Introduction to Mechanics Dynamics Forces Newton s Laws

Size: px
Start display at page:

Download "Introduction to Mechanics Dynamics Forces Newton s Laws"

Transcription

1 Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Oct 30, 2017

2 Last time relative motion review projectiles and relative motion

3 Relative Motion and Projectiles A science student is riding on a flatcar of a train traveling along a straight, horizontal track at a constant speed of 10.0 m/s. The student throws a ball into the air along a path that he judges to make an initial angle of 60.0 with the horizontal and to be in line with the track. The student s professor, who is standing on the ground nearby, observes the ball to rise vertically. How high does she see the ball rise? 1 erway & Jewett, 9th ed, #53, pg106.

4 Relative Motion and Projectiles A science student is riding on a flatcar of a train traveling along a straight, horizontal track at a constant speed of 10.0 m/s. The student throws a ball into the air along a path that he judges to make an initial angle of 60.0 with the horizontal and to be in line with the track. The student s professor, who is standing on the ground nearby, observes the ball to rise vertically. How high does she see the ball rise? h = v 2 i sin 2 θ 2g or v 2 f,y = v 2 i,y 2gh 1 erway & Jewett, 9th ed, #53, pg106.

5 Relative Motion and Projectiles A science student is riding on a flatcar of a train traveling along a straight, horizontal track at a constant speed of 10.0 m/s. The student throws a ball into the air along a path that he judges to make an initial angle of 60.0 with the horizontal and to be in line with the track. The student s professor, who is standing on the ground nearby, observes the ball to rise vertically. How high does she see the ball rise? h = v 2 i sin 2 θ 2g or v 2 f,y = v 2 i,y 2gh h = 15.3 m 1 erway & Jewett, 9th ed, #53, pg106.

6 Overview forces net force

7 Forces Up until now we have predicted the motion of objects from knowledge of their motional quantities, eg. their initial velocities, accelerations, etc. We did not consider what the causes of this motion might be. We now will think about that.

8 Forces Up until now we have predicted the motion of objects from knowledge of their motional quantities, eg. their initial velocities, accelerations, etc. We did not consider what the causes of this motion might be. We now will think about that. We will understand forces as the cause of changes in the motion of objects.

9 Forces Up until now we have predicted the motion of objects from knowledge of their motional quantities, eg. their initial velocities, accelerations, etc. We did not consider what the causes of this motion might be. We now will think about that. We will understand forces as the cause of changes in the motion of objects. Forces are a push or pull that an object experiences because of an interaction. Forces are vectors.

10 Forces Two types of forces contact forces another object came into contact with the object field forces a kind of interaction between objects without them touching each other

11 Forces Force type examples: The Laws of Motion f orce the Contact forces xed t. a b c Field forces m M q Q Iron N d e f orbit around the Earth. This change in velocity is caused by the gravitational force exerted by the Earth on the Moon. When 1 erway a coiled & Jewett, spring Physics is pulled, foras cientists in Figure and 5.1a, Engineers. the spring stretches. When a

12 Forces are Vectors We typically draw them like this 1 : The block is the object that experiences the forces. There are two forces here, N and W, they are drawn as arrows to indicate their direction. 1 Figure from

13 Forces are Vectors A downward force F 1 elongates the spring 1.00 cm. A downward force F 2 elongates the spring 2.00 cm. When F 1 and F 2 are applied together in the same direction, the spring elongates by 3.00 cm. When F 1 is downward and F 2 is horizontal, the combination of the two forces elongates the spring by 2.24 cm F 1 u F 2 F a F 1 b F 2 c F 1 F 2 d Figure of a forc scale. and its direction is u 5 tan 21 (20.500) Because forces have been experimentally verified to behave as vectors, you must use the rules of vector addition to obtain 1 the net force on an object. Figure from erway & Jewett.

14 Net Force 5.2 Newton s First Law and Inertial Frames Net Force F 1 F 2 When and are applied together in the same direction, the spring elongates by 3.00 cm. the vector sum of all forces acting on an object. F 1 F 2 F net = When is downward and F i is horizontal, the combination i of the two forces elongates the spring by 2.24 cm F 1 u F 2 F In the diagram F = F 1 + F 2.

15 elongates by Net 3.00 Force cm. of the two forces elongates the spring by 2.24 cm F 1 u F 2 F c In the diagram F = F 1 + F 2. F 1 The magnitude of F is Figure 5.2 The vector F 2 F = F 2 of a force is tested with a 1 + F 2 2 = = 2.23 N d The direction of F is 0.500) Because θ = forces tan 1 have (F been experiectors, you must use the rules of vector addition 1 /F 2 ) = 26.6 to scale.

16 ummary forces net force Homework Walker Physics: Ch 5, onward from page 138. Questions: 1, 3, 5 (wait to do)

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 14, 2018 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Kinematics: Circular Motion Mechanics: Forces

Kinematics: Circular Motion Mechanics: Forces Kinematics: Circular Motion Mechanics: Forces Lana heridan De Anza College Oct 11, 2018 Last time projectile trajectory equation projectile examples projectile motion and relative motion Overview circular

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws 2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces 2D Kinematics: Nonuniform Circular Motion Dynamics: Forces Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform circular motion Introduce forces

More information

Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally

Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally Lana heridan De Anza College Oct 9, 2017 Last Time nonuniform circular motion Introduced forces Overview Newton s Laws! (1st & 2nd)

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

Introduction to Mechanics Projectiles

Introduction to Mechanics Projectiles Introduction to Mechanics Projectiles Lana heridan De Anza College Feb 6, 2018 Last time relative motion examples Overview another relative motion example motion with constant acceleration projectiles

More information

Introduction to Mechanics Dynamics Forces Applying Newton s Laws

Introduction to Mechanics Dynamics Forces Applying Newton s Laws Introduction to Mechanics Dynamics Forces Applying Newton s Laws Lana heridan De Anza College Feb 21, 2018 Last time force diagrams Newton s second law examples Overview Newton s second law examples Newton

More information

Dynamics Laws of Motion More About Forces

Dynamics Laws of Motion More About Forces Dynamics Laws of Motion More About Forces Lana heridan De Anza College Oct 10, 2017 Overview Newton s first and second laws Warm Up: Newton s econd Law Implications Question. If an object is not accelerating,

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Nov 1, 2017 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law examples

More information

Dynamics Laws of Motion Elevators, Pulleys, and Friction

Dynamics Laws of Motion Elevators, Pulleys, and Friction Dynamics Laws of Motion Elevators, Pulleys, and riction Lana heridan De Anza College Oct 12, 2017 Last time equilibrium nonequilibrium Problem solving with tensions inclines Overview Problem solving with

More information

Conceptual Physics Motion and Graphs Free Fall Using Vectors

Conceptual Physics Motion and Graphs Free Fall Using Vectors Conceptual Physics Motion and Graphs Free Fall Using Vectors Lana heridan De Anza College July 6, 2017 Last time Units More about size and scale Motion of objects Inertia Quantities of motion Overview

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 Applying Newton s Laws 1 Equilibrium An object is in equilibrium if the net force acting on it is zero. According to Newton s first law, such an object will remain at rest

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

Introduction to Mechanics Motion in 2 Dimensions

Introduction to Mechanics Motion in 2 Dimensions Introduction to Mechanics Motion in 2 Dimensions Lana heridan De Anza College Jan 31, 2018 Last time vectors and trig Overview introduction to motion in 2 dimensions constant velocity in 2 dimensions relative

More information

Mechanics Newton s Laws

Mechanics Newton s Laws Mechanics Newton s Laws Lana heridan De Anza College Oct 15, 2018 Last time circular motion force net force Overview net force example Newton s first law Newton s second law mass vs weight force diagrams

More information

Energy Work vs Potential Energy Energy and Friction

Energy Work vs Potential Energy Energy and Friction Energy Work vs Potential Energy Energy and Friction Lana heridan De Anza College Feb 19, 2019 Last time conservation Overview work vs. potential kinetic friction and Two Views: Isolated vs Nonisolated

More information

Introduction to Mechanics Motion in 2 Dimensions

Introduction to Mechanics Motion in 2 Dimensions Introduction to Mechanics Motion in 2 Dimensions Lana heridan De Anza College Oct 17, 2017 Last time vectors and trig Overview wrap up vectors introduction to motion in 2 dimensions constant velocity in

More information

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly accelerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

Introduction to Mechanics Applying Newton s Laws Friction

Introduction to Mechanics Applying Newton s Laws Friction Introduction to Mechanics Applying Newton s Laws Friction Lana heridan De Anza College Mar 6, 2018 Last time kinds of forces and problem solving objects accelerated together the Atwood machine and variants

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Introduction to Mechanics Projectiles Time of Flight

Introduction to Mechanics Projectiles Time of Flight Introduction to Mechanics Projectiles Time of Flight Lana Sheridan De Anza College Oct 24, 2017 Last time height of a projectile Warm Up Question # 57, page 107 Child 1 throws a snowball horizontally from

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples

Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples Lana Sheridan De Anza College Oct 25, 2017 Last time max height of a projectile time-of-flight of a projectile range of

More information

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects.

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. VISUAL PHYSICS ONLINE DYNAMICS TYPES O ORCES 1 Electrostatic force orce mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. AB A

More information

Laws of Motion Friction More Problem Solving

Laws of Motion Friction More Problem Solving Laws of Motion Friction More Problem olving Lana heridan De Anza College Feb 1, 2019 Last time pulleys friction Overview friction Problem solving with forces Friction friction The force caused by small-scale

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Newtonian Mechanics Mass Mass is an intrinsic characteristic of a body The mass of a body is the characteristic that relates a force on the body to the resulting acceleration.

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously.

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. 5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. The applied forces may cancel so the net force is zero; in such a case,

More information

Mechanics Friction. Lana Sheridan. Oct 23, De Anza College

Mechanics Friction. Lana Sheridan. Oct 23, De Anza College Mechanics riction Lana heridan De Anza College Oct 23, 2018 Last time Types of forces and new scenarios contact forces tension pulleys Overview finish Atwood machine friction Recap: Pulleys and the Atwood

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Static Equilibrium Gravitation

Static Equilibrium Gravitation Static Equilibrium Gravitation Lana Sheridan De Anza College Dec 6, 2017 Overview One more static equilibrium example Newton s Law of Universal Gravitation gravitational potential energy little g Example

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

Introduction to Mechanics Applying Newton s Laws Friction

Introduction to Mechanics Applying Newton s Laws Friction Introduction to Mechanics Applying Newton s Laws Friction Lana heridan De Anza College Nov 9, 2017 Last time kinds of forces and problem solving objects accelerated together the Atwood machine and variants

More information

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Newton s Laws Forces Mass and Weight Serway and Jewett 5.1 to 5.6 Practice: Chapter 5, Objective Questions 2, 11 Conceptual Questions 7, 9, 19, 21 Problems 2, 3, 7, 13 Newton s

More information

Physics 111. Lecture 8 (Walker: 5.1-3) Force (F) Mass (m) Newton s 2 nd Law: F = ma. Summary - 2D Kinematics. = (20.0 m/s)(6.

Physics 111. Lecture 8 (Walker: 5.1-3) Force (F) Mass (m) Newton s 2 nd Law: F = ma. Summary - 2D Kinematics. = (20.0 m/s)(6. Physics Lecture 8 (Walker: 5.-3) Force (F) Mass (m) Newton s nd Law: F = ma Example: A Supply Drop Helicopter drops supply package to flood victims on raft. When package is released, helicopter is 00 m

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

Summary of Chapters 1-3. Equations of motion for a uniformly acclerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly acclerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly acclerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

Chapter 4. Forces and Newton s Laws of Motion

Chapter 4. Forces and Newton s Laws of Motion Chapter 4 Forces and Newton s Laws of Motion Exam 1 Scores Mean score was ~ 9.5 What is that in a grade 4.0, 3.5,? < 5 : 1.5 or lower 5 : 2.0 6, 7 : 2.5 8,9,10,11: 3.0 12,13 : 3.5 >13 : 4.0 Solutions are

More information

Kinematics Varying Accelerations (1D) Vectors (2D)

Kinematics Varying Accelerations (1D) Vectors (2D) Kinematics Varying Accelerations (1D) Vectors (2D) Lana heridan De Anza College ept 29, 2017 Last time kinematic equations using kinematic equations Overview falling objects and g varying acceleration

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Bill s ball goes up and comes back down to Bill s level. At that point, it is

Bill s ball goes up and comes back down to Bill s level. At that point, it is ConcepTest 2.1 Up in the Air Alice and Bill are at the top of a cliff of height H.. Both throw a ball with initial speed v 0, Alice straight down and Bill straight up. The speeds of the balls when they

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Mass & Weight, Force, and Friction 10/04/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapters 6.1-6.6? 2 In your own words: What

More information

Chapter 4. 4 Forces and Newton s Laws of Motion. Forces and Newton s Laws of Motion

Chapter 4. 4 Forces and Newton s Laws of Motion. Forces and Newton s Laws of Motion Chapter 4 Forces and Newton s Laws of Motion PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 4 Forces and Newton s Laws of Motion Slide 4-2 Slide 4-3 1 Slide 4-4 Weight is

More information

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant.

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant. Mass & Weight mass how much stuff a body has. Doesn t change. Is responsible for the inertial properties of a body. The greater the mass, the greater the force required to achieve some acceleration: Fnet

More information

First few slides are additional review problems from Chs. 1 and 2. WEST VIRGINIA UNIVERSITY Physics

First few slides are additional review problems from Chs. 1 and 2. WEST VIRGINIA UNIVERSITY Physics First few slides are additional review problems from Chs. 1 and 2 Average Speed A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 35

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Lecture 5. (sections )

Lecture 5. (sections ) Lecture 5 PHYSICS 201 (sections 521-525) Instructor: Hans Schuessler Temporary: Alexandre e Kolomenski o http://sibor.physics.tamu.edu/teaching/phys201/ Projectile Motion The horizontal and vertical parts

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations 2 dimensional motion Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors.

More information

Matter, Force, Energy, Motion, and the Nature of Science (NOS)

Matter, Force, Energy, Motion, and the Nature of Science (NOS) Matter, Force, Energy, Motion, and the Nature of Science (NOS) Elementary SCIEnCE Dr. Suzanne Donnelly Longwood University donnellysm@longwood.edu Day 3: Morning schedule Problem-Based Learning (PBL) What

More information

Newton. Galileo THE LAW OF INERTIA REVIEW

Newton. Galileo THE LAW OF INERTIA REVIEW Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.

More information

Chapter 5. Force and Motion-I

Chapter 5. Force and Motion-I Chapter 5 Force and Motion-I 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Chapter 4: Newton s laws of motion

Chapter 4: Newton s laws of motion Chapter 4: Newton s laws of motion Objectives: What are forces? How do we identify them? Drawing free-body diagrams. Relating forces and motion. Solving force and motion problems. What is a force? Forces

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Oct 20, 2017 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

Physics 53 Summer Exam I. Solutions

Physics 53 Summer Exam I. Solutions Exam I Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols for the quantities given, and standard constants such as g. In numerical questions

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana heridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Conceptual Questions and Example Problems from Chapters 5 and 6 Conceptual Question 5.7 An object experiencing a constant

More information

Introduction to Mechanics Friction Examples Friction Springs

Introduction to Mechanics Friction Examples Friction Springs Introduction to Mechanics Friction Examples Friction Springs Lana Sheridan De Anza College Mar 7, 2018 Last time kinetic and static friction friction examples Overview one more friction example springs

More information

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter Introduction. Motion. Motion. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Motion Graphing Motion Forces Chapter Wrap-Up What is the relationship between motion and forces? What do you think? Before you begin, decide

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in There was no consideration of what might influence that motion. Two main factors need to be addressed to answer questions

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

(c) curved track. direction of motion Fig. 1.2 State the effect that this force has on the motion... (iii) ... State how this force is provided. ...

(c) curved track. direction of motion Fig. 1.2 State the effect that this force has on the motion... (iii) ... State how this force is provided. ... 2 (c) As the train is driven round the bend, there is an extra force acting, called the centripetal force. (i) On Fig. 1.2, draw an arrow to show the direction of this force. train curved track direction

More information

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Lana Sheridan De Anza College Feb 12, 2018 Last time projectiles launched horizontally projectiles launched at an angle

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

Virbations and Waves

Virbations and Waves Virbations and Waves 1.1 Observe and find a pattern Try the following simple experiments and describe common patterns concerning the behavior of the block. (a) Fill in the table that follows. Experiment

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 4 Main points of last lecture Scalars vs. Vectors Vectors A: (A x, A y ) or A & θ Addition/Subtraction Projectile Motion X-direction: a x = 0 (v x = constant)

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College tatic Equilibrium Lana heridan De Anza College Dec 5, 2016 Last time simple harmonic motion Overview Introducing static equilibrium center of gravity tatic Equilibrium: ystem in Equilibrium Knowing that

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 3: Newton's Laws of Motion, Motion: Force, Mass, and Acceleration, Vectors in Physics Solutions Problem

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information