UHF Magnet Development at MIT

Size: px
Start display at page:

Download "UHF Magnet Development at MIT"

Transcription

1 UHF NMR/MRI Workshop Bethesda, MD November 12-13, 2015 Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge MA Acknowledgement NIGMS-NIBIB-(NCRR) and Juan Bascuñàn, Seungyong Hahn (FSU/NHMFL), Timing Qu, Mingzhi Guan Robert Griffin, Gerhard Wagner (HMS), Mei Hong 1/11

2 UHF NMR (54 mm)/mri (90 mm) Magnets B o 4.2 K Field Range < 20 > 20 è 100 Superconductor LTS LTS/HTS è HTS HTS (REBCO; Bi2223; Bi2212; here not MgB2) < 20 T (@4.2 K) magnets, HTS replacing Cost, not performance, primary criterion very challenging for HTS > 20 T (@4.2 K) magnets, HTS absolutely enabling Performance, not cost, primary criterion HTS essential 2

3 NMR Magnets: March Towards 1.3-GHz & Beyond B [T] LTS/HTS NMR Magnet Program [GHz] : Superconducting LTS [MHz] : COPPER [MHz] 1000 (Bruker) 1.02G (NIMS) 1.3G (MIT) 1.2G (Bruker) (MIT) (MIT) 0.7G (Phase 2) (MIT) 0.35G (Phase 1) (MIT) <iwasa@jokaku.mit.edu> Updated from Kobe Steel data (1998) Year

4 MIT 1.3-GHz NMR Magnet (1.3G) 1.3G Composed of: 500-MHz LTS NMR magnet (L500) 800-MHz REBCO insert (H800) Noteworthy features of 1.3G 1. H800: Non-Insulated (NI) REBCO pancake coils 2. Inside-notch double-pancake coils ì field homogeneity of short magnet 3. Persistent-mode HTS shims: Z1, Z2, X, (Y) 4. Bi2223 SCF shaking magnet 5. K LHe re-condensation Cryocooler (3.5 W@4.3 K) Recondenser ϕ54 RT bore Supports L500 H800 Bi2223 SCF Shaking Magnet HTS Shims: Z1, Z2 X,Y

5 3-nested-coil formation H800 (T op = 4.2 K; I op = 251 A) Each coil an assembly of NI pancake coils, wound with REBCO tape, 6-mm wide, 75-μm thick (10-μm thick copper, each side) overall Coil 1: 26 DP (6 inside-notch); 369 MHz (8.66 T); 90-mm bore Coil 2: 32 DP (8 inside-notch); 242 MHz (5.68 T) Coil 3: 36 DP (8 inside-notch); 189 MHz (4.44 T); 216 mm o.d. L500 cold bore: 237 mm H800 contribution: 61% of 30.5 T 5

6 Overband Overbanding an essential technique for highly stressed (i.e., UHF) coils 3-mm Coil 1: Hoop Stress vs. Radial Position 5-mm Winding Overband 7-mm Overband 7 mm 5 mm Mingzhi Guan, Seungyong Hahn, Juan Bascuñán, Timing Qu, Xingzhe Wang, Peifeng Gao, and Yukikazu Iwasa, A parametric study on overband radial build for a REBCO 800-MHz Insert of a 1.3-GHz LTS/HTS NMR magnet. presented at MT24. 6

7 Current Plans (9/1/15-8/31/18) Complete H800 Current Plans & Final Push Generate 30.5 T, of a non-nmr field quality Continue developing two new shimming techniques HTS shims Shaking-field Final Push (9/1/18-12/31/20) L500/H T Transform a 30.5-T magnet to a high-resolution 1.3-GHz NMR magnet (1.3G) Install 1.3G to the MIT-Harvard Magnetic Resonance Center, FBML 7

8 REBCO (MIT Choice) for H800 & UHF HTS NMR Magnets REBCO Tape vs. Bi2223 Tape & Bi2212 Multifilament wire Advantages Inherent strength: equally important as high critical-current density, J c REBCO > Bi2223 & Bi2212 Overall winding current density (J overall ): J overall è î magnet cost REBCO* >> Bi2223 & Bi2212 Magnet protection, from permanent damage REBCO* easier than Bi2223 & Bi2212 Disadvantage Inherent field impurity * Thanks to H800 NI coils * Thanks to H800 NI coils Purity: Bi2212* >> REBCO & Bi2223 * Thanks to multifilaments vs. New shimming techniques deployed to tape H800 pancake coils 8

9 UHF NMR Magnets Beyond 1.3 GHz >1.3G Magnets for NMR Solution NMR 15 N TROSY benefits from >1.3-GHz magnets* Magic-Angle-Spinning Solid State NMR Highest field possible** * Koh Taeuchi, Haribabu Arthanari, Ichio Shimada, and Gerhard Wagner, Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein, in press JBNMR (2015). ** Lishan Yao, Alexander Grishaev, Gabriel Cornilescu, and Ad Bax, ``The impact of hydrogen bonding on amide 1 H chemical shift anisotropy studied by cross-correlated relaxation and liquid crysstal NMR spectroscopy, J. Am. Chem. Soc.~132, 10866(10pp) (2010) 9

10 NMR Magnets: March Beyond 1.3-GHz 1.3G (30.5T) 1.5G (35.2T) 2.0G (46.9T) 2.5G (58.6T_ (% by HTS) L500*/H800 (61) L500/H1000 (67) L500/H1500 (75) L500/H2000 (80) LTS Cold bore [mm] Mass [kg] ,450 18,630 I op [A] T op [K] 4.2 (* L500, all-nb3sn, up to 6) op [MJ] ($1M) 19 ($4M) 107 ($22M) HTS: REBCO 6-mm wide; Cold bore: 91 mm; I op = 300 A (except 1.3G: 251 A); T op = 4.2 K # Coils / Total DP 3 / 94 4 /140 6 / / 579 Conductor length [km] 12 (~$0.6M) 14 (~$0.7M) 38 (~$2M) 152 (~$6M) E op Overband / Coil [mm] 7 / 5 / 3 5 / 3 / 2 / 1 15/15/16/11/6/3.5 24/23/29/28/27/25/22/15 * L500 designs by Masatoshi Yoshikawa (JASTEC) 10

11 CONCLUSIONS MIT completing (2000) a 1.3G (500/800) high-resolution NMR magnet HTS share: 61% of 30.5 T For UHF NMR magnets, currently REBCO, among HTS, most suitable NI winding technique most viable More heavy lifting for HTS insert, perhaps 100% at 100 T (4.26 GHz) With HTS, the sky s the limit! 1.3G the only major UHF NMR program now funded in the U.S., i.e., by NIH NbTi mainly developed by large HEP projects è LHC Nb3Sn by large fusion projects è ITER For HTS, needed most now: more UHF NMR magnet building projects, supported not only by NIH but also by NSF and DOE Thank you! 11

High-Temperature Superconducting Magnets for NMR and MRI: R&D Activities at the MIT Francis Bitter Magnet Laboratory

High-Temperature Superconducting Magnets for NMR and MRI: R&D Activities at the MIT Francis Bitter Magnet Laboratory High-Temperature Superconducting Magnets for NMR and MRI: R&D Activities at the MIT Francis Bitter Magnet Laboratory The MIT Faculty has made this article openly available. Please share how this access

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

Spatial and Temporal Variations of a Screening Current Induced Magnetic Field in a Double-Pancake HTS Insert of an LTS/HTS NMR Magnet

Spatial and Temporal Variations of a Screening Current Induced Magnetic Field in a Double-Pancake HTS Insert of an LTS/HTS NMR Magnet Spatial and Temporal Variations of a Screening Current Induced Magnetic Field in a Double-Pancake HTS Insert of an LTS/HTS NMR Magnet The MIT Faculty has made this article openly available. Please share

More information

Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI

Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Study on Trapped Field Characteristics of HTS Bulk Annuli With Iron Rings for Ferromagnetic Shimming of a Compact NMR Magnet

Study on Trapped Field Characteristics of HTS Bulk Annuli With Iron Rings for Ferromagnetic Shimming of a Compact NMR Magnet Study on Trapped Field Characteristics of HTS Bulk Annuli With Iron Rings for Ferromagnetic Shimming of a Compact NMR Magnet The MIT Faculty has made this article openly available. Please share how this

More information

An Analytical approach towards passive ferromagnetic shimming design for a high-resolution NMR magnet

An Analytical approach towards passive ferromagnetic shimming design for a high-resolution NMR magnet PSFC/JA-15-46 An Analytical approach towards passive ferromagnetic shimming design for a high-resolution NMR magnet Frank X Li 1, John P Voccio 2, Min Cheol Ahn 3, Seungyong Hahn 2, Juan Bascuñàn 2, and

More information

Toward Super-High Field and Ultra- Compact Size NMR Magnets Operated Beyond 1 GHz (review) Hideaki MAEDA RIKEN, Japan

Toward Super-High Field and Ultra- Compact Size NMR Magnets Operated Beyond 1 GHz (review) Hideaki MAEDA RIKEN, Japan Workshop "Ultrahigh field NMR and MRI: Science at the cross roads @ NIH Nov. 12, 2015 8:50-9:10 Toward Super-High Field and Ultra- Compact Size NMR Magnets Operated Beyond 1 GHz (review) Hideaki MAEDA

More information

ISS th International Symposium on Superconductivity Tower Hall, Funabori

ISS th International Symposium on Superconductivity Tower Hall, Funabori Special Plenary Lecture Yukikazu Iwasa Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139-4208 ISS2014 27 th International Symposium

More information

Update on the Developments of Coated Conductor High Field Magnets in Japan

Update on the Developments of Coated Conductor High Field Magnets in Japan Coated Conductors for Applications 2016 September 11-14, 2016, Aspen, Colorado, USA Update on the Developments of Coated Conductor High Field Magnets in Japan S. Awaji HFLSM, IMR, Tohoku University 1 Recent

More information

High Temperature Superconductor. Cable Concepts for Fusion Magnets. Christian Barth. \iyit Scientific. ^VI I Publishing

High Temperature Superconductor. Cable Concepts for Fusion Magnets. Christian Barth. \iyit Scientific. ^VI I Publishing High Temperature Superconductor Cable Concepts for Fusion Magnets by Christian Barth \iyit Scientific ^VI I Publishing Contents 1 Introduction and motivation 1 2 Superconductors 5 21 Superconductivity

More information

Flux Motion and Screening Current in High-temperature Superconducting Magnets

Flux Motion and Screening Current in High-temperature Superconducting Magnets Flux Motion and Screening Current in High-temperature Superconducting Magnets Yi Li, Chen Gu, Timing Qu, Zhenghe Han ASRC, Tsinghua University ICFA Mini-workshop on High Field Magnets for pp Colliders

More information

Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors

Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors superior performance. powerful technology. Continued Developments in High Magnetic Fields Enabled by Second-Generation High- Temperature Superconductors Drew W. Hazelton - Principal Engineer, HTS Applications

More information

Honghai Song. Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran FRIB/MSU & SJTU June 2015, SJTU Xuhui Campus

Honghai Song. Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran FRIB/MSU & SJTU June 2015, SJTU Xuhui Campus Alternative Approach to ReBCO HTS Magnet Operation and Protection: - Influence of Turn-to-turn Equivalent Resistivity and Coil Size on Fast-discharge and Ramping of Metallic Insulation HTS Coils Honghai

More information

High Field HTS SMES Coil

High Field HTS SMES Coil High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer Brookhaven National Laboratory, NY, USA December 1, 2014 High Field HTS SMES Coil

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : & HTS MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J Spring Term 23 May 8, 23 Lecture 1: Protection & HTS Magnets Key magnet issues

More information

doi: /j.physc

doi: /j.physc doi: 10.1016/j.physc.2013.06.016 Experimental evaluation of the magnetization process in a high T c bulk superconducting magnet using magnetic resonance imaging Daiki Tamada* 1, 2, Takashi Nakamura 1,

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310

David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310 High Field DC Magnet Technology David Larbalestier and Mark Bird National High Magnetic Field Laboratory Florida State University, Tallahassee FL 32310 NSF Site Visit Review December 6-8, 2011 2006 MagLab

More information

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Material, Design, and Cost Modeling for High Performance Coils L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Tokamak Concept Improvement Cost minimization Decrease cost of final

More information

Recent Developments in YBCO for High Field Magnet Applications

Recent Developments in YBCO for High Field Magnet Applications superior performance. powerful technology. Recent Developments in YBCO for High Field Magnet Applications D.W. Hazelton Principal Engineer, SuperPower, Inc. 2008 Low Temperature Superconductor Workshop

More information

High Magnetic Field Science and the Magnetic Resonance Industry

High Magnetic Field Science and the Magnetic Resonance Industry and the Magnetic Resonance Industry Presentation to the Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States Jim Hollenhorst Senior Director of

More information

REBCO tape performance under high magnetic field

REBCO tape performance under high magnetic field Eur. Phys. J. Appl. Phys. (2017) 79: 30601 DOI: 10.1051/epjap/2017160430 Regular Article THE EUROPEAN PHYSICAL JOURNAL APPLIED PHYSICS REBCO tape performance under high magnetic field Tara Benkel 1,2,a,

More information

Magnet Technology for Nuclear Magnetic Resonance from DC Powered Magnets to Prospects for High Temperature Superconducting Magnets

Magnet Technology for Nuclear Magnetic Resonance from DC Powered Magnets to Prospects for High Temperature Superconducting Magnets Magnet Technology for Nuclear Magnetic Resonance from DC Powered Magnets to Prospects for High Temperature Superconducting Magnets Na#onal Science Founda#on State of Florida Winter School, 2018 Our long

More information

Al-Ti-MgB 2 conductor for superconducting space magnets

Al-Ti-MgB 2 conductor for superconducting space magnets Al-Ti-MgB 2 conductor for superconducting space magnets Riccardo Musenich, Valerio Calvelli (INFN Genoa) Davide Nardelli, Silvia Brisigotti, Davide Pietranera, Matteo Tropeano, Andrea Tumino, Valeria Cubeda,

More information

Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience. Yukikazu Iwasa. January 2017

Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience. Yukikazu Iwasa. January 2017 PSFC/JA-17-7 Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience Yukikazu Iwasa January 2017 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA

More information

Central Solenoid Winding Pack Design

Central Solenoid Winding Pack Design EUROFUSION WPMAG-CP(16) 15681 R Wesche et al. Central Solenoid Winding Pack Design Preprint of Paper to be submitted for publication in Proceedings of 29th Symposium on Fusion Technology (SOFT 2016) This

More information

Francis Bitter Magnet Laboratory

Francis Bitter Magnet Laboratory The Francis Bitter Magnet Laboratory (FBML) has continued to make notable advances in several areas of science and engineering involving high magnetic fields. The laboratory s research program in magnetic

More information

Development of a magnetic resonance microscope

Development of a magnetic resonance microscope Development of a magnetic resonance microscope using a high T c bulk superconducting magnet Kyohei Ogawa 1, Takashi Nakamura 2, Yasuhiko Terada 1, Katsumi Kose 1,a), Tomoyuki Haishi 3 1. Institute of Applied

More information

Higher Magnetic Fields are on the Horizon: What Science will be Facilitated? When will all of this Happen?

Higher Magnetic Fields are on the Horizon: What Science will be Facilitated? When will all of this Happen? Higher Magnetic Fields are on the Horizon: What Science will be Facilitated? What is the Technology that will be make this Possible? When will all of this Happen? High Temperature Superconductors for High

More information

2G HTS Wire and High Field Magnet Demonstration

2G HTS Wire and High Field Magnet Demonstration 2G HTS Wire and High Field Magnet Demonstration Presented by: Drew W. Hazelton SuperPower, Inc. Low Temperature Superconductivity Workshop S. Lake Tahoe, CA October 29, 2007 Providing HTS Solutions for

More information

A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics

A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics Superconductor Science and Technology LETTER A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics To cite this article: Lin

More information

Author(s) Atsushi; Urayama, Shinichi; Fukuyam. Citation Physics Procedia (2015), 65:

Author(s) Atsushi; Urayama, Shinichi; Fukuyam. Citation Physics Procedia (2015), 65: Title Project Overview of HTS Magnet for System Tosaka, Taizo; Miyazaki, Hiroshi; I Author(s) Yasumi; Takahashi, Masahiko; Tasaki Kurusu, Tsutomu; Ueda, Hiroshi; Nog Atsushi; Urayama, Shinichi; Fukuyam

More information

Design Principles of Superconducting Magnets

Design Principles of Superconducting Magnets 1 Design Principles of Superconducting Magnets Aki Korpela Tampere University of Technology DESIGN PRINCIPLES OF SUPERCONDUCTING MAGNETS 2 Content of the presentation Background Short-sample measurement

More information

Ultra High Field MRI Magnets: Present Situation and Future Perspectives

Ultra High Field MRI Magnets: Present Situation and Future Perspectives SA-8-INV Ultra High Field MRI Magnets: Present Situation and Future Perspectives Pierre Vedrine (CEA Saclay, DSM/Irfu/SACM, Universite Paris Saclay, 91191 Gif sur Yvette Cedex, France) Magnetic resonance

More information

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication CERN-ACC-2016-0039 EuCARD-2 Enhanced European Coordination for Accelerator Research & Development Journal Publication HTS Dipole Magnet for a Particle Accelerator using a Twisted Stacked Cable Himbele,

More information

Which Superconducting Magnets for DEMO and Future Fusion Reactors?

Which Superconducting Magnets for DEMO and Future Fusion Reactors? Which Superconducting Magnets for DEMO and Future Fusion Reactors? Reinhard Heller Inspired by Jean Luc Duchateau (CEA) INSTITUTE FOR TECHNICAL PHYSICS, FUSION MAGNETS KIT University of the State of Baden-Wuerttemberg

More information

Small Spherical Tokamaks and their potential role in development of fusion power

Small Spherical Tokamaks and their potential role in development of fusion power Small Spherical Tokamaks and their potential role in development of fusion power Dr David Kingham, Nuclear Futures, 26 March 2013 Plasma in START tokamak, Courtesy Euratom/CCFE Fusion Association 1 Introduction

More information

Impact of High-Temperature Superconductors on the Superconducting Maglev

Impact of High-Temperature Superconductors on the Superconducting Maglev Impact of High-Temperature Superconductors on the Superconducting Maglev No. 92 H. Ohsaki The University of Tokyo, Graduate School of Frontier Sciences, Kashiwa 277-8561, Japan ABSTRACT: This paper reviews

More information

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Superior performance. Powerful technology. REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Yifei Zhang, Satoshi Yamano, Drew Hazelton, and Toru Fukushima 2018 IAS-HEP Mini-Workshop

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

of a Large Aperture High Field HTS SMES Coil

of a Large Aperture High Field HTS SMES Coil Design, Construction and Testing of a Large Aperture High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer High Field HTS SMES Coil R.

More information

JOINTS FOR SUPERCONDUCTING MAGNETS

JOINTS FOR SUPERCONDUCTING MAGNETS JOINTS FOR SUPERCONDUCTING MAGNETS Patrick DECOOL Association EURATOM-CEA, CEA/DSM/IRFM 0 Large machines for fusion deals with Cable In Conduit Conductors (CICC) ITER Each conductor is composed of 1000

More information

NMR Instrumentation BCMB/CHEM Biomolecular NMR

NMR Instrumentation BCMB/CHEM Biomolecular NMR NMR Instrumentation BCMB/CHEM 8190 Biomolecular NMR Instrumental Considerations - Block Diagram of an NMR Spectrometer Magnet Sample B 0 Lock Probe Receiver Computer Transmit Superconducting Magnet systems

More information

HTS conductors for high field magnets in the next 10 years David Larbalestier*

HTS conductors for high field magnets in the next 10 years David Larbalestier* HTS conductors for high field magnets in the next 10 years David Larbalestier* March 17, 2017 *Support by NSF core grant, DOE-High Energy Physics (HEP), CERN and NIH and DOE-SBIR pass through awards 30th

More information

Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System

Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System IEEE Transactions on Applied Superconductor 9, No. 3 MICE Note 34 Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System L. Wang, F. Y. Xu, H. Wu, X. K. Liu, L. K. Li, X. L. Guo, H.

More information

High Field Magnets Perspectives from High Energy Physics. Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics

High Field Magnets Perspectives from High Energy Physics. Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics High Field Magnets Perspectives from High Energy Physics Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics What is High Energy Physics? The High Energy Physics (HEP)

More information

MgB 2 and BSCCO. S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS

MgB 2 and BSCCO.   S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS MgB 2 and BSCCO S.I. SCHLACHTER, W. GOLDACKER KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR TECHNICAL PHYSICS KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

More information

1st Performance Test of the 25 T Cryogen-free Superconducting Magnet

1st Performance Test of the 25 T Cryogen-free Superconducting Magnet 1 1st Performance Test of the 25 T Cryogen-free Superconducting Magnet Satoshi Awaji, Kazuo Watanabe, Hidetoshi Oguro, Hiroshi Miyazaki, Satoshi Hanai, Taizo Tosaka, Shigeru Ioka Abstract A 25 T cryogen-free

More information

Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen To cite this article:

More information

Rev-2 Submittal April 03, 2018

Rev-2 Submittal April 03, 2018 Developing HTS Magnets for Fusion Applications J. V. Minervini (MIT), Y. Zhai (PPPL), X. Wang (LBNL), and R. C. Duckworth (ORNL) 1 Description of HTS Magnet Technology All design concepts for power producing

More information

HTS Magnets for Accelerator Applications

HTS Magnets for Accelerator Applications 8 th International Particle Accelerator Conference Bella Center, Copenhagen, Denmark May 17, 2017 HTS Magnets for Accelerator Applications K. Hatanaka hatanaka@rcnp.osaka-u.ac.jp Research Center for Nuclear

More information

Francis Bitter Magnet Laboratory

Francis Bitter Magnet Laboratory The Francis Bitter Magnet Laboratory (FBML) has continued to make notable advances in several areas of science and engineering involving high magnetic fields. The Laboratory s research program in magnetic

More information

Benjamin J. Haid. at the. June Massachusetts Institute of Technology All rights reserved.

Benjamin J. Haid. at the. June Massachusetts Institute of Technology All rights reserved. LIBRARIES A "Permanent" High-Temperature Superconducting Magnet Operated in Thermal Communication with a Mass of Solid Nitrogen by Benjamin J. Haid Submitted to the Department of Mechanical Engineering

More information

Thermal Stability of Yttrium Based Superconducting Coil for Accelerator Application

Thermal Stability of Yttrium Based Superconducting Coil for Accelerator Application Thermal Stability of Yttrium Based Superconducting Coil for Accelerator Application Xudong Wang, 1 Kiyosumi Tsuchiya, 1 Shinji Fujita, Shogo Muto, Masanori Daibo, 3 Yasuhiro Iijima and Kunihiro Naoe Yttrium(Y)-based

More information

Experimental Investigation of High-Temperature Superconducting Magnet for Maglev

Experimental Investigation of High-Temperature Superconducting Magnet for Maglev Experimental Investigation of High-Temperature Superconducting Magnet for Maglev Ken Nagashima, Masafumi Ogata, Katsutoshi Mizuno, Yuuki Arai, Hitoshi Hasegawa, Takashi Sasakawa Railway Technical Research

More information

Superconductivity at Future Hadron Colliders

Superconductivity at Future Hadron Colliders XXVI Giornate di Studio sui Rivelatori 13-17.2.2017, Cogne, Italia Superconductivity at Future Hadron Colliders René Flükiger CERN, TE-MSC, 1211 Geneva 23, Switzerland and Dept. Quantum Matter Physics,

More information

2G HTS Coil Winding Technology Development at SuperPower

2G HTS Coil Winding Technology Development at SuperPower superior performance. powerful technology. 2G HTS Coil Winding Technology Development at SuperPower D.W. Hazelton, P. Brownsey, H. Song, Y. Zhang Tuesday, June 18, 2013 2013 CEC-ICMC Anchorage Alaska Paper

More information

Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors

Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors Simultaneous measurement of critical current, stress, strain and lattice distortions in high temperature superconductors C. Scheuerlein 1, R. Bjoerstad 1, A. Grether 1, M. Rikel 2, J. Hudspeth 3, M. Sugano

More information

Validation of COMSOL -Based Performance Predictions of Bi-2212 Round Wire Prototype Coils

Validation of COMSOL -Based Performance Predictions of Bi-2212 Round Wire Prototype Coils Validation of COMSOL -Based Performance Predictions of Bi-2212 Round Wire Prototype Coils Ernesto S. Bosque U.P. Trociewitz Y.Kim, D.K. Hilton, C.L. English, D.S. Davis, G. Miller, D. Larbalestier Bi-2212

More information

Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble

Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble Polyhelix ECR & high field magnet development at LNCMI: an emergent synergy F. Debray, CNRS, LNCMI-Grenoble HIGH FIELD? In 2009, dc magnetic fields up to 35 T are available to the scientific community

More information

Application of SuperPower 2G HTS Wire to High Field Devices

Application of SuperPower 2G HTS Wire to High Field Devices superior performance. powerful technology. Application of SuperPower 2G HTS Wire to High Field Devices Drew W. Hazelton Principal Engineer, SuperPower, Inc. 2011 MT22 Conference Marseille, France Sept.

More information

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011 FP7 Eucard2 WP on HTS Magnets term of reference: edms doc. 1152224 Lucio Rossi CERN Task 1 : conductor Mee@ng at EUCAS2011 Use of Bi- 2212 and YBCO: both are promising so far 10,000 YBCO B _ Tape Plane

More information

High-Performance Y-based Superconducting Wire and Their Applications

High-Performance Y-based Superconducting Wire and Their Applications High-Performance Y-based Superconducting Wire and Their Applications Yasuhiro Iijima 1 Yttrium(Y)-based superconducting wires are expected to be applied to various superconducting apparatus. They have

More information

Mini-RT. Plasma Production and Levitation Experiments of a High-temperature Superconductor Coil in a Mini-RT Internal Coil Device

Mini-RT. Plasma Production and Levitation Experiments of a High-temperature Superconductor Coil in a Mini-RT Internal Coil Device Mini-RT Plasma Production and Levitation Experiments of a High-temperature Superconductor Coil in a Mini-RT Internal Coil Device Junji MORIKAWA, Kotaro OHKUNI, Dan HORI, Shigeo YAMAKOSHI, Takuya GOTO,

More information

The Design and Fabrication of a 6 Tesla EBIT Solenoid

The Design and Fabrication of a 6 Tesla EBIT Solenoid LBNL-40462 SCMAG-593 The Design and Fabrication of a 6 Tesla EBIT Solenoid 1. Introduction M. A. Green a, S. M. Dardin a, R. E. Marrs b, E. Magee b, S. K. Mukhergee a a Lawrence Berkeley National Laboratory,

More information

Development of superconducting undulators at the Advanced Photon Source

Development of superconducting undulators at the Advanced Photon Source Development of superconducting undulators at the Advanced Photon Source Presented by Vadim Sajaev on behalf of the APS superconducting undulator project team Advanced Photon Source Argonne National Laboratory

More information

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor N. Yanagi, A. Sagara and FFHR-Team S. Ito 1, H. Hashizume 1 National Institute for Fusion Science 1 Tohoku University

More information

Method for generating linear current-field characteristics and eliminating charging delay in no-insulation superconducting magnets

Method for generating linear current-field characteristics and eliminating charging delay in no-insulation superconducting magnets Superconductor Science and Technology PAPER Method for generating linear current-field characteristics and eliminating charging delay in no-insulation superconducting magnets To cite this article: Seokho

More information

Challenges on demountable / segmented coil concept for high-temperature superconducting magnet

Challenges on demountable / segmented coil concept for high-temperature superconducting magnet Challenges on demountable / segmented coil concept for high-temperature superconducting magnet N. Yanagi 1, S. Ito 2, H. Hashizume 2, A. Sagara 1 1 National Institute for Fusion Science 2 Tohoku University

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : ( J

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J , : ( J MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J Spring Term 2003 April 24, 2003 Lecture 8: Stability Key magnet issues vs. T op

More information

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector V. I. Klyukhin Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119992, Russia

More information

50 years of Superconducting Magnets for Physics Research and Medicine

50 years of Superconducting Magnets for Physics Research and Medicine 50 years of Superconducting Magnets for Physics Research and Medicine Herman ten Kate Kamerlingh Onnes and magnets Understanding superconductors From materials to magnets Examples of Applications: Lab

More information

Frozen Spin Targets. In a Nutshell. Version 2.0. Chris Keith

Frozen Spin Targets. In a Nutshell. Version 2.0. Chris Keith Frozen Spin Targets In a Nutshell Version 2.0 Chris Keith Dynamic Nuclear Polarization (the simple model) Use Low Temperature + High Field to polarize free electrons (aka paramagnetic centers) in the target

More information

Force measurements for levitated bulk superconductors in electromaglev system

Force measurements for levitated bulk superconductors in electromaglev system International Journal of Applied Electromagnetics and Mechanics 14 (2001/2002) 107 113 107 IOS Press Force measurements for levitated bulk superconductors in electromaglev system Yasuharu Tachi a, Tsuyoshi

More information

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Ronald Agustsson Josiah Hartzell, Scott Storms RadiaBeam Technologies, LLC Santa Monica, CA US DOE SBIR Phase I Contract #

More information

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION

More information

Experience in manufacturing a large HTS magnet for a SMES

Experience in manufacturing a large HTS magnet for a SMES Superconducting magnets April 05-09, 2009 CEA Cadarache, France Experience in manufacturing a large HTS magnet for a SMES P. Tixador Grenoble INP / Institut Néel - G2Elab Outline Introduction: SMES SMES:

More information

Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System Advances in Condensed Matter Physics Volume 2, Article ID 5657, pages doi:1.1155/2/5657 Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System Yoshihito

More information

Superconducting Undulator R&D at LBNL

Superconducting Undulator R&D at LBNL Superconducting Undulator R&D at LBNL Søren Prestemon Dan Dietderich Steve Gourlay Phil Heimann Steve Marks GianLuca Sabbi Ron Scanlan Ross Schlueter Outline On-going research at LBNL Coil winding issues

More information

Batavia, Illinois, 60510, USA

Batavia, Illinois, 60510, USA HIGH TEMPERATURE SUPERCONDUCTORS FOR HIGH FIELD SUPERCONDUCTING MAGNETS E. Barzi 1, L. Del Frate 1, D. Turrioni 1, R. Johnson 2, and M. Kuchnir 2 1 Fermi National Accelerator Laboratory Batavia, Illinois,

More information

Feasibility of HTS DC Cables on Board a Ship

Feasibility of HTS DC Cables on Board a Ship Feasibility of HTS DC Cables on Board a Ship K. Allweins, E. Marzahn Nexans Deutschland GmbH 10 th EPRI Superconductivity Conference Feasibility of HTS DC Cables on Board a Ship 1. Can superconducting

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

What s so super about superconductivity?

What s so super about superconductivity? What s so super about superconductivity? Mark Rzchowski Physics Department Electrons can flow through the wire when pushed by a battery. Electrical resistance But remember that the wire is made of atoms.

More information

RADIATION EFFECTS ON HIGH TEMPERATURE SUPERCONDUCTORS

RADIATION EFFECTS ON HIGH TEMPERATURE SUPERCONDUCTORS RADIATION EFFECTS ON HIGH TEMPERATURE SUPERCONDUCTORS Harald W. Weber Atominstitut, Vienna University of Technology Vienna, Austria From ITER to DEMO Neutron Spectra Neutron-induced Defects in HTS Practical

More information

HIMARC Simulations Divergent Thinking, Convergent Engineering

HIMARC Simulations Divergent Thinking, Convergent Engineering HIMARC Simulations Divergent Thinking, Convergent Engineering 8117 W. Manchester Avenue, Suite 504 Los Angeles, CA 90293 Ph: (310) 657-7992 Horizontal Superconducting Magnet, ID 1.6m 1 1 Design definition

More information

High-temperature superconducting magnet for use in Saturated core FCL

High-temperature superconducting magnet for use in Saturated core FCL High-temperature superconducting magnet for use in Saturated core FCL Z Bar-Haim 1, A Friedman 1,, Y Wolfus, V Rozenshtein 1, F Kopansky, Z Ron 1, E Harel 1, N Pundak 1 and Y Yeshurun 1Ricor-Cryogenic

More information

SMALLER & SOONER: EXPLOITING NEW TECHNOLOGIES FOR FUSION S DEVELOPMENT

SMALLER & SOONER: EXPLOITING NEW TECHNOLOGIES FOR FUSION S DEVELOPMENT MIT Plasma Science & Fusion Center SMALLER & SOONER: EXPLOITING NEW TECHNOLOGIES FOR FUSION S DEVELOPMENT Dennis Whyte MIT Plasma Science and Fusion Center MIT Nuclear Science and Engineering With grateful

More information

Recent Developments in 2G HTS Coil Technology

Recent Developments in 2G HTS Coil Technology IEEE/CSC & ESAS European Superconductivity News Forum (ESNF), No. 6, October 28 (ASC Preprint 3LY1 conforming to IEEE Policy on Electronic Dissemination, Section 8.1.9) The published version of this manuscript

More information

Performance analysis of the active magnetic regenerative refrigerator for 20 K

Performance analysis of the active magnetic regenerative refrigerator for 20 K 1 Performance analysis of the active magnetic regenerative refrigerator for K I. Park, S. Jeong KAIST, Daejeon, Republic of Korea ABSTRACT An active magnetic regenerative refrigerator (AMRR) with the conduction

More information

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements

Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements superior performance. powerful technology. Production of 2G HTS Conductor at SuperPower: Recent Progress and Ongoing Improvements Traute F. Lehner, Sr. Director of Marketing 7 th MEM Workshop (Mechanical

More information

Electromagnetic Design of 10 MW Class Fully Superconducting Wind Turbine Generator

Electromagnetic Design of 10 MW Class Fully Superconducting Wind Turbine Generator Electromagnetic Design of 1 M Class Fully Superconducting ind Turbine Generator Yutaka Terao a, Masaki Sekino a and Hiroyuki Ohsaki b a Department of Electrical Engineering and Information systems, Graduate

More information

SUPERCONDUCTING HEAVY ION CYCLOTRON

SUPERCONDUCTING HEAVY ION CYCLOTRON Atomic Energy of Canada Limited SUPERCONDUCTING HEAVY ION CYCLOTRON by C.B. BIGHAM, J.S. FRASER and H.R. SCHNEIDER Chalk River Nuclear Laboratories Chalk River, Ontario November 1973 AECL-4654 - 1 - SUPERCONDUCTING

More information

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x Magnetic Fields 3. A particle (q = 4.0 µc, m = 5.0 mg) moves in a uniform magnetic field with a velocity having a magnitude of 2.0 km/s and a direction that is 50 away from that of the magnetic field.

More information

Magnetic field generation. Sergey L. Bud ko

Magnetic field generation. Sergey L. Bud ko Magnetic field generation 590B S14 Sergey L. Bud ko Choice of magnets Either you need to answer the following questions: What field is needed? How homogeneous the field should be? What is the sample size?

More information

From 2G to Practical Conductors What Needs to be Improved?

From 2G to Practical Conductors What Needs to be Improved? 3G? From 2G to Practical Conductors What Needs to be Improved? Mathias Noe, Wilfried Goldacker,, KIT, Germany Bernhard Holzapfel, IFW Dresden, Germany EUCAS 2013, Genova, Italy National Research Center

More information

Progress Towards A High-field HTS Solenoid

Progress Towards A High-field HTS Solenoid Progress Towards A High-field HTS Solenoid Ramesh Gupta For PBL/BNL Team Ramesh Gupta, BNL, Progress towards a high-field HTS solenoid, Jefferson Lab, March 3, 2011 Slide No. 1 Overview High Field HTS

More information

Design study of a 10 MW MgB 2 superconductor direct drive wind turbine generator

Design study of a 10 MW MgB 2 superconductor direct drive wind turbine generator Design study of a 10 MW MgB 2 superconductor direct drive wind turbine generator Asger B. Abrahamsen Niklas Magnusson Dong Liu DTU Wind Energy SINTEF Energy Research Delft University of Technology asab@dtu.dk

More information

15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications

15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications 15 - Development of HTS High Current Cables and Joints for DC Power and High Field Magnet Applications Joseph V. Minervini, Makoto Takayasu, Franco Mangioarotti, Leslie Bromberg, Phillip Michael, Michael

More information

20 T Block Dipole: Features and Challenges

20 T Block Dipole: Features and Challenges 20 T Block Dipole: Features and Challenges GianLuca Sabbi, Xiaorong Wang, LBNL Acknowledgment: Daniel R. Dietderich, LBNL Emmanuele Ravaioli and Jonas Blomberg Ghini, CERN ICFA Mini Workshop on High Field

More information

100 TeV Collider Magnets

100 TeV Collider Magnets 100 TeV Collider Magnets Alexander Zlobin Fermilab 1st CFHEP Symposium on circular collider physics 23-25 February 2014 IHEP, Beijing (China) Introduction v Circular collider energy scales with the strength

More information