z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f"

Transcription

1 I % 4*? ll I - ü z /) I J (5 /) 2 - / J z Q. J X X J 5 G Q J s J J /J z *" J - LL L Q t-i ' '," ; i-'i S": t : i ) Q "fi 'Q f I»! t i

2 TIS NT IS BST QALITY AVAILABL. T Y FRNIS T TI NTAIN A SIGNIFIANT NBR F AGS WI NT RR LGIBLY.

3 / V - IB ij I tl rgrs illis) ppig Agy t stits 00 d d d h» ) d d d t IB 8 $ 'S 2 5? i "5. j r» /5 s, I 0 i 0 q q s s d d d T- 0 g "5. "S Q ) 2? * 0 2* = B= * j t 5?» S l '" I "5. 'J 9 S " ^, " * 8 9, r s? " B 0. & S "S. 0 * i S i 5. ** 5 0 (7) 0 Q. s 5 it I s t J T 5. 5 $ Q ü i 0 0 L 0 g & 8 'S 0 & "5 J J 0. J. & i 0. S

4 h» y J r» ) R - fjl J J! t I ii S i». h» llidr»*» l N» l tv S 2 L 2? 8 f».. ^» - LL f J SI t * 2 Sä - ''S. J i _. ^ S f 0 2 * S " * I! ii I-. I I!- I & - 8 S 5 r»- II SL I I! II 8 l pr s f»- S, Q 8 2 rf?! J{ I I I fi t i d J g i»-' T-' * 8. * 5 8 si 8 2 S 2 I 2 Q / l_ ^ t h- 7 ^ Sl l f» ) ) z Q Z S tl i it i _ 2 S sb2s, 5 JB.. Ativ ffir listd ivili rs S it i ( Fig Ntil Fig Ntil T

5 iß ^ X +J XI iß - - T 5 V» i r V V 0 ^ ) Q 2 SI s r 4- k. V) sti rgr sd ( sj r. J i - J - t - VJ r-2 t- * 7 Bd prtt rs i = l S- i i ^ \J Tj- * * I is. rj *r r* J 0J V -, i I? ST p I VI t! Q "9 i +J t 8 V) 0 fi"g r ti ü 4- Airt S ri *rf - 0 ä ä ZZ i r-

6 V S 5 Si b 9\ 0\ v Q V * * - Q A X S.- b ( " t-i k 8.. J-L ^ ^ ft i Ä. r» f r ** S 4- V i * t-4 R S ^ 0 s i h 4-0 d t. / R h ) h 5 T - * t l*j t (J i g 4 ^ 9 4- (4 R 4- b f fl) 4-0 *J f 0 t. k 0 0 R Q 9 0. &? R * & b Q s

7 i i * 0J 0! i A X! ft) rj l X! A! & s r S V ft ( i 0 -l. J J ^ J J T J " r r ^ W X! * J J -' J -l -l ~* Ö t S i»~ "0 ) i J ) r 4j I ä -i " s "Öl J J ft) q -I & J i r x ; "j q " 4- r rj J 0 J» JJ f JJ J 4- ffl ft r- p- r. r r r i 4- r X V t W r- r xs i ± v * 0 r-l (k + X! J * J XJ 4- L. N V T T^ f \ ^ & ^-, 00 Ti ( W k r x: Ti 00 * 0 v 0J J IX) IT r- \ r ri t- JJ i- I "- V»-I N 0 2 L, J= 0 J V *J R r X! X * S i.»4 4- X J ^ - 4- X s X X 4- * 0 ""» & p 2 i ^ J 7 ^» 0 r *J -y r 4-2 J X T, 4-7 J g * *J 0 J XJ r * J v +V. y S i-i r-' r 0 --( 2 J jj h J 4-J j r J, 5 r f T " V r 0 4- f % Tl ^J5 4j Tl T? J _, T-l ^ r "i ^ " 2 "* - J-l -l - r +i b -l 4-0 J * ^"S? ^. ri 4-) J T *»"J? J t ^ - 47 S X! & 2 4- W 0 x;. i i ^ *i J» 4-) i ~ -l i f rj Ti r-i» 2» S r *J 0 r 0 * ft - v J J? -l r S v r ^ ) Tl V _, 0W» "i \ * 0 ^ i 7 i ij *0 _ J -S b 0 * *^ -l J -l -l _ f (- T 00 r 00 0 N r^. J - 00 V ^ - 0- v / vy J R ^ - Ti + + " ' t r -l r... -l.. J X X ^ J ft) -y -l W & b ~ W t 0 r h J 0 TJ i V? 4- X! r T5 J

8 2 ^ r t* W 4 B 4- ö I 0 4 ) ft * Si g» i»» 5 A) S j +. 4 t ft) x t ( 4 Ö t 8 0 ^ 2? r & v - I % -, 0*0 g 2 * g *:% * JJ t N 0 t I Q Tt 4 t) + J t 4 i t tj Q. 'S g t ( 0 t ^ ^ f ^t L 4- t -Q t L IS B. * / ) ^- t t l V V J V N r-»-i rt ^j ^^ jj t ft) 0 ft) g &* ft) W ft) 2 tj jj ft) ft) - S 2 5 ft) "? ^ i ft v... s t ft)? ft) 0 ft) t Sg r f» t ffl "» h» ft) & 0 W k t zi " ^ JJ t J r " ft). ^j "* ft) T * 2 ft) g ^ &. t x i i. W t t, ) 4- T t A ft, 2 S ft) 00 v l?. ^ 4- "5 ^ t f-j ft V t^j *i B 0 ft) 0 i "-" 0 ^ ft) t ** "! * 2 t - ft) S ü 4 t.. 4- t i t r-t 0 -l J I 4 & t tr 4 -l tj g ft) " t 4 - i 4- t 4- T5 V, J= x: W

9 T i 8 r 8 f * W r S! If) r» f p. v r v v * * v v»r v 00 i-l V J- v ^ v *.* s J 996 it i V V V r» v v v t- v T-\ r-l \ i V V f» 0 f v v V t- p F V - t f ^ 2 rt " f V r» t T \ V t V V f t- p f " S J ) ^. JZ f - I 2 f s +» * l-l X T R) 2 2 f f 8 S S 5 * p ) i» i-l 2 Q 2 & S & f f T

10 4- r- Xl v I r r i v IX) - i r r r» r* V tjt r» r- V r r r r r r * it 6. fi ) r r» r 00 r» * r» r X 4 4- r» h. & v Tt f 0 ^. sz f p I* S.- V. ft- r T r v. i- i Q V 0 r T r r l

11 tt tt 4-2 ) 4- ; tt 0} (4- t -l (- ( t»- J TJ i ~ X! Q 4-»- Ä Q» 4- * ' 4-TJ 0 fl 4-0 p Q r*» t 05 k T5 N 4-J ) *W tr- Q TJ Q 0 ) i r Q) 4- s I TJ 4- Q. ^ 4j 4- i i t t 4- ü x: 4- t 6 TJ t ) TJ» i t ^ TJ t i t, r TJ t t 4- t t t TJ t ( 4- ). TJ " TJ t ) t 4- TJ TJ TJ TJ h ü A 4-) t d) t TJ 4- l-l 4- ^ TJ 4- t.q 4- Tr X! tt 4-4-~ t ' ^r i f i N i i xi r- V) TJ r ^ r*- A J ; x

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

'NOTASCRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es.

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es. d n 2: d t d t d! d d 52 d t d d P in t d. d P5 d - d d , d P il 0) m d p P p x d d n N r -^ T) n «n - P & J (N 0 ' 4 «"«5 -» % «D *5JD V 9 * * /J -2.2 " ^ 0 n 0) - P - i- 0) G V V - 1(2). i 1 1 & i '

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#(

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~ " ^ o ^ * n 9 C"r * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O.

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~  ^ o ^ * n 9 Cr * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O. THE PENALTY FR MAKING A FALSE STATEMENT IN THIS REPRT AND/R CERTIFICATE IS S5. R SIX MNTHS IMPRISNMENT R BTH "D "? y. " cr TJ Xl^ " Q. rt 5' "g s r ^.. C i :? S :.. y ' : s s ^ST (X. I ^^ ^ ^ S : t ^ :

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s 5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! $ f 1 :.1 f.

More information

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances.

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances. 5 s Tble f Generl rinnes. q=! j-j 3 -ri j -s 3s m s3 0,0 0) fife s fert " 7- CN i-l r-l - p D fife s- 3 Ph' h ^q 3 3 (j; fe QtL. S &&X* «««i s PI 0) g #r

More information

r 3 > o m > o > z m Z -< Z il r H O O H H i-» 00 a o x3 X M > I- > 1 n 0) l' 1

r 3 > o m > o > z m Z -< Z il r H O O H H i-» 00 a o x3 X M > I- > 1 n 0) l' 1 7J 73 Z -) r a c -< 0-73 - -0 -< C 73 FLE N. UC08-25454S - c X - a 0 TJ 0 TB - ;w - 70 () < r 3 a r w r r r Ō Z c a Z. < 7 C B D - -< a r Z J < r < < 70 TJ "s w 3 0 D < 70 -) 7) 0 TJ!! -( Z X - r 7) 77

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

> DC < D CO LU > Z> CJ LU

> DC < D CO LU > Z> CJ LU C C FNS TCNCAL NFRMATN CNTR [itpfttiiknirike?fi-'.;t C'JM.V TC hs determined n \ _\}. L\\ tht this Technicl cment hs the istribtin Sttement checked belw. The crnt distribtin fr this dcment cn be telind

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 *

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 * B. - - F -.. * i r > --------------------------------------------------------------------------- ^ l y ^ & * s ^ C i$ j4 A m A ^ v < ^ 4 ^ - 'C < ^y^-~ r% ^, n y ^, / f/rf O iy r0 ^ C ) - j V L^-**s *-y

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement Vector Supplement 1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector

More information

RESEARCH STUDY ON ADOPTION OF SOCIAL MEDIA MARKETING IN THE ENTERPRISE (MALAYSIA CONTEXT) KEE YONG HONG LEOW XIN YI TANG XIN YI WONG SIONG MUNG

RESEARCH STUDY ON ADOPTION OF SOCIAL MEDIA MARKETING IN THE ENTERPRISE (MALAYSIA CONTEXT) KEE YONG HONG LEOW XIN YI TANG XIN YI WONG SIONG MUNG RESEARCH STUDY ON ADOPTION OF SOCIAL MEDIA MARKETING IN THE ENTERPRISE (MALAYSIA CONTEXT) KEE YONG HONG LEOW XIN YI TANG XIN YI WONG SIONG MUNG BACHELOR OF MARKETING (HONS) UNIVERSITI TUNKU ABDUL RAHMAN

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

October 2016 v1 12/10/2015 Page 1 of 10

October 2016 v1 12/10/2015 Page 1 of 10 State Section S s Effective October 1, 2016 Overview The tables list the Section S items that will be active on records with a target date on or after October 1, 2016. The active on each item subset code

More information

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin.

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin. TT & L Gl v l q T l q TK v i f i ' i i T K L G ' T G!? Ti 10 (Pik 3) -F- L P ki - ik T ffl i zzll ik Fi Pikl x i f l $3 (li 2) i f i i i - i f i jlñ i 84 6 - f ki i Fi 6 T i ffl i 10 -i i fi & i i ffl

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Humanistic, and Particularly Classical, Studies as a Preparation for the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

More information

Jsee x dx = In Isec x + tanxl + C Jcsc x dx = - In I cscx + cotxl + C

Jsee x dx = In Isec x + tanxl + C Jcsc x dx = - In I cscx + cotxl + C MAC 2312 Final Exam Review Instructions: The Final Exam will consist of 15 questions plus a bonus problem. All questions will be multiple choice, which will be graded partly on whether or not you circle

More information

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

`G 12 */ T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S. 01(( +,-. ()*) $%&' "#! : : % $& - "#$ :, (!" -&. #0 12 + 34 2567 () *+ '!" #$%& ; 2 "1? + @)&2 A5&2 () 25& 89:2 *2 72, B97I J$K

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R 25 3(514) 517.988..,..,.. -.,.., -, -. : _x(t) =f(t x(t)) _ L(t) (1) L(t) _.. - -, f(t x(t)) L(t). _ ([1],. 1, x 8,. 41),. [2]{[4],., [2]{[4],, [1]. - x(t) =x f( x())dl() t {, {.. [5]{[7]. L(t),. [8] (1),

More information

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A Name: ~s'~o--=-i Class; Date: U.;,..;...-h_D_Vl_5 _ MAC 2233 Chapter 4 Review for the test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the derivative

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

NOTE ON A THEOREM OF KAKUTANI

NOTE ON A THEOREM OF KAKUTANI NOTE ON A THEOREM OF KAKUTANI H. D. BRUNK 1. Introduction. Limit theorems of probability have attracted much attention for a number of years. For a wide class of limit theorems, the language and methods

More information

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE (tl Sh*q +sss$!! ll ss s ;s$ll s ; B 3 $ Sest -9[*; s$t 1,1 - e^ -" H u$xdx fd $A sfle *9,9* '. s. \^ >X!l P s H 2.ue ^ O - HS 1- -l ( l[[l[e lff* l$[fl$l1l3f[ U, -.1 $tse;es s TD T' ' t B $*l$ \l - 1

More information

FY 13 TDC Revenue Report 31-Dec-2012

FY 13 TDC Revenue Report 31-Dec-2012 CLLR CNTY TRST TAX RVN CAC January 10, 2013 V-1 Staff Reprts 1 f 18 Budget escriptin und Y 13 Adpted Budget Y 13 (5%) Reserved by Law Y 13 Net Budget Y 13 recast Variance t Y 13 Budget Beach acilities

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1872 Colby College Catalogue 1872-1873 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

. Choose 4 out of 5 problems. Use an X in the table below to indicate which problem to

. Choose 4 out of 5 problems. Use an X in the table below to indicate which problem to Exam2 April 7, 2003 Page 1 Physics 263: Electromagnetism and Modern Physics Sections0101-0105 Exam 2 Prof JJ Kelly nstructions:. This is a closed book, closed notes exam to be completed in 50 minutes.

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Document And Report Documentation Page Submitted edoc_

Document And Report Documentation Page Submitted edoc_ 'uaiwixll r'u.iu V xvpuii ifj-tmeniann iage Submitted as ed 1.. '...X,> https://trstiiit.dti.mil/passgi/ed/ed_press_sf298.pl -/ Dument And Reprt Dumentatin Page Submitted ed_17573268 as Reprt Dumentatin

More information

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth 6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0

More information

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b),

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b), 16. Ring Homomorphisms and Ideals efinition 16.1. Let φ: R S be a function between two rings. We say that φ is a ring homomorphism if for every a and b R, and in addition φ(1) = 1. φ(a + b) = φ(a) + φ(b)

More information

Total Possible Points = 150 Points. 1) David has 980 yards of fencing and wishes to enclose a rectangular area. (2.5 points) + '3 b. 7 + Ib+3, tf-.

Total Possible Points = 150 Points. 1) David has 980 yards of fencing and wishes to enclose a rectangular area. (2.5 points) + '3 b. 7 + Ib+3, tf-. MA180 Professor Fred Katiraie Test IT Form A (Fall 2007) Name: Total Possible Points = 150 Points 1) David has 980 yards of fencing and wishes to enclose a rectangular area. (2.5 points) a) Express the

More information

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333. 0 fltu77jjiimviu«7mi^ gi^"ijhm?'ijjw?flfi^ V m 1 /14 il?mitfl?^i7wwuiinuvitgviiyiititvi2- imviitvi^ qw^ww^i fi!i-j?'u'uil?g'iqwuwiijmi.wti twwrlf^ imii2^

More information

I I. R E L A T E D W O R K

I I. R E L A T E D W O R K A c c e l e r a t i n g L a r g e S c a l e C e n t r o i d - B a s e d C l u s t e r i n g w i t h L o c a l i t y S e n s i t i v e H a s h i n g R y a n M c C o n v i l l e, X i n C a o, W e i r u L

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

An Addition Theorem Modulo p

An Addition Theorem Modulo p JOURNAL OF COMBINATORIAL THEORY 5, 45-52 (1968) An Addition Theorem Modulo p JOHN E. OLSON The University of Wisconsin, Madison, Wisconsin 53706 Communicated by Gian-Carlo Rota ABSTRACT Let al,..., a=

More information

-r IdfJ (r-lc) / f\&() + Q sz r I~ (Y\(,J /I\q) +- fy\17. ~~/VL ~ V\ ("I) -:: f\(") e-rn~>,/'(-

-r IdfJ (r-lc) / f\&() + Q sz r I~ (Y\(,J /I\q) +- fy\17. ~~/VL ~ V\ (I) -:: f\() e-rn~>,/'(- 1. Consider a dilute gas of particles in the atmosphere. Near the earth's surface, the force on a particle of mass m may be taken as a constant, F = -mgj, where J is a unit vector in the vertical direction.

More information

( _ ~+-')(X+2.) ) _ (.Y.. + "~.Ct( M - )(-~ o + ~ - 0+ (-',2.) 17G 4-~ -.;t [-~/-4) U (-2,00)

( _ ~+-')(X+2.) ) _ (.Y.. + ~.Ct( M - )(-~ o + ~ - 0+ (-',2.) 17G 4-~ -.;t [-~/-4) U (-2,00) Algebra \I Pre AP Review Worksheet 11.1, 11.3, 11.6 Name ~+~ _ Use a sign chart to solve each inequality. Verify using a calculator. X2 +x-12 ~ 0 {-~ -'IJ 3 x+6 l. 2. --+1

More information

fnm 'et Annual Meeting

fnm 'et Annual Meeting UUVtK Ht.t, A 0 8 4 S.. Rittin Nub t, n L Y t U N i, n ' A N n, t\ V n b n k pny' ull N) 0 R Z A L A V N U X N S N R N R H A V N U R A P A R K A L A N Y Buin Add. N. Stt ity wn / Pvin) Ali l) lil tal?l

More information

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all.

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all. - Prfs '', '', 'b' a '' - Na: Wrsar 27 Dat: W ar tr asrs t? Bas t arrts at t a. At t btt f t a s a st f wrs. Ts wrs ar t. T wrs av b a rta (ra arss), vrta (ra w) r aa (fr rr t rr). W f a wr, raw a at r

More information

(5) difference of squares,

(5) difference of squares, EOCT REVIEW UNIT 5 Quadratic Functions Name Kut Write each expression in factored form. 1. X2-2x - 15 (X>5')(X f 3) 2. X2-18x + 81 (x:-q)(x-q) (1)' (X, ) z- Complete each square and write the resulting

More information

THE VALUATION STRUCTURE OF HOMOMORPHIC IMAGES OF PRÜFER DOMAINS

THE VALUATION STRUCTURE OF HOMOMORPHIC IMAGES OF PRÜFER DOMAINS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 3, December 1974 THE VALUATION STRUCTURE OF HOMOMORPHIC IMAGES OF PRÜFER DOMAINS MONTE B. BOISEN, JR. AND PHILIP B. SHELDON ABSTRACT.

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

Writing a press release and pitching it to the media

Writing a press release and pitching it to the media Wiig l iig i i Wiig l l y g i vg f y gii ig. Mi vg i f y k, fil f y gii g l g ivlv i y igig ii ig y vi. W i l? A l ( l/ i l) i i y f y y f i. I ill il ky f, q f kl il f ifi. T i l f l i vi i v y y b i

More information

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MATAURANGA 0 AOTEAROA. Level 2 Physics, Demonstrate understanding of mechanics

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MATAURANGA 0 AOTEAROA. Level 2 Physics, Demonstrate understanding of mechanics L 91171 lllllllllllllllllll _j,.,, NZ~ SUPERVISOR'S NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MATAURANGA 0 AOTEAROA Level 2 Physics, 2013 91171 Demonstrate understanding of mechanics 2.00 pm Wednesday

More information

WALL D*TA PRINT-OUT. 3 nmth ZONE

WALL D*TA PRINT-OUT. 3 nmth ZONE T A B L E A 4. 3 G L A S S D A T A P R I N T - O U T H T C L».>qth» H e ig h t n u «b»r C L A S S D A T A P R I N T O U T it************************************ 1*q o v»rh # n g recm oi*ion*l orient n

More information

French Scheme of Work 2 Year Cycle for Mixed Age Classes Years 5 & 6 Year A - 35 lessons x 45 minutes Year B - 35 lessons x 45 minutes

French Scheme of Work 2 Year Cycle for Mixed Age Classes Years 5 & 6 Year A - 35 lessons x 45 minutes Year B - 35 lessons x 45 minutes Frnh Shm f Wr 2 Yr Cl fr Mid A Cl Yr 5 & 6 Yr A - 35 ln 45 mut Yr B - 35 ln 45 mut YEAR A Prt 1 D hp b - 5 ln Prt 1 D nu trrdir 8 ln Lnu Cntnt Knwld but Lnu Lnu Cntnt Knwld but Lnu Vbulr Indfit rt Vbulr

More information

'5E _ -- -=:... --!... L og...

'5E _ -- -=:... --!... L og... F U T U R E O F E M B E D D I N G A N D F A N - O U T T E C H N O L O G I E S R a o T u m m a l a, P h. D ; V e n k y S u n d a r a m, P h. D ; P u l u g u r t h a M. R a j, P h. D ; V a n e s s a S m

More information

Citation Osaka Journal of Mathematics. 34(3)

Citation Osaka Journal of Mathematics. 34(3) TitleStructure of a class of polynomial Author(s) Wen, Zhi-Xiong; Wen, Zhi-Ying Citation Osaka Journal of Mathematics. 34(3) Issue 1997 Date Text Version publisher URL http://hdl.handle.net/11094/11085

More information

A ROLE FOR DOUBLY STOCHASTIC MATRICES IN GRAPH THEORY

A ROLE FOR DOUBLY STOCHASTIC MATRICES IN GRAPH THEORY proceedings of the american mathematical society Volume 36, No. 2, December 1972 A ROLE FOR DOUBLY STOCHASTIC MATRICES IN GRAPH THEORY D. J. HARTFIEL AND J. W. SPELLMANN Abstract. This paper represents

More information

535.37(075.8) : /, ISBN (075.8) ISBN , 2008, 2008

535.37(075.8) : /, ISBN (075.8) ISBN , 2008, 2008 .. 2008 535.37(075.8) 22.34573 66.. 66 : /... : -, 2008. 131. ISBN 5-98298-312-8 -,, -,,, -, -., 200203 «-».,,, -. 535.37(075.8) 22.34573 -,.. ISBN 5-98298-312-8.., 2008, 2008., 2008 2 , -. :,, - ;,, ;

More information

,W.(.1*i x. Itr ::r:: i# A=,lrr. 'l ' rykfu. -[ *' 5 ]{, X/,i "# rrlrr,;- "h. K rn. f'e-s **1,:i' $ *' ##a. "+ c)4mls ( d)3.4 v * fr: lt-) t'..].

,W.(.1*i x. Itr ::r:: i# A=,lrr. 'l ' rykfu. -[ *' 5 ]{, X/,i # rrlrr,;- h. K rn. f'e-s **1,:i' $ *' ##a. + c)4mls ( d)3.4 v * fr: lt-) t'..]. General Physics II (PHYS 104) Exam 1: February 23,2012 Name: Multiple Choice (4 points each): Answer the following multiple choice questions. Clearly circle the response (or responses) that provides the

More information

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs.

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs. i View husns Crne Speiiins n reecrnespes.m :: :r R: 8 @ il llj v u L u 4r,? >i C) lrl? n R 0&l r'q1 rlr n rrei i 5 n llvvj lv 8 s S llrvvj Sv TT [ > 1 \ l? l:i rg l n - l l. l8 l l 5 l u r l 9? { q i :{r.

More information

ON REARRANGEMENTS OF SERIES H. M. SENGUPTA

ON REARRANGEMENTS OF SERIES H. M. SENGUPTA O REARRAGEMETS OF SERIES H. M. SEGUPTA In an interesting paper published in the Bulletin of the American Mathematical Society, R. P. Agnew1 considers some questions on rearrangement of conditionally convergent

More information

Inverse Iteration on Defective Matrices*

Inverse Iteration on Defective Matrices* MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 139 JULY 1977, PAGES 726-732 Inverse Iteration on Defective Matrices* By Nai-fu Chen Abstract. Very often, inverse iteration is used with shifts to accelerate

More information

PRODUCTS OF STEINER'S QUASI-PROXIMITY SPACES

PRODUCTS OF STEINER'S QUASI-PROXIMITY SPACES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 51, Number 1, August 1975 PRODUCTS OF STEINER'S QUASI-PROXIMITY SPACES E. HAYASHI ABSTRACT. E. F. Steiner introduced a qua si-proximity S satisfying

More information

F102 1/4 AMP +240 VDC SEE FIGURE 5-14 FILAMENT AND OVEN CKTS BLU J811 BREAK-IN TB103 TO S103 TRANSMITTER ASSOCIATED CAL OFF FUNCTION NOTE 2 STANDBY

F102 1/4 AMP +240 VDC SEE FIGURE 5-14 FILAMENT AND OVEN CKTS BLU J811 BREAK-IN TB103 TO S103 TRANSMITTER ASSOCIATED CAL OFF FUNCTION NOTE 2 STANDBY OWR OR F0 M NOT S0 RT OF FUNTI FL0 T0 OWR SULY SUSSIS T0 T0 WIR FOR 0 V OWR SULY SUSSIS T0 WIR FOR V 0 0 RT V0 RT V0. V RT V0 RT V0 NOT. V. V NOT +0 V 0 +0 V. V 0 FUNTI NOT L +0 V S FIUR - FILMNT N OVN

More information

Atlantic County Properties

Atlantic County Properties () li i () li i () li i V li i li i ii ib ii ii ii i &. ii ii l ii iii bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - - bf i - bf i - bf i - bf i - bf

More information

(ril"s::lli '*Y, ,dr4{n. w.j. ",;:ii:{..._, I i,ai I. AOEP'IIICKOTO MyHI4TIUIIA.JTbHO O PAI,rOrrA nepmckoto KpA.fl TIOCTAHOBJTEHPIE

(rils::lli '*Y, ,dr4{n. w.j. ,;:ii:{..._, I i,ai I. AOEP'IIICKOTO MyHI4TIUIIA.JTbHO O PAI,rOrrA nepmckoto KpA.fl TIOCTAHOBJTEHPIE '*Y w.j TOCTOBJTEPE.MCTPU{ OEP'CKOTO MyTU.JTbO O PrOrr EPMCKOTO Kp.fl 26.02.20t3 e387 -l fo uecet Meellf [epe.rer 3eMeJrbbr ycrkb rrperr3ebr r pecrbjreg MferbM cembfl Mr ytbeprme r ctbjrerrem MrcTpr r

More information

{n 2 } of {n) such that n = rii+n is an {n-l}, the Vf-i^2 is a {r-l} in {r}, for T=T' + T" + 2. Hence, we have.

{n 2 } of {n) such that n = rii+n is an {n-l}, the Vf-i^2 is a {r-l} in {r}, for T=T' + T + 2. Hence, we have. i93o.] GENERALIZED DIVISION ALGEBRAS 535 {n 2 } of {n) such that n = rii+n 2 + 2 is an {n-l}, the Vf-i^2 is a {r-l} in {r}, for T=T' + T" + 2. Hence, we have or N - k + 2 = 1, iv = * 1, which was to be

More information

Erlkönig. t t.! t t. t t t tj "tt. tj t tj ttt!t t. e t Jt e t t t e t Jt

Erlkönig. t t.! t t. t t t tj tt. tj t tj ttt!t t. e t Jt e t t t e t Jt Gsng Po 1 Agio " " lkö (Compl by Rhol Bckr, s Moifi by Mrk S. Zimmr)!! J "! J # " c c " Luwig vn Bhovn WoO 131 (177) I Wr Who!! " J J! 5 ri ris hro' h spä h, I urch J J Nch rk un W Es n wil A J J is f

More information

IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY

IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY By H. A. JAHN {University of Birmingham) [Received 7 October 947]

More information

Music by: Theresa Lee-Whiting. Lyrics by: Rev. Dr. Brolin Parker. Piano. Pno.

Music by: Theresa Lee-Whiting. Lyrics by: Rev. Dr. Brolin Parker. Piano. Pno. A Chistmas Geeting Dab is the life, and sighfully long, which neve has head an angel's song. Dak is the night whose sky.full of space is staless offancy and its pomise of gace. So let the mey bells be

More information

' ~ '...c...i. - m m mr - ~ - ~ 11r. llt -, -. ~ I ~ ~ :: [KJ"Overture" Intro Moderately Fast Rock J = ~

' ~ '...c...i. - m m mr - ~ - ~ 11r. llt -, -. ~ I ~ ~ :: [KJOverture Intro Moderately Fast Rock J = ~ Words and M usic by E Y LEE, L EX LFESON and NEL PERT uitar Transcription by ae Whitehill s heard on the Rush Mercury/Polygram recording 22 05 00 x o XO 0 xx xx XO sx xxo )42 2 1 34 13 H 4 3 12 1) 4 2

More information

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 ANATOLE BECK Introduction. The strong law of large numbers can be shown under certain hypotheses for random variables which take

More information

DIAMOND DRILL RECORD

DIAMOND DRILL RECORD iitft'ww!-;" '**!' ^?^S;Ji!JgHj DIAMOND DRILL RECORD Molftflp.'/^ f* -. j * Dtp * ^* * Property '^^^J^ - I/^X/'CA*- Etev, Collar Locatioa..-A^*.-//-^.^ /Z O f* j\. Is!/'. ~O stt^+'r&il, Di turn.....,,,...,.,......

More information

YORK UNIVERSITY. Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH A Test #2.

YORK UNIVERSITY. Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH A Test #2. YORK UNIVERSITY Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH 317 6. A Test #2 June 27, 212 Surname (print): Given Name: Student No: Signature: INSTRUCTIONS:

More information

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION M. KAC 1. Introduction. Consider the algebraic equation (1) Xo + X x x + X 2 x 2 + + In-i^" 1 = 0, where the X's are independent random

More information

Calculations of Integrals of Products of Bessel Functions

Calculations of Integrals of Products of Bessel Functions Calculations of Integrals of Products of Bessel Functions By J. E. Kilpatrick,1 Shigetoshi Katsura2 and Yuji Inoue3 I. Introduction. Integrals of products of Bessel functions are of general interest. Define

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Distributed Set Reachability

Distributed Set Reachability Dstt St Rty S Gj Mt T Mx-P Isttt Its, Usty U Gy SIGMOD 2016, S Fs, USA Dstt St Rty Dstt St Rty (DSR) s zt ty xt t sts stt stt Dstt St Rty 2 Dstt St Rty Dstt St Rty (DSR) s zt ty xt t sts stt stt Dstt St

More information

MATH 241 Practice Second Midterm Exam - Fall 2012

MATH 241 Practice Second Midterm Exam - Fall 2012 MATH 41 Practice Second Midterm Exam - Fall 1 1. Let f(x = { 1 x for x 1 for 1 x (a Compute the Fourier sine series of f(x. The Fourier sine series is b n sin where b n = f(x sin dx = 1 = (1 x cos = 4

More information

Theory of slow-atom collisions

Theory of slow-atom collisions PHYSICAL REVIEW A VOLUME 54, NUMBER 3 SEPEMBER 1996 heory of slow-atom collisions Bo Gao Department of Physics and Astronomy, University of oledo, oledo, Ohio 43606 Received 23 January 1996 A general theory

More information

DIGIT-SERIAL ARITHMETIC

DIGIT-SERIAL ARITHMETIC DIGIT-SERIAL ARITHMETIC 1 Modes of operation:lsdf and MSDF Algorithm and implementation models LSDF arithmetic MSDF: Online arithmetic TIMING PARAMETERS 2 radix-r number system: conventional and redundant

More information

Unavoidable Multicoloured Families of Configurations

Unavoidable Multicoloured Families of Configurations Unavoidable Multicoloured Families of Configurations arxiv:1409.4123v2 [math.co] 29 Sep 2014 R.P. Anstee Mathematics Department The University of British Columbia Vancouver, B.C. Canada V6T 1Z2 Linyuan

More information

MULTIPLICATIVE FIBRE MAPS

MULTIPLICATIVE FIBRE MAPS MULTIPLICATIVE FIBRE MAPS BY LARRY SMITH 1 Communicated by John Milnor, January 9, 1967 In this note we shall outline a result concerning the cohomology of a multiplicative fibre map. To fix our notation

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

NO-Sl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELECTRON SPECTRUNl(U) 1/1

NO-Sl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELECTRON SPECTRUNl(U) 1/1 NOSl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELETRON SPETRUNl(U) 1/1 MRSHINGTON UNIV MRSHINOTON D DEPT OF HEMISTRY UNSSIIEDH SANDE ET AL. OT 95 TR2S NSSSI4BSK9852 FO74 N 1 tgeorge UASIIE G? N L L. Q.. 1111111

More information

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS A. G. SHANNON* University of Papua New Guinea, Boroko, T. P. N. G. A. F. HORADAIVS University of New Engl, Armidale, Australia. INTRODUCTION In this

More information

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. ""T... Sl. J":..2.l.. -+-Jw. A =- A(~)'" ~ A :..!w-l-~

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. T... Sl. J:..2.l.. -+-Jw. A =- A(~)' ~ A :..!w-l-~ Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl 1. Find the missing value given BCDA is a rectangle. Perimeter = 62 cm Area =? V:. d.t-\" ~vj B.--- ---,c 17 em ~ J. ':. ~). -:: - '0..., rj ~ -;:,

More information

Nrer/ \f l xeaoe Rx RxyrZH IABXAP.qAATTAJI xvbbqaat KOMnAHT1. rvfiqgrrox 3Axl4 Pn br H esep fiyraap: qa/oq YnaaH6aarap xor

Nrer/ \f l xeaoe Rx RxyrZH IABXAP.qAATTAJI xvbbqaat KOMnAHT1. rvfiqgrrox 3Axl4 Pn br H esep fiyraap: qa/oq YnaaH6aarap xor 4 e/ f l ee R RyZH BXP.J vbb KOMnH1 vfig 3l4 Pn b H vlun @*,/capn/t eep fiyaap: a/ YnaaH6aaap eneaneee 6ana tyail CaHafiu cafigun 2015 Hu 35 nyaap l'p 6ana4caH "Xe4ee a aylzh abap gaan" XKailH gypeu"uzn

More information

S \ - Z) *! for j = 1.2,---,k + l. i=i i=i

S \ - Z) *! for j = 1.2,---,k + l. i=i i=i RESTRICTED COMPOSITIONS S. G. MOHANTY McMaster University, Hamilton, Ontario, Canada As a continuation of [6] and [7], this paper deals with a restricted set of compositions of an integer (to be defined

More information

ON THE NUMERICAL RANGE OF AN OPERATOR

ON THE NUMERICAL RANGE OF AN OPERATOR ON THE NUMERICAL RANGE OF AN OPERATOR CHING-HWA MENG The numerical range of an operator P in a Hubert space is defined as the set of all the complex numbers (Tx, x), where x is a unit vector in the space.

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

ON DIFFERENCE SETS WHOSE PARAMETERS SATISFY A CERTAIN RELATION

ON DIFFERENCE SETS WHOSE PARAMETERS SATISFY A CERTAIN RELATION ON DIFFERENCE SETS WHOSE PARAMETERS SATISFY A CERTAIN RELATION P. KESAVA MENON 1. Introduction. Let us denote, as usual, the parameters of a difference set by v, k, X, n so that (1.1) k2=n + \v, il.2)

More information

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA Di~rete l~tatlueraafics 44(1983) 293--2'98 P/o,l'tll-Holland Pttblishing Company 293 A NOTE ON ABEL POLYNOMLALS LABELED FORESTS AND hooted Bruce E. SAGAN* Uai~,ersily of Michigan, Ann Arbor, MI 48109,

More information

Sparse Levenberg-Marquardt algorithm.

Sparse Levenberg-Marquardt algorithm. Sparse Levenberg-Marquardt algorithm. R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2004. Appendix 6 was used in part. The Levenberg-Marquardt

More information

_ =?**«*"*-" - // * * // *» *,«* 1* Λ B "S*W * \ * * * N* - ft «0 λ "_«- 2j"_=ft" S

_ =?**«**- - // * * // *» *,«* 1* Λ B S*W * \ * * * N* - ft «0 λ _«- 2j_=ft S SITE 78 HOLE A CORE 1H CORED INTERVAL 2660.82670.3 mbsl; 0.09. mbsf TIMIEROCK UNIT ~Z. O CO Q_,2> i CL Q_ Z> BIOSTRAT. ZONE/ i CM CM Z < IOFOSSILS MNVN ~ IT) OLARIANS RAOI I DIATOMS LL 2 z I PHYS;. PROPERTIES

More information

A NOTE ON THE SINGULAR MANIFOLDS OF A DIFFERENCE POLYNOMIAL

A NOTE ON THE SINGULAR MANIFOLDS OF A DIFFERENCE POLYNOMIAL A NOTE ON THE SINGULAR MANIFOLDS OF A DIFFERENCE POLYNOMIAL RICHARD M. COHN 1. Introduction. In a previous paper 1 we defined essential singular manifolds of a difference polynomial in one unknown, and

More information

Systems Engineering/Process Control L4

Systems Engineering/Process Control L4 1 / 24 Systems Engineering/Process Control L4 Input-output models Laplace transform Transfer functions Block diagram algebra Reading: Systems Engineering and Process Control: 4.1 4.4 2 / 24 Laplace transform

More information