STATICS. Statics of Particles VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Size: px
Start display at page:

Download "STATICS. Statics of Particles VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr."

Transcription

1 Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Statics of Particles Lecture Notes: J. Walt Oler Teas Tech Universit

2 Contents Introduction Resultant of Two Forces Vectors Ad of Vectors Resultant of Several Concurrent Forces Sample Problem.1 Sample Problem. Rectangular Components of a Force: Unit Vectors Ad of Forces b Summing Components Sample Problem.3 Equilibrium of a Particle Free-Bod Diagrams Sample Problem.4 Sample Problem.6 Rectangular Components in Space Sample Problem.7 -

3 Introduction The objective for the current chapter is to investigate the effects of forces on particles: - replacing multiple forces acting on a particle with a single equivalent or resultant force, - relations between forces acting on a particle that is in a state of equilibrium. The focus on particles does not impl a restriction to miniscule bodies. Rather, the stud is restricted to analses in which the size and shape of the bodies is not significant so that all forces ma be assumed to be applied at a single point. - 3

4 Resultant of Two Forces force: action of one bod on another; characterized b its point of application, magnitude, line of action, and sense. Eperimental evidence shows that the combined effect of two forces ma be represented b a single resultant force. The resultant is equivalent to the diagonal of a parallelogram which contains the two forces in adjacent legs. Force is a vector quantit. - 4

5 Vectors Vector: parameters possessing magnitude and direction which add according to the parallelogram law. Eamples: displacements, velocities, accelerations. Scalar: parameters possessing magnitude but not direction. Eamples: mass, volume, temperature Vector classifications: - Fied or bound vectors have well defined points of application that cannot be changed without affecting an analsis. - Free vectors ma be freel moved in space without changing their effect on an analsis. - Sliding vectors ma be applied anwhere along their line of action without affecting an analsis. Equal vectors have the same magnitude and direction. Negative vector of a given vector has the same magnitude and the opposite direction. - 5

6 Ad of Vectors Trapezoid rule for vector ad Triangle rule for vector ad B C C Law of cosines, R P Q R P Q PQ cos B B Law of sines, sin A sin B Q R sin C A Vector ad is commutative, P Q Q P Vector subtraction - 6

7 Ad of Vectors Ad of three or more vectors through repeated application of the triangle rule The polgon rule for the ad of three or more vectors. Vector ad is associative, P Q S P Q S P Q S Multiplication of a vector b a scalar - 7

8 Resultant of Several Concurrent Forces Concurrent forces: set of forces which all pass through the same point. A set of concurrent forces applied to a particle ma be replaced b a single resultant force which is the vector sum of the applied forces. Vector force components: two or more force vectors which, together, have the same effect as a single force vector. - 8

9 Sample Problem.1 SOLUTION: The two forces act on a bolt at A. Determine their resultant. Graphical solution - construct a parallelogram with sides in the same direction as P and Q and lengths in proportion. Graphicall evaluate the resultant which is equivalent in direction and proportional in magnitude to the the diagonal. Trigonometric solution - use the triangle rule for vector ad in conjunction with the law of cosines and law of sines to find the resultant. - 9

10 Sample Problem.1 Graphical solution - A parallelogram with sides equal to P and Q is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the parallelogram are measured, R 98 N 35 Graphical solution - A triangle is drawn with P and Q head-to-tail and to scale. The magnitude and direction of the resultant or of the third side of the triangle are measured, R 98 N 35-10

11 Sample Problem.1 Trigonometric solution - Appl the triangle rule. From the Law of Cosines, R P sin A Q sin A Q PQ cos B 40N 60N 40N60Ncos155 R 97.73N From the Law of Sines, sin B R Q sin B R sin155 A A N 97.73N - 11

12 Sample Problem. A barge is pulled b two tugboats. If the resultant of the forces eerted b the tugboats is 5000 N directed along the ais of the barge, determine a) the tension in each of the ropes for = 45 o, b) the value of for which the tension in rope is a minimum. SOLUTION: Find a graphical solution b appling the Parallelogram Rule for vector ad. The parallelogram has sides in the directions of the two ropes and a diagonal in the direction of the barge ais and length proportional to 5000 N. Find a trigonometric solution b appling the Triangle Rule for vector ad. With the magnitude and direction of the resultant known and the directions of the other two sides parallel to the ropes given, appl the Law of Sines to find the rope tensions. The angle for minimum tension in rope is determined b appling the Triangle Rule and observing the effect of variations in. - 1

13 Sample Problem. Graphical solution - Parallelogram Rule with known resultant direction and magnitude, known directions for sides. T N T 600 N Trigonometric solution - Triangle Rule with Law of Sines T 1 T 5000 N sin 45 sin30 sin105 T N T 590 N - 13

14 Sample Problem. The angle for minimum tension in rope is determined b appling the Triangle Rule and observing the effect of variations in. The minimum tension in rope occurs when T 1 and T are perpendicular. T T Nsin Ncos 30 T 500 N T N

15 Rectangular Components of a Force: Unit Vectors Ma resolve a force vector into perpendicular components so that the resulting parallelogram is a rectangle. F and F are referred to as rectangular vector components and F F F Define perpendicular unit vectors i and j which are parallel to the and aes. Vector components ma be epressed as products of the unit vectors with the scalar magnitudes of the vector components. F F i F j F and F are referred to as the scalar components of F - 15

16 ighth - 16 Ad of Forces b Summing Components S Q P R Wish to find the resultant of 3 or more concurrent forces, j S Q P i S Q P j S i S j Q i Q j P i P j R i R Resolve each force into rectangular components F S Q P R The scalar components of the resultant are equal to the sum of the corresponding scalar components of the given forces. F S Q P R R R R R R 1 tan To find the resultant magnitude and direction,

17 Sample Problem.3 SOLUTION: Resolve each force into rectangular components. Determine the components of the resultant b adding the corresponding force components. Four forces act on bolt A as shown. Determine the resultant of the force on the bolt. Calculate the magnitude and direction of the resultant. - 17

18 Sample Problem.3 SOLUTION: Resolve each force into rectangular components. force F1 F F3 F 4 mag R N tan 199.1N comp comp R R Determine the components of the resultant b adding the corresponding force components. Calculate the magnitude and direction. R 199.6N

19 Equilibrium of a Particle When the resultant of all forces acting on a particle is zero, the particle is in equilibrium. Newton s First Law: If the resultant force on a particle is zero, the particle will remain at rest or will continue at constant speed in a straight line. Particle acted upon b two forces: - equal magnitude - same line of action - opposite sense Particle acted upon b three or more forces: - graphical solution ields a closed polgon - algebraic solution R F 0 F 0 F 0-19

20 Free-Bod Diagrams Space Diagram: A sketch showing the phsical cons of the problem. Free-Bod Diagram: A sketch showing onl the forces on the selected particle. - 0

21 Sample Problem.4 SOLUTION: Construct a free-bod diagram for the particle at the junction of the rope and cable. Appl the cons for equilibrium b creating a closed polgon from the forces applied to the particle. In a ship-unloading operation, a 3500-N automobile is supported b a cable. A rope is tied to the cable and pulled to center the automobile over its intended position. What is the tension in the rope? Appl trigonometric relations to determine the unknown force magnitudes. - 1

22 Sample Problem.4 SOLUTION: Construct a free-bod diagram for the particle at A. Appl the cons for equilibrium. Solve for the unknown force magnitudes. T AB T AC 3500 N sin10 sin sin 58 T AB 3570 N T AC 144 N -

23 Sample Problem.6 SOLUTION: It is desired to determine the drag force at a given speed on a prototpe sailboat hull. A model is placed in a test channel and three cables are used to align its bow on the channel centerline. For a given speed, the tension is 40 N in cable AB and 60 N in cable AE. Determine the drag force eerted on the hull and the tension in cable AC. Choosing the hull as the free bod, draw a free-bod diagram. Epress the con for equilibrium for the hull b writing that the sum of all forces must be zero. Resolve the vector equilibrium equation into two component equations. Solve for the two unknown cable tensions. - 3

24 Sample Problem.6 SOLUTION: Choosing the hull as the free bod, draw a free-bod diagram. 7 m tan m m tan 4 m Epress the con for equilibrium for the hull b writing that the sum of all forces must be zero. R T T T F 0 AB AC AE D - 4

25 Sample Problem.6 Resolve the vector equilibrium equation into two component equations. Solve for the two unknown cable tensions. TAB 40 Nsin 60.6 i 40 Ncos Ni Nj TAC TAC sin 0.56i TAC cos 0.56 j 0.351TAC i TAC j T 60 Ni F F i D D j R T T AC AC FD i 60 j - 5

26 Sample Problem.6 R T T AC AC FD i 60 j This equation is satisfied onl if each component of the resultant is equal to zero T F F T 60 T F AC D F 4.9 N N AC AC D - 6

27 Rectangular Components in Space The vector F is contained in the plane OBAC. Resolve F into horizontal and vertical components. F F h F cos F sin Resolve F h into rectangular components. F Fh cos F sin cos F F h sin F sin sin - 7

28 Rectangular Components in Space With the angles between F and the aes, F F cos F F cos Fz F cos z F Fi F j Fzk Fcos i cos j cos zk F cos i cos j cos zk is a unit vector along the line of action of F and cos, cos are the direction cosines for F, and cos z - 8

29 ighth - 9 Rectangular Components in Space Direction of the force is defined b the location of two points, 1 1 1,, and,, z N z M d Fd F d Fd F d Fd F k d j d i d d F F z z d d d k d j d i d N M d z z z z z 1 and vector joining 1 1 1

30 Sample Problem.7 SOLUTION: Based on the relative locations of the points A and B, determine the unit vector pointing from A towards B. Appl the unit vector to determine the components of the force acting on A. The tension in the gu wire is 500 N. Determine: a) components F, F, F z of the force acting on the bolt at A, b) the angles,, z defining the direction of the force Noting that the components of the unit vector are the direction cosines for the vector, calculate the corresponding angles. - 30

31 Sample Problem.7 SOLUTION: Determine the unit vector pointing from A towards B. AB 40 m i 80 m j 30m k AB 94.3 m 40 m 80m 30m i j k i j 0.318k Determine the components of the force. F F 500 N 0.44i j 0.318k 1060 N i 10 N j 795 N k - 31

32 Sample Problem.7 Noting that the components of the unit vector are the direction cosines for the vector, calculate the corresponding angles. cos i cos j cos zk 0.44i j 0.318k z

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction CHAPTER ENT 151 STATICS Lecture Notes: Azizul bin Mohamad KUKUM Statics of Particles Contents Introduction Resultant of Two Forces Vectors Addition of Vectors Resultant of Several Concurrent Forces Sample

More information

Chapter 2 Statics of Particles. Resultant of Two Forces 8/28/2014. The effects of forces on particles:

Chapter 2 Statics of Particles. Resultant of Two Forces 8/28/2014. The effects of forces on particles: Chapter 2 Statics of Particles The effects of forces on particles: - replacing multiple forces acting on a particle with a single equivalent or resultant force, - relations between forces acting on a particle

More information

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University T E CHAPTER 1 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: Introduction John Chen California Polytechnic State University! Contents

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanics Lecture : Statics of particles Ahma Shahei Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.b, shakil6791@gmail.com Website: teacher.buet.ac.b/sshakil

More information

Mechanics: Scalars and Vectors

Mechanics: Scalars and Vectors Mechanics: Scalars and Vectors Scalar Onl magnitude is associated with it Vector e.g., time, volume, densit, speed, energ, mass etc. Possess direction as well as magnitude Parallelogram law of addition

More information

a Particle Forces the force. of action its sense is of application. Experimen demonstra forces ( P Resultant of Two Note: a) b) momentum)

a Particle Forces the force. of action its sense is of application. Experimen demonstra forces ( P Resultant of Two Note: a) b) momentum) Chapter 2 : Statics of a Particle 2.2 Force on a Particle: Resultant of Two Forces Recall, force is a vector quantity whichh has magnitude and direction. The direction of the the force. force is defined

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

CHAPTER 2. Copyright McGraw-Hill Education. Permission required for reproduction or display.

CHAPTER 2. Copyright McGraw-Hill Education. Permission required for reproduction or display. CHAPTER 2 PROBLEM 2.1 Two forces are applied as shown to a hook. Determinee graphicall the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule. (a) Parallelogram

More information

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015 6 Analsis CHAPTER VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. of Structures Lecture Notes: J. Walt Oler Texas Tech Universit Contents Introduction Definition of a Truss

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives. 3 Rigid CHATER VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Bodies: Equivalent Sstems of Forces Contents & Objectives

More information

MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 )

MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 ) MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 ) *Before we get into solving for oblique triangles, let's have a quick refresher on solving for right triangles' problems: Solving a Right Triangle

More information

ARCH 614 Note Set 2 S2011abn. Forces and Vectors

ARCH 614 Note Set 2 S2011abn. Forces and Vectors orces and Vectors Notation: = name for force vectors, as is A, B, C, T and P = force component in the direction = force component in the direction h = cable sag height L = span length = name for resultant

More information

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth SI Edition CHTER 1 MECHNICS OF MTERILS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Introduction Concept of Stress Lecture Notes: J. Walt Oler Teas Tech University Contents

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

More information

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics CE 201 Statics 2 Physical Sciences Branch of physical sciences 16 concerned with the state of Mechanics rest motion of bodies that are subjected to the action of forces Rigid-Body Deformable-Body Fluid

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies Contents Introduction

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Transformations of Stress and Strain 006 The McGraw-Hill Companies,

More information

Introduction to Engineering Mechanics

Introduction to Engineering Mechanics Introduction to Engineering Mechanics Statics October 2009 () Introduction 10/09 1 / 19 Engineering mechanics Engineering mechanics is the physical science that deals with the behavior of bodies under

More information

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors orces and Vectors Notation: = name for force vectors, as is A, B, C, T and P = force component in the direction = force component in the direction R = name for resultant vectors R = resultant component

More information

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples orces and Moments CIEG-125 Introduction to Civil Engineering all 2005 Lecture 3 Outline hwhat is mechanics? hscalars and vectors horces are vectors htransmissibilit of forces hresolution of colinear forces

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions Introduction 1.1 Introduction Stress analysis is an important part of engineering science, as failure of most engineering components is usually due to stress. The component under a stress investigation

More information

The Study of Concurrent Forces with the Force Table

The Study of Concurrent Forces with the Force Table The Study of Concurrent Forces with the Force Table Apparatus: Force table with 4 pulleys, centering ring and string, 50 g weight hangers, slotted weights, protractors, and rulers. Discussion: The force

More information

Vector is a quantity which has both magnitude and direction. We will use the arrow to designate vectors.

Vector is a quantity which has both magnitude and direction. We will use the arrow to designate vectors. In this section, we will study the fundamental operations (addition, resolving vectors into components) of force vectors. Vector is a quantity which has both magnitude and direction. We will use the arrow

More information

Chapter 2: Force Vectors

Chapter 2: Force Vectors Chapter 2: Force Vectors Chapter Objectives To show how to add forces and resolve them into components using the Parallelogram Law. To express force and position in Cartesian vector form and explain how

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015. 3 Rigid CHPTER VECTR ECHNICS R ENGINEERS: STTICS erdinand P. eer E. Russell Johnston, Jr. Lecture Notes: J. Walt ler Teas Tech Universit odies: Equivalent Sstems of orces Contents Introduction Eternal

More information

STATICS. Rigid Bodies: Equivalent Systems of Forces VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Rigid Bodies: Equivalent Systems of Forces VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Rigid Bodies: Equivalent Systems of Forces Contents

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8 UNIT 1 INTRODUCTION TO VECTORS Lesson TOPIC Suggested Work Sept. 5 1.0 Review of Pre-requisite Skills Pg. 273 # 1 9 OR WS 1.0 Fill in Info sheet and get permission sheet signed. Bring in $3 for lesson

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit

More information

Space Coordinates and Vectors in Space. Coordinates in Space

Space Coordinates and Vectors in Space. Coordinates in Space 0_110.qd 11//0 : PM Page 77 SECTION 11. Space Coordinates and Vectors in Space 77 -plane Section 11. -plane -plane The three-dimensional coordinate sstem Figure 11.1 Space Coordinates and Vectors in Space

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5 BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

More information

Scalar Quantities - express only magnitude ie. time, distance, speed

Scalar Quantities - express only magnitude ie. time, distance, speed Chapter 6 - Vectors Scalar Quantities - express only magnitude ie. time, distance, speed Vector Quantities - express magnitude and direction. ie. velocity 80 km/h, 58 displacement 10 km (E) acceleration

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Lecture 2: Vector-Vector Operations

Lecture 2: Vector-Vector Operations Lecture 2: Vector-Vector Operations Vector-Vector Operations Addition of two vectors Geometric representation of addition and subtraction of vectors Vectors and points Dot product of two vectors Geometric

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 9 Distributed CHAPTER VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Forces: Moments of nertia Contents ntroduction

More information

Ishik University / Sulaimani Civil Engineering Department. Chapter -2-

Ishik University / Sulaimani Civil Engineering Department. Chapter -2- Ishik University / Sulaimani Civil Engineering Department Chapter -- 1 orce Vectors Contents : 1. Scalars and Vectors. Vector Operations 3. Vector Addition of orces 4. Addition of a System of Coplanar

More information

Lecture #4: Vector Addition

Lecture #4: Vector Addition Lecture #4: Vector Addition ackground and Introduction i) Some phsical quantities in nature are specified b onl one number and are called scalar quantities. An eample of a scalar quantit is temperature,

More information

CHAPTER 1 MEASUREMENTS AND VECTORS

CHAPTER 1 MEASUREMENTS AND VECTORS CHPTER 1 MESUREMENTS ND VECTORS 1 CHPTER 1 MESUREMENTS ND VECTORS 1.1 UNITS ND STNDRDS n phsical quantit must have, besides its numerical value, a standard unit. It will be meaningless to sa that the distance

More information

Chapter 2: Statics of Particles

Chapter 2: Statics of Particles CE297-A09-Ch2 Page 1 Wednesday, August 26, 2009 4:18 AM Chapter 2: Statics of Particles 2.1-2.3 orces as Vectors & Resultants orces are drawn as directed arrows. The length of the arrow represents the

More information

Vectors in Two Dimensions

Vectors in Two Dimensions Vectors in Two Dimensions Introduction In engineering, phsics, and mathematics, vectors are a mathematical or graphical representation of a phsical quantit that has a magnitude as well as a direction.

More information

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force Course Overview Statics (Freshman Fall) Engineering Mechanics Dynamics (Freshman Spring) Strength of Materials (Sophomore Fall) Mechanism Kinematics and Dynamics (Sophomore Spring ) Aircraft structures

More information

STATICS VECTOR MECHANICS FOR ENGINEERS: Eleventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek

STATICS VECTOR MECHANICS FOR ENGINEERS: Eleventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Eleventh E 6 Analysis CHAPTER VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. David. Mazurek of Structures Contents Application Introduction Definition of a Truss Simple

More information

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER 27 The McGraw-Hill Companies, Inc. All rights resered. Eighth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Kinematics of Particles Lecture Notes: J.

More information

Statics deal with the condition of equilibrium of bodies acted upon by forces.

Statics deal with the condition of equilibrium of bodies acted upon by forces. Mechanics It is defined as that branch of science, which describes and predicts the conditions of rest or motion of bodies under the action of forces. Engineering mechanics applies the principle of mechanics

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer 00 The McGraw-Hill Companies, nc. All rights reserved. Seventh E CHAPTER VECTOR MECHANCS FOR ENGNEERS: 9 STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Distributed Forces: Lecture Notes: J. Walt Oler

More information

1. Given the apparatus in front of you, What are the forces acting on the paper clip?

1. Given the apparatus in front of you, What are the forces acting on the paper clip? Forces and Static Equilibrium - Worksheet 1. Given the apparatus in front of you, What are the forces acting on the paper clip? 2. Draw a free body diagram of the paper clip and plot all the forces acting

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To show how to add forces and resolve them into components using the Parallelogram Law. To express force and position in Cartesian vector form and explain how to determine the vector

More information

2.1 Scalars and Vectors

2.1 Scalars and Vectors 2.1 Scalars and Vectors Scalar A quantity characterized by a positive or negative number Indicated by letters in italic such as A e.g. Mass, volume and length 2.1 Scalars and Vectors Vector A quantity

More information

Engineering Mechanics: Statics in SI Units, 12e Force Vectors

Engineering Mechanics: Statics in SI Units, 12e Force Vectors Engineering Mechanics: Statics in SI Units, 1e orce Vectors 1 Chapter Objectives Parallelogram Law Cartesian vector form Dot product and angle between vectors Chapter Outline 1. Scalars and Vectors. Vector

More information

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector 1. Sstems of orces & s 2142111 Statics, 2011/2 Department of Mechanical Engineering, Chulalongkorn Uniersit bjecties Students must be able to Course bjectie Analze a sstem of forces and moments Chapter

More information

Please Visit us at:

Please Visit us at: IMPORTANT QUESTIONS WITH ANSWERS Q # 1. Differentiate among scalars and vectors. Scalars Vectors (i) The physical quantities that are completely (i) The physical quantities that are completely described

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 1 Introduction MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Concept of Stress Contents Concept of Stress

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Solve Quadratics Using the Formula

Solve Quadratics Using the Formula Clip 6 Solve Quadratics Using the Formula a + b + c = 0, = b± b 4 ac a ) Solve the equation + 4 + = 0 Give our answers correct to decimal places. ) Solve the equation + 8 + 6 = 0 ) Solve the equation =

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering- 2016 Engineering Mechanics Statics 2. Force Vectors; Operations on Vectors Dr. Rami Zakaria MECHANICS, UNITS, NUMERICAL CALCULATIONS & GENERAL PROCEDURE FOR ANALYSIS Today

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

CHAPTER 1 INTRODUCTION AND MATHEMATICAL CONCEPTS. s K J =

CHAPTER 1 INTRODUCTION AND MATHEMATICAL CONCEPTS. s K J = CHPTER 1 INTRODUCTION ND MTHEMTICL CONCEPTS CONCEPTUL QUESTIONS 1. RESONING ND SOLUTION The quantit tan is dimensionless and has no units. The units of the ratio /v are m F = m s s (m / s) H G I m K J

More information

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α =

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α = Unit 1 1. The subjects Engineering Mechanics deals with (a) Static (b) kinematics (c) Kinetics (d) All of the above 2. If the resultant of two forces P and Q is acting at an angle α with P, then (a) tan

More information

Chapter 5. Forces in Two Dimensions

Chapter 5. Forces in Two Dimensions Chapter 5 Forces in Two Dimensions Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically. Use Newton s laws to analyze motion when

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 370 Exam 3 Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

Ch. 7.3, 7.4: Vectors and Complex Numbers

Ch. 7.3, 7.4: Vectors and Complex Numbers Ch. 7.3, 7.4: Vectors and Complex Numbers Johns Hopkins University Fall 2014 (Johns Hopkins University) Ch. 7.3, 7.4: Vectors and Complex Numbers Fall 2014 1 / 38 Vectors(1) Definition (Vector) A vector

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Chapter 3 Vectors 3-1

Chapter 3 Vectors 3-1 Chapter 3 Vectors Chapter 3 Vectors... 2 3.1 Vector Analysis... 2 3.1.1 Introduction to Vectors... 2 3.1.2 Properties of Vectors... 2 3.2 Cartesian Coordinate System... 6 3.2.1 Cartesian Coordinates...

More information

Point Equilibrium & Truss Analysis

Point Equilibrium & Truss Analysis oint Equilibrium & Truss nalsis Notation: b = number of members in a truss () = shorthand for compression F = name for force vectors, as is X, T, and F = name of a truss force between joints named and,

More information

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 Forces Part 1 Phsics 211 Lab Introduction This is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet

More information

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods I. Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocity, force, momentum A scalar has only a magnitude. Some scalar quantities: mass, time, temperature

More information

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics As we have already discussed, the study of the rules of nature (a.k.a. Physics) involves both

More information

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue.

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue. Chapter 5: Forces in Two Dimensions Click the mouse or press the spacebar to continue. Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically.

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009

Newton 3 & Vectors. Action/Reaction. You Can OnlyTouch as Hard as You Are Touched 9/7/2009 Newton 3 & Vectors Action/Reaction When you lean against a wall, you exert a force on the wall. The wall simultaneously exerts an equal and opposite force on you. You Can OnlyTouch as Hard as You Are Touched

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

MECHANICS. Prepared by Engr. John Paul Timola

MECHANICS. Prepared by Engr. John Paul Timola MECHANICS Prepared by Engr. John Paul Timola MECHANICS a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces. subdivided

More information

STATICS VECTOR MECHANICS FOR ENGINEERS: Distributed Forces: Centroids and Centers of Gravity. Tenth Edition CHAPTER

STATICS VECTOR MECHANICS FOR ENGINEERS: Distributed Forces: Centroids and Centers of Gravity. Tenth Edition CHAPTER Tenth E CHAPTER 5 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University Distributed Forces:

More information

Introduction to Mechanics Vectors in 2 Dimensions

Introduction to Mechanics Vectors in 2 Dimensions Introduction to Mechanics Vectors in 2 Dimensions Lana heridan De Anza College Jan 29, 2018 Last time inertia freel falling objects acceleration due to gravit verview vectors in 2 dimensions some trigonometr

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 70 Exam Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4. Chapter 3 Solutions *3.1 = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.76 m 3.2 (a) d = ( 2 1 ) 2 + ( 2 1 ) 2 = (2.00 [ 3.00] 2 ) + ( 4.00 3.00)

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 2 Force Vectors 1 Chapter Objectives Parallelogram Law Cartesian vector form Dot product and an angle between two vectors 2 Chapter Outline 1. Scalars and

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information