On the counting function for the generalized Niven numbers

Size: px
Start display at page:

Download "On the counting function for the generalized Niven numbers"

Transcription

1 On the counting function for the generalized Niven numbers Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño Abstract Given an integer base q 2 and a completely q-additive arithmetic function f taking integer values, we deduce an asymptotic epression for the counting function N f # {0 n < fn n} under a mild restriction on the values of f. When f s q, the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case. Introduction Let q 2 be a fied integer and let f be an arbitrary comple-valued function defined on the set of nonnegative integers. We say that f is completely q-additive if faq j + b fa + fb for all nonnegative integers a, b, j satisfying b < q j. Given a nonnegative integer n, there eists a unique sequence a j n j N {0,,..., q } N so that n a j nq j. j Mathematics Subject Classification: A25, A63, K65. The second, third, fourth and fifth authors received support from the National Science Foundation under grant DMS

2 2 Ryan C. Daileda et al. The right hand side of epression will be called the base q epansion of n. Using the base q epansion, we find that the function f is completely q-additive if and only if f0 0 and fn fa j n. j It follows that a completely q-additive function is completely determined by its values on the set {0,,..., q }. The prototypical eample of a completely q-additive function is the base q sum of digits function s q, which is defined by s q n a j n. j0 A q-niven number is a positive integer n that is divisible by s q n. The question of the average distribution of the q-niven numbers can be answered by studying the counting function N q #{0 n < : s q n n}, a task which has been undertaken by several authors see, for eample, the papers of Cooper and Kennedy [, 2, 3, 4] or De Koninck and Doyon [5]. The best known result is the asymptotic formula N q c q + o log, where c q 2 log q q 2 q j, q, which was proven only recently by De Koninck, Doyon and Kátai [6], and independently by Mauduit, Pomerance and Sárközy [8]. Given an arbitrary non-zero, integer-valued, completely q additive function f, we define an f-niven number to be a positive integer n that is divisible by fn. In the final section of [6] it is suggested that the techniques used therein could be applied to derive an asymptotic epression for the counting function of the f-niven numbers, N f # {0 n < fn n}. It is the goal of this paper to show that, under an additional mild restriction on f, this is indeed the case. Our main result is the following. Theorem. Let f be a non-zero, integer-valued, completely q-additive function and set j µ q fj, σ 2 q fj 2 µ 2, q q j0 j0

3 The counting function for the generalized Niven numbers 3 F f, f2,..., fq and Assume F, q. d gcd {rfs sfr r, s {, 2,..., q }}. i If µ 0 then for any ɛ 0, /2 where N f c f c f log q µ log + O log 3 2 ɛ q j, q, d. q j The implied constant depends only on f and ɛ. ii If µ 0 then N f c f log log log 2 + O log 2 where log q c f 2πσ 2 2 q q j, q, d. j The implied constant depends only on f. The hypothesis F, q is the restriction alluded to above. It is technical in nature and will not be utilized until the end of Section 4.. There we will see that it allows us to reduce the study of the distribution of the values of f when it s argument is restricted to specified congruence classes to the study of how the values themselves are distributed in congruence classes. While this hypothesis prevents Theorem from being as general as one might hope, it is worth noting that it is not terribly restrictive either, especially when q is large. Fiing q 3, if we choose integer values for f, f2,..., fq uniformly randomly in the interval [ n, n], then f is completely determined and the probability that F is ζq +o, as n. Since ζq tends to as q tends to infinity, we see that for large q almost all completely q-additive functions f satisfy F, q. It would still be of interest, however, to obtain the analogue of Theorem in the case that F, q >. Most of the proof of Theorem is a straightforward generalization of the methods used in [6] and it is the intent of this paper to indicate where

4 4 Ryan C. Daileda et al. significant and perhaps non-obvious modifications to that work must be made. The first notable change is the introduction and use of the quantities d and F. As d 0 and F when f s q these quantities play no role in earlier work. Finally, in order to shorten the presentation, we have attempted to unify the µ 0 and µ 0 cases for as long as possible. The result is a slightly different approach in the µ 0 case than appears in [6]. The final steps when µ 0 are entirely new. 2 Notation We denote by Z, Z +, Z + 0, R and C the sets of integers, positive integers, nonnegative integers, real numbers and comple numbers, respectively. For the remainder of this paper, we fi an integer q 2 and a non-zero completely q additive function f : Z + 0 Z. The variable will always be assumed real and positive and n will always be an integer. Following [6] we set A k, l, t #{0 n < n l mod k and fn t}, a t #{0 n < fn t}. As usual, we use the notation F OG or F G to mean that there is a constant C so that for all sufficiently large, F CG. The constant C and the size of are allowed to depend on f and hence on q, but on no other quantity unless specified. 3 Preliminary Lemmas For real y we define y to be the distance from y to the nearest integer. Lemma. Let M ma j q fj. Let s, k Z + with s, k and suppose that there is a pair j, j 2 {0,,..., q } so that k j fj 2 j 2 fj. Then for any ξ R ma js 0 j q fjξ + k 2Mk. 2 Proof. We first claim that the maimum in question is at least positive. To see this we argue by contradiction and assume that fjξ + js/k 0 for 0 j q. Then fjξ + js/k n j Z for each j. Solving for ξ and equating the resulting epressions, we find that if fj, fj 2 0 then kn j fj 2 n j2 fj sj fj 2 j 2 fj. 3

5 The counting function for the generalized Niven numbers 5 Since s, k, this implies that k j fj 2 j 2 fj, which is ecluded by assumption. Since this same condition is trivially verified if fj 0 or fj 2 0, we have a contradiction in any case. To prove the lemma we again argue by contradiction. Let us remark that for any k > 0 k j fj 2 j 2 fj s k fj fj 2 ξ + j fj 2 s fj fj 2 ξ + j 2fj s k k fj 2 fj ξ + j s + k fj fj 2 ξ + j 2s. k If we assume now that 2 is not verified, then and similarly fj M < 2k ma 0 j q fjξ + js/k 2 fj 2 ξ + j 2 s/k fj 2 < 2 fj ξ + j s/k. Therefore, by properties of, k fj 2 fj ξ + j s k + fj fj 2ξ + j 2s k 2M ma js 0 j q fjξ + k < 2M 2Mk k which is a contradiction. It is proven in [7] that if z, z 2,..., z q C satisfy z j for j, 2,..., q. then q + z j ma q 2q Re z j. 4 j q j Since for real y we have y 2 cos2πy and + y e y, the net lemma is an immediate consequence.

6 6 Ryan C. Daileda et al. Lemma 2. Let ey e 2πiy. There is a positive constant c c f so that for any ξ, r R q e fjξ + rj q ep c ma fjξ + rj 2. 5 j q j0 4 The distribution of the values of f 4. Argument restricted to a congruence class Let k Z +, l Z + 0 and t Z. Our first goal in this section is to relate A k, l, t to the function a t through a series of reductions on the modulus k. The first three reductions are proven eactly as in [6], substituting our Lemma 2 for their Lemma 3. We state them for the convenience of the reader. Reduction. Write k k k 2 where k is the largest divisor of k so that k, q. Then the primes dividing k 2 also divide q and we let h be the smallest positive integer so that k 2 divides q h. Since k divides k q h, the congruence class l mod k is the union of classes l j mod k q h, j,..., q h /k 2. For each j write where 0 l j < q h. Then A k, l, t q h /k 2 j l j l j + q h l j 2 A l j q h k, l j 2, t fl j. Since k, q, we are led to the net reduction. Reduction 2. Suppose that k, q. Let k k k 2 where k is the largest divisor of k so that k, q. Then there is a positive constant c 3 c 3 f so that A k, l, t A k 2, l, t + O c 3 log 2k. k Before moving to the net reduction, we note that the primes dividing k 2 must also divide q. Reduction 3. Suppose that the prime divisors of k also divide q. Then there is a positive constant c 4 c 4 f so that A k, l, t k, q A k, q, l, t + O c 4 log 2k. k

7 The counting function for the generalized Niven numbers 7 We have therefore reduced to the case in which the modulus is a divisor of q. Reduction 4. We now come to the first new reduction. The proof closely follows that of Reductions 2 and 3 of [6], substituting our Lemma for their Lemma and our Lemma 2 for their Lemma 3. We therefore choose to omit it. Suppose that k q and let d denote the greatest common divisor of j fj 2 j 2 fj for j, j 2 {0,,..., q }. Then there is a positive constant c 5 c 5 f so that A k, l, t k, d k A k, d, l, t + O c 5. We note that in the case f s q we have d 0, making this reduction unnecessary. As such, it has no analogue in [6]. Reduction 5. Suppose that k divides q, d. Then q j mod k for all j and j fj 2 j 2 fj mod k for all 0 j, j 2 q. From this and the complete q-additivity of f it follows that mfn nfm mod k for all m, n Z + 0. Let F f, f2,..., fq and suppose further that F, q. Since the values of f are linear combinations of f, f2,..., fq with nonnegative integer coefficients, the condition F, q implies that we can find an m Z + so that fm, q. Therefore if n Z + 0 satisfies fn t we have mt mfn nfm mod k and it follows that A k, l, t { a t if mt lfm mod k, 0 otherwise. This is the analogue of the final reduction in section 4.5 of [6]. 4.2 Unrestricted argument We now turn to the distribution of the values of f when its argument is free to take on any value. We let µ and σ denote the mean and standard deviation of f on the set D {0,,..., q } of base q digits. That is, We also set µ q fj, σ 2 q fj 2 µ 2. q q j0 N j0 log log q where y is the greatest integer not eceeding y.

8 8 Ryan C. Daileda et al. Following [], we view D as a probability space in which each element is assigned a measure of /q. We use the digits of the base q epansion to identify the set of nonnegative integers n strictly less than q N N Z + with the product space D N. In this way f can be viewed as the random variable on D N obtained by summing together N independent copies of f acting on D alone. In this setting, if we apply Theorem 5, Chapter III of [9] we immediately obtain the net lemma. Lemma 3. Let F : D R have average value 0. If F is etended to a completely q-additive function on Z + 0, then there is a constant C > 0, depending only on q and F, so that for N Z + we have and for all 0 k N/C. #{0 n < q N F n k} q N e Ck2 /N #{0 n < q N F n k} q N e Ck2 /N Proposition. Let ɛ 0, /2 and set I [µn N /2+ɛ, µn + N /2+ɛ ]. Then #{0 n < fn I} log 2 the implied constant depending only on f and ɛ. Proof. For C > 0, as N Z + tends to infinity eventually 0 N /2+ɛ ± µ N + /C, so that Lemma 3 applied to the function F f µ gives and # { 0 n < q N+ fn µn N /2+ɛ } q N e c N 2ɛ # { 0 n < q N+ fn µn N /2+ɛ } q N e c 2N 2ɛ for some positive constants c and c 2. Setting c min{c, c 2 } these inequalities together give # { 0 < q N+ fn µn N /2+ɛ } q N e cn 2ɛ. 6 The stated result now follows since # {0 n < fn I } # { 0 n < q N+ fn µn N /2+ɛ q N cn 2ɛ e log. 2 }

9 The counting function for the generalized Niven numbers 9 We remark that if ɛ > 0, Lemma 4 of [8], when translated into our present notation, immediately implies that { #{0 n < s q n I} ma ep 6 } q 2 N 2ɛ, c log log 7 for some c > 0. Since the right hand side of 7 is O, this provides log 2 a proof of Proposition in the case f s q. In fact, if in the proof of Proposition we replace N /2+ɛ by N /2 λ, where λ on /2, we obtain a more general result that is very similar to Lemma 4 of [8]. As observed in [6] in the case f s q, Theorem 6, Chapter VII of [9] can be used to obtain the following result. Proposition 2. If f, f2,..., fq then uniformly for t Z we have a t t σ µn ϕ N σ + O N N where ϕy 2π /2 e y2 /2. The implied constant depends only on f. Corollary. If F f, f2,..., fq then a t F t σ µn ϕ N σ N when t 0 mod F and a t 0 otherwise. + O N Proof. Apply the proposition to the function g f/f. 5 Proof of Theorem It suffices to consider the case in which µ 0, since N f N f. Fiing ɛ 0, /2, according to Proposition we have N f t 0 mod F A, 0, t + O. 8 log 2 As in Section 5 of [6], one can show that Reductions through 5 together with the corollary to Proposition 2 yield A, 0, t t, q, d a t + O log N tn 9

10 0 Ryan C. Daileda et al. uniformly for nonzero t I. Since t, q, d depends only on the residue of t mod q, substitution of 9 into 8 yields q N f j, q, d j t 0 t 0 mod F t j mod q a t log N + O E N 0 where E { N ɛ /2 if µ > 0, log N if µ 0. Lemma 4. For j, 2,..., q we have t 0 t 0 mod F t j mod q a t q t 0 t 0 mod F a t + O E 2 N where E 2 { N ɛ /2 if µ > 0, N /2 if µ 0. Proof. Since we have assumed F, q, for each j, 2,..., q there is a unique b j mod F q so that the two simultaneous congruences t 0 mod F and t j mod q are equivalent to the single congruence t b j mod F q. The corollary to Proposition 2 implies that for t, k 0 mod F we have a t + k t + k a t + O log + t 2 log /2 when t + k 0, the implied constant depending only on f and k.

11 The counting function for the generalized Niven numbers When µ > 0 we therefore have t 0 t 0 mod F t j mod q a t t b j q mod F q t b j +O q N 3/2 ɛ +O a t t q 2 k0 mod F q s I s 0 mod F N 3/2 ɛ, a s s a t + kf t + kf + O s J s 0 mod F a s s where J is the set of integers with distance at most qf from the endpoints of I. Since a s /N /2, the sum over J contributes no more than the second error term, proving the lemma in this case. When µ 0 we may carry through the same analysis, being careful in the second step to omit from the summation the single value of t for which t + kf 0. This introduces an error of size O/N /2, which is consistent with the statement of the lemma. Combining Lemma 4 with equation 0 we can now complete the proof. When µ > 0 we have N f q j, q, d q j t 0 mod F q j, q, d µn q j log log +O log 3/2 ɛ a t t t 0 mod F log N + O a t N 3/2 ɛ

12 2 Ryan C. Daileda et al. log q q j, q, d µ log q j log log +O log 3/2 ɛ log q µ q q j, q, d j t 0 mod F a t log log log + O, log 3/2 ɛ where in the final line we have used Proposition to replace a t with + O/log 2. Since ɛ 0, /2 was arbitrary, we may discard the log log term in the error, giving the stated result. When µ 0 we have q N f j, q, d q j t 0 t 0 mod F a t + O. 2 N /2 Set ɛ /4 for convenience. Writing t F s and using the corollary to Proposition 2 we obtain t 0 t 0 mod F Now a t 2 σ N s N 3/4 /F sf s ϕ σ + O N log N N. 3 s N 3/4 /F sf s ϕ σ N N 3/4 /F N 2π sf s ϕ σ ds + O N /4 /σ 2 F/σ 2N e u2 u du + O e u2 du + O 2π F/σ 2N u du + O 2π F/σ 2N u 2 2π log N + O 2 log log + O. 2π

13 The counting function for the generalized Niven numbers 3 Returning to equations 2 and 3 we find that N f q j, q, d 2πσ 2 /2 q j /2 q log q j, q, d 2πσ 2 q +O log /2 which concludes the proof. j log log N /2 log log log /2 + O N /2 References [] Cooper, C. N.; Kennedy, R. E., On the natural density of the Niven numbers, College Math. J , [2] Cooper, C. N.; Kennedy, R. E., On an asymptotic formula for the Niven numbers, Internat. J. Math. Sci , [3] Cooper, C. N.; Kennedy, R. E., A partial asymptotic formula for the Niven numbers, Fibonacci Quart , [4] Cooper, C. N.; Kennedy, R. E., Chebyshev s inequality and natural density, Amer. Math. Monthly , [5] De Koninck, J. M.; Doyon, N., On the number of Niven numbers up to, Fibonacci Quart , [6] De Koninck, J.-M.; Doyon, N.; Kátai, I., On the counting function for the Niven numbers, Acta Arithmetica , [7] Delange, H., Sur les fonctions q-additives ou q-multiplicatives, Acta Arithmetica 2 972, [8] Mauduit, C.; Pomerance, C.; Sárközy, A., On the distribution in residue classes of integers with a fied sum of digits, Ramanujan J , [9] Petrov, V. V., Sums of Independent Random Variables, Ergebnisse der Mathematik und ihrer Grenzgebiete 82, Springer, 975.

14 4 Ryan C. Daileda et al. Mathematics Department, Trinity University, One Trinity Place, San Antonio, TX Penn State University Mathematics Department, University Park, State College, PA Department of Mathematics, Rose-Hulman Institute of Technology, 5000 Wabash Avenue, Terre Haute, IN Department of Mathematics and Statistics, Lederle Graduate Research Tower, Bo 3455, University of Massachusetts Amherst, Amherst, MA Department of Mathematics, 688 Kemeny Hall, Dartmouth College, Hanover, NH

On the counting function for the generalized. Niven numbers

On the counting function for the generalized. Niven numbers On the counting function for the generalized Niven numbers R. C. Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño Introduction Let q 2 be a fied integer and let f be an arbitrary

More information

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k RALF BUNDSCHUH AND PETER BUNDSCHUH Dedicated to Peter Shiue on the occasion of his 70th birthday Abstract. Let F 0 = 0,F 1 = 1, and F n = F n 1 +F

More information

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

A remark on a conjecture of Chowla

A remark on a conjecture of Chowla J. Ramanujan Math. Soc. 33, No.2 (2018) 111 123 A remark on a conjecture of Chowla M. Ram Murty 1 and Akshaa Vatwani 2 1 Department of Mathematics, Queen s University, Kingston, Ontario K7L 3N6, Canada

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

On the maximal exponent of the prime power divisor of integers

On the maximal exponent of the prime power divisor of integers Acta Univ. Sapientiae, Mathematica, 7, 205 27 34 DOI: 0.55/ausm-205-0003 On the maimal eponent of the prime power divisor of integers Imre Kátai Faculty of Informatics Eötvös Loránd University Budapest,

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

inv lve a journal of mathematics 2009 Vol. 2, No. 2 Bounds for Fibonacci period growth mathematical sciences publishers Chuya Guo and Alan Koch

inv lve a journal of mathematics 2009 Vol. 2, No. 2 Bounds for Fibonacci period growth mathematical sciences publishers Chuya Guo and Alan Koch inv lve a journal of mathematics Bounds for Fibonacci period growth Chuya Guo and Alan Koch mathematical sciences publishers 2009 Vol. 2, No. 2 INVOLVE 2:2(2009) Bounds for Fibonacci period growth Chuya

More information

Math 319 Problem Set #2 Solution 14 February 2002

Math 319 Problem Set #2 Solution 14 February 2002 Math 39 Problem Set # Solution 4 February 00. (.3, problem 8) Let n be a positive integer, and let r be the integer obtained by removing the last digit from n and then subtracting two times the digit ust

More information

ON THE UNIFORM DISTRIBUTION OF CERTAIN SEQUENCES INVOLVING THE EULER TOTIENT FUNCTION AND THE SUM OF DIVISORS FUNCTION

ON THE UNIFORM DISTRIBUTION OF CERTAIN SEQUENCES INVOLVING THE EULER TOTIENT FUNCTION AND THE SUM OF DIVISORS FUNCTION Annales Univ. Sci. Budapest., Sect. Comp. 44 (205) 79 9 ON THE UNIFORM DISTRIBUTION OF CERTAIN SEQUENCES INVOLVING THE EULER TOTIENT FUNCTION AND THE SUM OF DIVISORS FUNCTION Jean-Marie De Koninck (Québec,

More information

An Exploration of the Arithmetic Derivative

An Exploration of the Arithmetic Derivative An Eploration of the Arithmetic Derivative Alaina Sandhu Final Research Report: Summer 006 Under Supervision of: Dr. McCallum, Ben Levitt, Cameron McLeman 1 Introduction The arithmetic derivative is a

More information

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. Congruences Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same

More information

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C p-stability OF DEGENERATE SECOND-ORDER RECURRENCES Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C. 20064 Walter Carlip Department of Mathematics and Computer

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

The Distribution of Generalized Sum-of-Digits Functions in Residue Classes

The Distribution of Generalized Sum-of-Digits Functions in Residue Classes Journal of umber Theory 79, 9426 (999) Article ID jnth.999.2424, available online at httpwww.idealibrary.com on The Distribution of Generalized Sum-of-Digits Functions in Residue Classes Abigail Hoit Department

More information

PALINDROMIC SUMS OF PROPER DIVISORS. Paul Pollack Department of Mathematics, University of Georgia, Athens, Georgia

PALINDROMIC SUMS OF PROPER DIVISORS. Paul Pollack Department of Mathematics, University of Georgia, Athens, Georgia #A3 INTEGERS 5A (205) PALINDROMIC SUMS OF PROPER DIVISORS Paul Pollack Department of Mathematics, University of Georgia, Athens, Georgia pollack@math.uga.edu Received: 0/29/3, Accepted: 6/8/4, Published:

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

More information

THESIS. Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University

THESIS. Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University The Hasse-Minkowski Theorem in Two and Three Variables THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By

More information

Homework #5 Solutions

Homework #5 Solutions Homework #5 Solutions p 83, #16. In order to find a chain a 1 a 2 a n of subgroups of Z 240 with n as large as possible, we start at the top with a n = 1 so that a n = Z 240. In general, given a i we will

More information

On a Balanced Property of Compositions

On a Balanced Property of Compositions On a Balanced Property of Compositions Miklós Bóna Department of Mathematics University of Florida Gainesville FL 32611-8105 USA Submitted: October 2, 2006; Accepted: January 24, 2007; Published: March

More information

ROTH S THEOREM THE FOURIER ANALYTIC APPROACH NEIL LYALL

ROTH S THEOREM THE FOURIER ANALYTIC APPROACH NEIL LYALL ROTH S THEOREM THE FOURIER AALYTIC APPROACH EIL LYALL Roth s Theorem. Let δ > 0 and ep ep(cδ ) for some absolute constant C. Then any A {0,,..., } of size A = δ necessarily contains a (non-trivial) arithmetic

More information

PALINDROMIC SUMS OF PROPER DIVISORS. Paul Pollack Department of Mathematics, University of Georgia, Athens, GA 30602, USA

PALINDROMIC SUMS OF PROPER DIVISORS. Paul Pollack Department of Mathematics, University of Georgia, Athens, GA 30602, USA PALINDROMIC SUMS OF PROPER DIVISORS Paul Pollack Department of Mathematics, University of Georgia, Athens, GA 30602, USA pollack@math.uga.edu Received:, Revised:, Accepted:, Published: Abstract Fi an integer

More information

DONG QUAN NGOC NGUYEN

DONG QUAN NGOC NGUYEN REPRESENTATION OF UNITS IN CYCLOTOMIC FUNCTION FIELDS DONG QUAN NGOC NGUYEN Contents 1 Introduction 1 2 Some basic notions 3 21 The Galois group Gal(K /k) 3 22 Representation of integers in O, and the

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

Maximal Class Numbers of CM Number Fields

Maximal Class Numbers of CM Number Fields Maximal Class Numbers of CM Number Fields R. C. Daileda R. Krishnamoorthy A. Malyshev Abstract Fix a totally real number field F of degree at least 2. Under the assumptions of the generalized Riemann hypothesis

More information

Equidivisible consecutive integers

Equidivisible consecutive integers & Equidivisible consecutive integers Ivo Düntsch Department of Computer Science Brock University St Catherines, Ontario, L2S 3A1, Canada duentsch@cosc.brocku.ca Roger B. Eggleton Department of Mathematics

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

A characterization of the identity function

A characterization of the identity function Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 4. 1997) pp. 3 9 A characterization of the identity function BUI MINH PHONG Abstract. We prove that if a multiplicative function f satisfies

More information

Maximal Independent Sets In Graphs With At Most r Cycles

Maximal Independent Sets In Graphs With At Most r Cycles Maximal Independent Sets In Graphs With At Most r Cycles Goh Chee Ying Department of Mathematics National University of Singapore Singapore goh chee ying@moe.edu.sg Koh Khee Meng Department of Mathematics

More information

4 Powers of an Element; Cyclic Groups

4 Powers of an Element; Cyclic Groups 4 Powers of an Element; Cyclic Groups Notation When considering an abstract group (G, ), we will often simplify notation as follows x y will be expressed as xy (x y) z will be expressed as xyz x (y z)

More information

Minimal multipliers for consecutive Fibonacci numbers

Minimal multipliers for consecutive Fibonacci numbers ACTA ARITHMETICA LXXV3 (1996) Minimal multipliers for consecutive Fibonacci numbers by K R Matthews (Brisbane) 1 Introduction The Fibonacci and Lucas numbers F n, L n (see [2]) are defined by Since F 1

More information

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers University of South Carolina Scholar Commons Theses and Dissertations 2017 Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers Wilson Andrew Harvey University of South Carolina

More information

MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

More information

. In particular if a b then N(

. In particular if a b then N( Gaussian Integers II Let us summarise what we now about Gaussian integers so far: If a, b Z[ i], then N( ab) N( a) N( b). In particular if a b then N( a ) N( b). Let z Z[i]. If N( z ) is an integer prime,

More information

Definition: We say a is an n-niven number if a is divisible by its base n digital sum, i.e., s(a)\a.

Definition: We say a is an n-niven number if a is divisible by its base n digital sum, i.e., s(a)\a. CONSTRUCTION OF 2*n CONSECUTIVE n-niven NUMBERS Brad Wilson Dept. of Mathematics, SUNY College at Brockport, Brockport, NY 14420 E-mail: bwilson@acsprl.acs.brockport.edu (Submitted July 1995) 1. INTRODUCTION

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit and Yee introduced partition

More information

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic Chapter 1 The Fundamental Theorem of Arithmetic 1.1 Primes Definition 1.1. We say that p N is prime if it has just two factors in N, 1 and p itself. Number theory might be described as the study of the

More information

Flat primes and thin primes

Flat primes and thin primes Flat primes and thin primes Kevin A. Broughan and Zhou Qizhi University of Waikato, Hamilton, New Zealand Version: 0th October 2008 E-mail: kab@waikato.ac.nz, qz49@waikato.ac.nz Flat primes and thin primes

More information

#A50 INTEGERS 14 (2014) ON RATS SEQUENCES IN GENERAL BASES

#A50 INTEGERS 14 (2014) ON RATS SEQUENCES IN GENERAL BASES #A50 INTEGERS 14 (014) ON RATS SEQUENCES IN GENERAL BASES Johann Thiel Dept. of Mathematics, New York City College of Technology, Brooklyn, New York jthiel@citytech.cuny.edu Received: 6/11/13, Revised:

More information

Average Orders of Certain Arithmetical Functions

Average Orders of Certain Arithmetical Functions Average Orders of Certain Arithmetical Functions Kaneenika Sinha July 26, 2006 Department of Mathematics and Statistics, Queen s University, Kingston, Ontario, Canada K7L 3N6, email: skaneen@mast.queensu.ca

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit, and Yee introduced partition

More information

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS #A40 INTEGERS 16 (2016) POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS Daniel Baczkowski Department of Mathematics, The University of Findlay, Findlay, Ohio

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

Primitive Matrices with Combinatorial Properties

Primitive Matrices with Combinatorial Properties Southern Illinois University Carbondale OpenSIUC Research Papers Graduate School Fall 11-6-2012 Primitive Matrices with Combinatorial Properties Abdulkarem Alhuraiji al_rqai@yahoo.com Follow this and additional

More information

A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS

A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS Gregory Tollisen Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA tollisen@oxy.edu

More information

THE p-adic VALUATION OF LUCAS SEQUENCES

THE p-adic VALUATION OF LUCAS SEQUENCES THE p-adic VALUATION OF LUCAS SEQUENCES CARLO SANNA Abstract. Let (u n) n 0 be a nondegenerate Lucas sequence with characteristic polynomial X 2 ax b, for some relatively prime integers a and b. For each

More information

Prime and irreducible elements of the ring of integers modulo n

Prime and irreducible elements of the ring of integers modulo n Prime and irreducible elements of the ring of integers modulo n M. H. Jafari and A. R. Madadi Department of Pure Mathematics, Faculty of Mathematical Sciences University of Tabriz, Tabriz, Iran Abstract

More information

CISC-102 Winter 2016 Lecture 11 Greatest Common Divisor

CISC-102 Winter 2016 Lecture 11 Greatest Common Divisor CISC-102 Winter 2016 Lecture 11 Greatest Common Divisor Consider any two integers, a,b, at least one non-zero. If we list the positive divisors in numeric order from smallest to largest, we would get two

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

CHAOTIC BEHAVIOR IN A FORECAST MODEL

CHAOTIC BEHAVIOR IN A FORECAST MODEL CHAOTIC BEHAVIOR IN A FORECAST MODEL MICHAEL BOYLE AND MARK TOMFORDE Abstract. We examine a certain interval map, called the weather map, that has been used by previous authors as a toy model for weather

More information

1. multiplication is commutative and associative;

1. multiplication is commutative and associative; Chapter 4 The Arithmetic of Z In this chapter, we start by introducing the concept of congruences; these are used in our proof (going back to Gauss 1 ) that every integer has a unique prime factorization.

More information

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n Florian Luca IMATE de la UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacan, Mexico e-mail: fluca@matmor.unain.inx

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) 1 Euclid s Algorithm Euclid s Algorithm for computing the greatest common divisor belongs to the oldest known computing procedures

More information

DISTRIBUTION OF THE FIBONACCI NUMBERS MOD 2. Eliot T. Jacobson Ohio University, Athens, OH (Submitted September 1990)

DISTRIBUTION OF THE FIBONACCI NUMBERS MOD 2. Eliot T. Jacobson Ohio University, Athens, OH (Submitted September 1990) DISTRIBUTION OF THE FIBONACCI NUMBERS MOD 2 Eliot T. Jacobson Ohio University, Athens, OH 45701 (Submitted September 1990) Let FQ = 0, Fi = 1, and F n = F n _i + F n _ 2 for n > 2, denote the sequence

More information

Week Some Warm-up Questions

Week Some Warm-up Questions 1 Some Warm-up Questions Week 1-2 Abstraction: The process going from specific cases to general problem. Proof: A sequence of arguments to show certain conclusion to be true. If... then... : The part after

More information

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC #A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania lkjone@ship.edu Received: 9/17/10, Revised:

More information

Decomposing oriented graphs into transitive tournaments

Decomposing oriented graphs into transitive tournaments Decomposing oriented graphs into transitive tournaments Raphael Yuster Department of Mathematics University of Haifa Haifa 39105, Israel Abstract For an oriented graph G with n vertices, let f(g) denote

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

Jonathan Sondow 209 West 97th Street Apt 6F New York, NY USA

Jonathan Sondow 209 West 97th Street Apt 6F New York, NY USA Which Partial Sums of the Taylor Series for e Are Convergents to e? (and a Link to the Primes 2, 5, 13, 37, 463,...) arxiv:0709.0671v1 [math.nt] 5 Sep 2007 Jonathan Sondow 209 West 97th Street Apt 6F New

More information

Written Assignment #1 - SOLUTIONS

Written Assignment #1 - SOLUTIONS Written Assignment #1 - SOLUTIONS Question 1. Use the definitions of continuity and differentiability to prove that the function { cos(1/) if 0 f() = 0 if = 0 is continuous at 0 but not differentiable

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

SOME FORMULAS OF RAMANUJAN INVOLVING BESSEL FUNCTIONS. Henri Cohen

SOME FORMULAS OF RAMANUJAN INVOLVING BESSEL FUNCTIONS. Henri Cohen SOME FORMULAS OF RAMANUJAN INVOLVING BESSEL FUNCTIONS by Henri Cohen Abstract. We generalize a number of summation formulas involving the K-Bessel function, due to Ramanujan, Koshliakov, and others. Résumé.

More information

On Carmichael numbers in arithmetic progressions

On Carmichael numbers in arithmetic progressions On Carmichael numbers in arithmetic progressions William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu Carl Pomerance Department of Mathematics

More information

Sloping Binary Numbers: A New Sequence Related to the Binary Numbers

Sloping Binary Numbers: A New Sequence Related to the Binary Numbers Sloping Binary Numbers: A New Sequence Related to the Binary Numbers David Applegate, Internet and Network Systems Research Center, AT&T Shannon Labs, 180 Park Avenue, Florham Park, NJ 0793 0971, USA (Email:

More information

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES #A69 INTEGERS 3 (203) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri bankswd@missouri.edu Greg Martin Department of

More information

Discrete dynamics on the real line

Discrete dynamics on the real line Chapter 2 Discrete dynamics on the real line We consider the discrete time dynamical system x n+1 = f(x n ) for a continuous map f : R R. Definitions The forward orbit of x 0 is: O + (x 0 ) = {x 0, f(x

More information

Cullen Numbers in Binary Recurrent Sequences

Cullen Numbers in Binary Recurrent Sequences Cullen Numbers in Binary Recurrent Sequences Florian Luca 1 and Pantelimon Stănică 2 1 IMATE-UNAM, Ap. Postal 61-3 (Xangari), CP 58 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx 2 Auburn

More information

THE CONVEX HULL OF THE PRIME NUMBER GRAPH

THE CONVEX HULL OF THE PRIME NUMBER GRAPH THE CONVEX HULL OF THE PRIME NUMBER GRAPH NATHAN MCNEW Abstract Let p n denote the n-th prime number, and consider the prime number graph, the collection of points n, p n in the plane Pomerance uses the

More information

MATH39001 Generating functions. 1 Ordinary power series generating functions

MATH39001 Generating functions. 1 Ordinary power series generating functions MATH3900 Generating functions The reference for this part of the course is generatingfunctionology by Herbert Wilf. The 2nd edition is downloadable free from http://www.math.upenn. edu/~wilf/downldgf.html,

More information

Chris Smyth School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK.

Chris Smyth School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK. THE DIVISIBILITY OF a n b n BY POWERS OF n Kálmán Győry Institute of Mathematics, University of Debrecen, Debrecen H-4010, Hungary. gyory@math.klte.hu Chris Smyth School of Mathematics and Maxwell Institute

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Sums of Squares. Bianca Homberg and Minna Liu

Sums of Squares. Bianca Homberg and Minna Liu Sums of Squares Bianca Homberg and Minna Liu June 24, 2010 Abstract For our exploration topic, we researched the sums of squares. Certain properties of numbers that can be written as the sum of two squares

More information

IF A PRIME DIVIDES A PRODUCT... ζ(s) = n s. ; p s

IF A PRIME DIVIDES A PRODUCT... ζ(s) = n s. ; p s IF A PRIME DIVIDES A PRODUCT... STEVEN J. MILLER AND CESAR E. SILVA ABSTRACT. One of the greatest difficulties encountered by all in their first proof intensive class is subtly assuming an unproven fact

More information

Collatz cycles with few descents

Collatz cycles with few descents ACTA ARITHMETICA XCII.2 (2000) Collatz cycles with few descents by T. Brox (Stuttgart) 1. Introduction. Let T : Z Z be the function defined by T (x) = x/2 if x is even, T (x) = (3x + 1)/2 if x is odd.

More information

Dense Admissible Sets

Dense Admissible Sets Dense Admissible Sets Daniel M. Gordon and Gene Rodemich Center for Communications Research 4320 Westerra Court San Diego, CA 92121 {gordon,gene}@ccrwest.org Abstract. Call a set of integers {b 1, b 2,...,

More information

Number Theory Solutions Packet

Number Theory Solutions Packet Number Theory Solutions Pacet 1 There exist two distinct positive integers, both of which are divisors of 10 10, with sum equal to 157 What are they? Solution Suppose 157 = x + y for x and y divisors of

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS A. M. Blokh Department of Mathematics, Wesleyan University Middletown, CT 06459-0128, USA August 1991, revised May 1992 Abstract. Let X be a compact tree,

More information

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS STEVEN H. WEINTRAUB ABSTRACT. We present a number of classical proofs of the irreducibility of the n-th cyclotomic polynomial Φ n (x).

More information

Fermat numbers and integers of the form a k + a l + p α

Fermat numbers and integers of the form a k + a l + p α ACTA ARITHMETICA * (200*) Fermat numbers and integers of the form a k + a l + p α by Yong-Gao Chen (Nanjing), Rui Feng (Nanjing) and Nicolas Templier (Montpellier) 1. Introduction. In 1849, A. de Polignac

More information

On prime factors of subset sums

On prime factors of subset sums On prime factors of subset sums by P. Erdös, A. Sárközy and C.L. Stewart * 1 Introduction For any set X let X denote its cardinality and for any integer n larger than one let ω(n) denote the number of

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Impulse Response Sequences and Construction of Number Sequence Identities

Impulse Response Sequences and Construction of Number Sequence Identities Impulse Response Sequences and Construction of Number Sequence Identities Tian-Xiao He Department of Mathematics Illinois Wesleyan University Bloomington, IL 6170-900, USA Abstract As an extension of Lucas

More information

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1.

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Solutions Quiz 9 Nov. 8, 2010 1. Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Answer. We prove the contrapositive. Suppose a, b, m are integers such that a < 3m

More information

Powers of 2 with five distinct summands

Powers of 2 with five distinct summands ACTA ARITHMETICA * (200*) Powers of 2 with five distinct summands by Vsevolod F. Lev (Haifa) 0. Summary. We show that every sufficiently large, finite set of positive integers of density larger than 1/3

More information

Product Representations of Polynomials

Product Representations of Polynomials Product Representations of Polynomials Jacques Verstraëte Abstract For a fixed polyomial f Z[X], let ρ k (N denote the maximum size of a set A {1, 2,..., N} such that no product of k distinct elements

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

Euler s, Fermat s and Wilson s Theorems

Euler s, Fermat s and Wilson s Theorems Euler s, Fermat s and Wilson s Theorems R. C. Daileda February 17, 2018 1 Euler s Theorem Consider the following example. Example 1. Find the remainder when 3 103 is divided by 14. We begin by computing

More information

ON MATCHINGS IN GROUPS

ON MATCHINGS IN GROUPS ON MATCHINGS IN GROUPS JOZSEF LOSONCZY Abstract. A matching property conceived for lattices is examined in the context of an arbitrary abelian group. The Dyson e-transform and the Cauchy Davenport inequality

More information

Solutions to Problem Set 4 - Fall 2008 Due Tuesday, Oct. 7 at 1:00

Solutions to Problem Set 4 - Fall 2008 Due Tuesday, Oct. 7 at 1:00 Solutions to 8.78 Problem Set 4 - Fall 008 Due Tuesday, Oct. 7 at :00. (a Prove that for any arithmetic functions f, f(d = f ( n d. To show the relation, we only have to show this equality of sets: {d

More information

A lattice point problem and additive number theory

A lattice point problem and additive number theory A lattice point problem and additive number theory Noga Alon and Moshe Dubiner Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract

More information

CISC-102 Fall 2017 Week 6

CISC-102 Fall 2017 Week 6 Week 6 page 1! of! 15 CISC-102 Fall 2017 Week 6 We will see two different, yet similar, proofs that there are infinitely many prime numbers. One proof would surely suffice. However, seeing two different

More information

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS JEREMY LOVEJOY Abstract. We study the generating function for (n), the number of partitions of a natural number n into distinct parts. Using

More information