5 mm along its complete length. By the time they reach the far end of the accelerator, beyond the freeway, the electrons have an energy of 30 GeV, and are ready to be delivered to experiments. The beam enters through the pipe coming in from the left and collides with the 'target' (surrounded by concrete blocks). The electrons scatter from particles in the target's nuclei through a variety of angles, as if in a game of subatomic billiards; or they may produce other new particles from their high-energy collisions. Three 'spectrometers' record the results. One is the tall grey cylinder behind the target area; the second is the structure incorporating the large yellow 'container', with the third partially hidden behind it. The spectrometers contain banks of different detectors to track the scattered particles, and magnets to measure their momentum. They can be rotated to different positions around the target along the rails that are visible. The scale of these instruments, which provided the first direct evidence for quarks, is given by the man standing at the foot of the yellow 'container'. (The electrons occasionally bounced violently from the protons in the target, showing that the electric charge of the proton is concentrated on tiny constituents, the quarks; this was analogous to the way that Rutherford had earlier revealed the presence of the atomic nucleus by the violent scattering of alpha particles). 4. COSMICS AND PARTICLES diagram 4.1 collision 3.7 strange particle vees 5.10; modern 5.11, 10.7 other strange particles 5.13,5.14 use strange beams even more strange 5.16 accels and bub ch scanning 6.26 elegant b c pic 5.3 sparks = electronic b.c. 5.8 really nice modern 10.10? 9.20 found the W Thousands of metres above the Earth's surface, the outer atmosphere experiences a continuous bombardment. The 'artillery' comes in two forms: photons and subatomic particles. The high-energy rain of particles has become known as cosmic radiation, but in many respects it is quite different from the alpha and beta radiation emitted by radioactive nuclei. Cosmic ray particles have much higher energies than alpha and beta rays, and are thinly spread. At sea level this has been reduced to about one particle per square centimetre per minute. By comparison, a gram of a radioactive substance such as radium emits thousands of millions of particles every second. Cosmic rays have very high energies, rising to 10 million million times the maximum energy of the radiation from radioactive sources. With these, Nature provided us with the first glimpse of a world beyond our previous experience. When a cosmic ray particle hits an atom, it produces a shower of particles. These included trails that were gradually decoded, like the Rosetta stone, and revealed strange particles that were unknown on Earth. (It was the desire to replicate the effects of cosmic rays under controlled conditions that led to the era of particle accelerators and the birth of high energy physics). Fig 5.10 shows the discovery of the first strange particle, recorded in 1946 by Rochester and Butler at Manchester. It was originally known as a V particle, due to the characteristic vee. This image shows a pair of tracks forming a pronounced fork (A) just below the lead plate across the centre of the chamber. This was probably due to a neutral kaon, produced in an interaction in the lead, which decayed into a negative and a positive pion. (What these are and why it's a vee: I'm afraid that I have to refer you to the book).

5 The "vee", originally seen in 1946 in a cloud chamber, is also common in modern experiments using sophisticated electronic detectors. It's the fingerprint that's important, not how its made. Once we knew that strange particles exist, the challenge was to make intense beams of them to see what happened when they hit atomic particles. This revealed particles that were even more stranger than those that had shown up in the cosmic rays. It was their discovery that eventually led to the realization that protons, neutrons, the strange particles and other relations are all made of more fundamental particles, the quarks. Making these particles visible became dramatically possible with the invention of the bubble chamber. When electrically charged particles pass through a liquid under certain critical conditions of temperature and pressure, bubbles develop where the particle passes. The resulting trails show where particles have passed, however transiently. The images have an enigmatic beauty of their own. Thousands of photos were taken and only a handful would have anything "interesting". Finding them was the task of specially trained "scanners". Fig shows a scanner at work inspecting film from bubble chambers at Brookhaven in Film was projected onto a table to give a life-size image, which could then be measured. 5. TOO SHORT TO SEE? electronics can see the gaps idea of dalitz plot explain 9.18 or easier 7.11 and 7.10 shows resonant "spectral lines" spectrum of light 3.18 this gives idea of substructure and hence quarks. show slide of standard model top to bottom 9.34 and 9.35 Extremely short-lived particles are generally known as 'resonances'. Their lifetimes are of the order of s. A span of s fits into a millionth of a second, as does a millionth of a second into three thousand years! It is no wonder the resonances leave no visible tracks: even at the speed of light they travel barely further than their own diameter. One way of revealing resonances such as the omega meson is the diagram invented in the early 1950s by Richard Dalitz. The basic idea is this. When a resonance decays its decay products can move off in any direction and with any speed provided the total energy and momentum add up to that of the original resonance. In Dalitz's technique, events are plotted as points on a diagram where the position of each event is determined by the speed of the particles and the directions in which they emerge. Then you look at the resulting 'Dalitz plot' to see if there is a concentration in some region, which is what would happen if a resonance, with some specific mass, had briefly given rise to the particles. The Dalitz plot in Fig is from the Crystal Barrel detector at CERN's LEAR (Low Energy Antiproton Ring), in which slow antiprotons annihilated with a target of protons and neutrons. The annihilations produced new particles, such as pions and their heavier relatives known as 'etas' (h). As in the previous example, these particles were often not the direct products of the annihilations but were instead the decay debris from short-lived resonances as Fig shows. The plot is coloured to show the number of events at each point. Red represents the most, yellow fewer, and the blue end of the rainbow represents the least. The result is like a contour map where red is the high ground and blue represents the lowlands. The broad ridge in red reveals the 'rho' resonance, which decays to two pions. If you drew a cross-section through the ridge you would obtain a bump similar in shape to Fig Running parallel to the red ridge, and slightly below, is a broader ridge that shows up in green. This is due to a resonance known as the 'a2', which decays to a pion and an eta. Careful analysis of the shape of the hills often shows that there are several individual resonances that have combined and overlapped to give the total bump. The cataloguing of these ephemeral resonances has revealed that they are all due to a common deeper structure: resonances exist because the proton, the pion and so on, are built from smaller particles called 'quarks'. In much the same way that the constituent electrons rearrange themselves to form excited (resonating) states of atoms, so do the constituent quarks give rise to resonating states of the particles that are built from them.

6 6. STANDARD MODEL (and recap of the particles) electron; quarks; neutrino muon;tau top;bottom charm; strange first glimpse of higgs? symmetry and asymmetry and photon; W and Z (which images?) gluon = UNITY 9.30 sequence In the standard model, the basic particles of matter are quarks and leptons. The leptons consist of the electron, muon and tau, each with electrical charge, and their electrical neutral counterparts, the neutrinos. This sequence of images shows each of these. The quarks, from the heaviest top downwards: top bottom, charm, strange leave traces shown in this sequence. The up and down quarks make nuclear matter such as found in atomic nuclei and were revealed by the violent scattering events in sequence section 3 of this talk. The source of their masses is believed to be the Higgs boson, a particle that remains to be definitively seen. The first possible sight of it is shown but further examples will be needed in order to tell whether this is a real Higgs or a coincidence of trails that happen to mimic what a real Higgs would look like. 7. ENDPIECE Some nice assorted images from the book Frank Close, 8 October 2002

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Particle accelerators

Particle accelerators Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

GRES. I Reproduction of this tefi, or any efiract from it, must credit Gresham College I COLLE LUCIFER S LEGACY THE MEANING OF ASYMMETRY

GRES. I Reproduction of this tefi, or any efiract from it, must credit Gresham College I COLLE LUCIFER S LEGACY THE MEANING OF ASYMMETRY GRES HA M COLLE GE 1 I Reproduction of this tefi, or any efiract from it, must credit Gresham College I LUCIFER S LEGACY THE MEANING OF ASYMMETRY Lecture 6 THE HEART OF THE ~y PROFESSOR FRANK CLOSE OBE

More information

Lecture 6-4 momentum transfer and the kinematics of two body scattering

Lecture 6-4 momentum transfer and the kinematics of two body scattering Lecture 6-4 momentum transfer and the kinematics of two body scattering E. Daw March 26, 2012 1 Review of Lecture 5 Last time we figured out the physical meaning of the square of the total 4 momentum in

More information

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does?

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does? The Particle World What is our Universe made of? Where does it come from? Why does it behave the way it does? Particle physics tries to answer these questions. This talk: particles as we understand them

More information

Introduction to CERN and CMS

Introduction to CERN and CMS Introduction to CERN and CMS and background for the CMS analysis Jamie Gainer University of Hawaii at Manoa April 1, 2017 What do I do? I am a postdoc at UH Manoa I am a theorist In physics there are theorists:

More information

Frontier Science: The mystery of Antimatter

Frontier Science: The mystery of Antimatter Frontier Science: The mystery of Antimatter Cristina Lazzeroni Professor in Particle Physics STFC Public Engagement Fellow ASE Frontier Science Lecture University of Birmingham Poynting Physics S02 7th

More information

Particles and Waves Final Revision Exam Questions Part 1

Particles and Waves Final Revision Exam Questions Part 1 Particles and Waves Final Revision Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN Version 2013 P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model 1 Section

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

CfE Higher Physics. Particles and Waves

CfE Higher Physics. Particles and Waves Wallace Hall Academy CfE Higher Physics Particles and Waves Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model

More information

The Goals of Particle Physics

The Goals of Particle Physics The Goals of Particle Physics Richard (Ryszard) Stroynowski Department of Physics Southern Methodist University History of Elementary Particles Science as a field of study derives from the Western Civilization

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Bill Murray, RAL, Quarks and leptons Bosons and forces The Higgs March 2002 1 Outline: An introduction to particle physics What is the Higgs Boson? Some unanswered questions

More information

Study Sheet for Modern Physics

Study Sheet for Modern Physics Study Sheet for Modern Physics Classical mechanics was meant to provide the general rules that govern the dynamics of all material bodies, such as cannon balls, planets, and pendulums, and is defined as

More information

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Introductory Lecture August 3rd 2014 International Centre for Theoretical Physics and

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

Last Friday: pp(bar) Physics Intro, the TeVatron

Last Friday: pp(bar) Physics Intro, the TeVatron Last Friday: pp(bar) Physics Intro, the TeVatron Today: The Large Hadron Collider (LHC) The Large Hadron Collider (LHC) 7 TeV + 7 TeV Protons Protons 10 11 Protons per bunch Bunch Crossings 4x10 7 Hz Proton

More information

The Physics of Cosmic Rays

The Physics of Cosmic Rays The Physics of Cosmic Rays QuarkNet summer workshop July 23-27, 2012 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules are by

More information

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons.

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Atomic Structure Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Proton Number (Atomic Number): Amount of protons

More information

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS History of Elementary Particles THE CLASSICAL ERA (1897-1932) Elementary particle physics was born in 1897 with J.J. Thomson s discovery of the ELECTRONS

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

A brief history of neutrino. From neutrinos to cosmic sources, DK&ER

A brief history of neutrino. From neutrinos to cosmic sources, DK&ER A brief history of neutrino Two body decay m 1 M m 2 Energy-momentum conservation => Energy of the decay products always the same 1913-1930: Puzzle of decay Continuous spectrum of particles Energy is not

More information

Modern physics 1 Chapter 13

Modern physics 1 Chapter 13 Modern physics 1 Chapter 13 13. Particle physics Particle studied within the ATLAS-project CERN In the beginning of 1930, it seemed that all the physics fundaments was placed within the new areas of elementary

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

Episode 519: Particle detectors

Episode 519: Particle detectors Episode 519: Particle detectors Summary Discussion: The idea of particle detectors. (10 minutes) Demonstration: Cloud chamber (and spark detector). (15 minutes) Discussion: Explaining tracks. (10 minutes)

More information

Chapter 16: Ionizing Radiation

Chapter 16: Ionizing Radiation Chapter 6: Ionizing Radiation Goals of Period 6 Section 6.: To discuss unstable nuclei and their detection Section 6.2: To describe the sources of ionizing radiation Section 6.3: To introduce three types

More information

Physics 424: Dr. Justin Albert (call me Justin!)

Physics 424: Dr. Justin Albert (call me Justin!) Physics 424: Dr. Justin Albert (call me Justin!) A Brief History of Particle Physics Discoveries (Or: Figuring out What the Universe is Made Of ) Looking Inside the Atom: e -, p, and n! 1897: J.J. Thomson

More information

PARTICLE PHYSICS :Higher Level Long Questions

PARTICLE PHYSICS :Higher Level Long Questions PARTICLE PHYSICS :Higher Level Long Questions Particle Accelerators (including Cockcroft and Walton experiment) 2013 Question 10 (a) In 1932 J.D. Cockroft and E.T.S. Walton accelerated protons to energies

More information

The Start of the LHC Era. Peter Wittich Laboratory of Elementary Particle Physics Cornell University

The Start of the LHC Era. Peter Wittich Laboratory of Elementary Particle Physics Cornell University The Start of the LHC Era Peter Wittich Laboratory of Elementary Particle Physics Cornell University Big Bang - where it all began 3 4 13 billion years ago 4 13 billion years ago hot, highly energetic

More information

What does rate of reaction mean?

What does rate of reaction mean? 1 of 39 What does rate of reaction mean? 2 of 39 The speed of different chemical reactions varies hugely. Some reactions are very fast and others are very slow. The speed of a reaction is called the rate

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

Journey to the world of elementary particles

Journey to the world of elementary particles Created with pptalk Slide 1/29 Journey to the world of elementary particles Palash B. Pal Saha Institute of Nuclear Physics Calcutta Created with pptalk Slide 2/29 The concept of elementary constituents

More information

What is matter and how is it formed?

What is matter and how is it formed? What is matter and how is it formed? Lesson 6: Subatomic Particles Subatomic particles refers to particles that are more "fundamental" than... Are these fundamental particles or are they made up of smaller,

More information

Cosmic Rays. This showed that the energy of cosmic rays was many times that of any other natural or artificial radiation known at that time.

Cosmic Rays. This showed that the energy of cosmic rays was many times that of any other natural or artificial radiation known at that time. Cosmic Rays 1. Discovery As long ago as 1900, C. T. R. Wilson and others found that the charge on an electroscope always 'leaked' away in time, and this could never be prevented, no matter how good the

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Case Study: Analyzing Elementary Particle Trajectories

Case Study: Analyzing Elementary Particle Trajectories Case Study: Analyzing Elementary Particle Trajectories 13.6 The Bubble Chamber The bubble chamber was developed in 1952 by Donald Glaser (Figure 1), who won the Nobel Prize in physics in 1960 for his invention.

More information

Selected Topics from Modern Physics

Selected Topics from Modern Physics Selected Topics from Modern Physics 1. According to the special theory of relativity, if a 30-year old astronaut sent on a space mission is accelerated to speeds close to that of light, and then returns

More information

Democritus, a fifth century B.C. philosopher, is credited with being the first

Democritus, a fifth century B.C. philosopher, is credited with being the first This paper will give a general overview of the current thoughts on the building blocks of atoms through the scope of the Standard Model. There will be an abridged explanation of the interactions that these

More information

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University Results from the Tevatron: Standard Model Measurements and Searches for the Higgs Ashutosh Kotwal Duke University SLAC Summer Institute 31 July 2007 Why Build Accelerators? From Atoms to Quarks Scattering

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 15.1 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

At this time the quark model consisted of three particles, the properties of which are given in the table.

At this time the quark model consisted of three particles, the properties of which are given in the table. *1 In 1961 Murray Gell-Mann predicted the existence of a new particle called an omega (Ω) minus. It was subsequently discovered in 1964. At this time the quark model consisted of three particles, the properties

More information

FXA Candidates should be able to :

FXA Candidates should be able to : 1 Candidates should be able to : MATTER AND ANTIMATTER Explain that since protons and neutrons contain charged constituents called quarks, they are therefore, not fundamental particles. Every particle

More information

Particle physics: what is the world made of?

Particle physics: what is the world made of? Particle physics: what is the world made of? From our experience from chemistry has told us about: Name Mass (kg) Mass (atomic mass units) Decreasing mass Neutron Proton Electron Previous lecture on stellar

More information

BOHR CHADWICK S ATOMIC NUMBER

BOHR CHADWICK S ATOMIC NUMBER CH 11 T3 ATOMIC THEORY PART 2 1 You have mastered this topic when you can: 1) name and describe the atomic models developed by RUTHERFORD and BOHR. 2) describe CHADWICK S contribution to the structure

More information

Lecture 32 April

Lecture 32 April Lecture 32 April 08. 2016. Hydrogen Discharge Tube and Emission of Discrete Wavelengths Description of the discrete Hydrogen Emission Spectrum by the Balmer (1884) Rydberg Ritz formula (1908) Cathode Ray

More information

A fantastic experiment

A fantastic experiment The Large Hadron Collider A fantastic experiment Duncan Carlsmith, Professor of Physics, University of Wisconsin-Madison What is the LHC? The Large Hadron Collider (LHC) is a new proton-proton colliding

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Analyzing CMS events

Analyzing CMS events Quarknet University of Rochester, March 23, 2012 Analyzing CMS events Questions in Particle Physics Introducing the Standard Model The Large Hadron Collider The CMS detector W and Z bosons: decays ispy

More information

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced) PC 3 Foundations of Particle Physics Lecturer: Dr F. Loebinger Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

More information

Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields

Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, December 3, 2015 Overview Quantized Fields: the reason for particles

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007 Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer Cosmic Rays: A Way to Introduce Modern Physics Concepts Steve Schnetzer Rutgers CR Workshop May 19, 2007 Concepts Astrophysics Particle Physics Radiation Relativity (time dilation) Solar Physics Particle

More information

Hand of Anna Röntgen. From Life magazine,6 April 1896

Hand of Anna Röntgen. From Life magazine,6 April 1896 FROM ELECTRONS TO QUARKS The development of Particle Physics QUARKNET 2001, FSU Laura Reina Outline ffl What is Particle Physics? ffl The origins of Particle Physics: the atom (p,e ), radioactivity, and

More information

Particle Physics A short History

Particle Physics A short History Introduction to Experimental Particle Physics Heavily indebted to 1. Steve Lloyd Queen Mary s College, London 2004 2. Robert S. Orr University of Toronto 2007 3. Z. Vilakazi University of Cape Town -2006

More information

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning Quanta to Quarks Science Teachers Workshop 2014 Workshop Session Adrian Manning The Quanta to Quarks module! The Quanta to Quarks module ultimately deals with some of the most fundamental questions about

More information

Introduction to the Standard Model of elementary particle physics

Introduction to the Standard Model of elementary particle physics Introduction to the Standard Model of elementary particle physics Anders Ryd (Anders.Ryd@cornell.edu) May 31, 2011 Abstract This short compendium will try to explain our current understanding of the microscopic

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

Unit 2 - Particles and Waves Part 1

Unit 2 - Particles and Waves Part 1 THE STANDARD MODEL Unit - Particles and Waves Part. Orders of Magnitude The range of orders of magnitude of length from the very small (subnuclear) to the very large (distance to furthest known celestial

More information

Cosmic Rays - R. A. Mewaldt - California Institute of Technology

Cosmic Rays - R. A. Mewaldt - California Institute of Technology Cosmic Rays - R. A. Mewaldt - California Institute of Technology Cosmic rays are high energy charged particles, originating in outer space, that travel at nearly the speed of light and strike the Earth

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model.

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model. Various models of the ATOM Dalton Model John Dalton developed the first atomic model in 1808. Before him people, mostly philosophers, had speculated about the smallest unit of matter and two theories prevailed.

More information

Particle Physics Columbia Science Honors Program

Particle Physics Columbia Science Honors Program Particle Physics Columbia Science Honors Program Week 1: Introduction January 28th, 2017 Inês Ochoa, Nevis Labs, Columbia University 1 Welcome! José Crespo-Anadón Postdoc on Neutrino group, MicroBooNE

More information

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Lecture - 5 Semi empirical Mass Formula So, nuclear radius size we talked and

More information

Chemistry Review Unit 1 Study Guide

Chemistry Review Unit 1 Study Guide 1. Draw and label a Bohr model of a C 14 atom. 2. Describe the following about a proton a. mass: the mass of a proton is 1 atomic mass unit (AMU) b. charge: protons have a positive charge c. location:

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

This image is brought to you by: Fermilab's Visual Media Services

This image is brought to you by: Fermilab's Visual Media Services This image is brought to you by: Fermilab's Visual Media Services The muon the short-lived cousin of the electron could be the key to understanding relationships between other fundamental particles. And

More information

The Nature of Light and Matter: 3

The Nature of Light and Matter: 3 The Nature of Light and Matter: 3 Doppler Effect, Mater and Energy ASTR 101 10/31//2017 1 Light from Moving objects: Doppler effect When there is a relative motion between the source and the observer,

More information

ANTIMATTER MATTER. does the difference between matter and antimatter arise?

ANTIMATTER MATTER. does the difference between matter and antimatter arise? WHY ANTIMATTER MATTERS! One of the most striking facts about the Universe is that it is composed almost entirely of matter. At the Big Bang equal amounts of matter and antimatter would have been created.

More information

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks)

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks) AQA Questions from 2004 to 2006 Particle Physics 239 94 1. (a) An ion of plutonium Pu has an overall charge of +1.6 10 19 C. For this ion state the number of (i) protons... neutrons... (iii) electrons...

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

A few thoughts on 100 years of modern physics. Quanta, Quarks, Qubits

A few thoughts on 100 years of modern physics. Quanta, Quarks, Qubits A few thoughts on 100 years of modern physics Quanta, Quarks, Qubits Quanta Blackbody radiation and the ultraviolet catastrophe classical physics does not agree with the observed world Planck s idea: atoms

More information

Chapter 46. Particle Physics and Cosmology

Chapter 46. Particle Physics and Cosmology Chapter 46 Particle Physics and Cosmology Atoms as Elementary Particles Atoms From the Greek for indivisible Were once thought to be the elementary particles Atom constituents Proton, neutron, and electron

More information

Matter, Antimatter and the Strangeness of CP violation

Matter, Antimatter and the Strangeness of CP violation Matter, Antimatter and the Strangeness of CP violation Angela Romano Angela Romano Masterclass 21/04/10 1 Cambridge, 1928 : Dirac predicted the existence of the positron e+, same mass but opposite charge

More information

\ \ \/ \\// (o) (o) U. February 11, UT Saturday Morning Physics. Yuri Kamyshkov University of Tennessee

\ \ \/ \\// (o) (o) U. February 11, UT Saturday Morning Physics. Yuri Kamyshkov University of Tennessee \ \ \/ \\// (o) (o) U February 11, 2017 @ UT Saturday Morning Physics Yuri Kamyshkov University of Tennessee kamyshkov@utk.edu 1 2 Large Hadron Collider CERN European Centre for Particle Physics Geneva,

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture Nuclear Chemistry Atomic Structure Notes Start on Slide 20 from the second class lecture The Birth of an Idea Democritus, 400 B.C. coined the term atom If you divide matter into smaller and smaller pieces,

More information

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG Weak Interactions The Theory of GLASHOW, SALAM and WEINBERG ~ 1959-1968 (Nobel 1979) Theory of the unified weak and electromagnetic interaction, transmitted by exchange of intermediate vector bosons mass

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa16/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Y2 Neutrino Physics (spring term 2017)

Y2 Neutrino Physics (spring term 2017) Y2 Neutrino Physics (spring term 2017) Lecture 5 Discoveries of the leptons Dr E Goudzovski eg@hep.ph.bham.ac.uk http://epweb2.ph.bham.ac.uk/user/goudzovski/y2neutrino Previous lecture In 1940s, nuclear

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lecture 19 1 Was due Today L19 Reading: (Unit 4) Unit 5: Assigned today Pre-Lecture Reading Questions (PLRQ) Unit 3 (Original or Revision) and Unit 4 Let us know if you think

More information

INVASIONS IN PARTICLE PHYSICS

INVASIONS IN PARTICLE PHYSICS INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 3 Oct. 20 2001 http://hep.uchicago.edu/compton 1 LECTURE 2 Cosmic Invasion The muon and the pion Previous Lecture 2 3 Orbital n=4 l=3

More information

3.1 Early History of Atomic Theories

3.1 Early History of Atomic Theories Figure 1 In Dalton s atomic model, an atom is a solid sphere, similar to a billiard ball. This simple model is still used today to represent the arrangement of atoms in molecules. DID YOU KNOW? William

More information

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang Re-cap from last lecture Discovery of the CMB- logic From Hubble s observations, we know the Universe is expanding This can be understood theoretically in terms of solutions of GR equations Earlier in

More information

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 OUTLINE! Some things we ve learned about the physical

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

8Subatomic particles. CHaPTer

8Subatomic particles. CHaPTer CHaPTer 8Subatomic particles remember Before beginning this chapter you should be able to: recall that all matter is made up of atoms explain the arrangement of particles in atoms, in particular that atoms

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Physics 30 Modern Physics Unit: Atomic Basics

Physics 30 Modern Physics Unit: Atomic Basics Physics 30 Modern Physics Unit: Atomic Basics Models of the Atom The Greeks believed that if you kept dividing matter into smaller and smaller pieces, you would eventually come to a bit of matter that

More information