KOLMOGOROV DISTANCE FOR MULTIVARIATE NORMAL APPROXIMATION. Yoon Tae Kim and Hyun Suk Park

Size: px
Start display at page:

Download "KOLMOGOROV DISTANCE FOR MULTIVARIATE NORMAL APPROXIMATION. Yoon Tae Kim and Hyun Suk Park"

Transcription

1 Korean J. Math. 3 (015, No. 1, pp KOLMOGOROV DISTANCE FOR MULTIVARIATE NORMAL APPROXIMATION Yoon Tae Kim and Hyun Suk Park Abstract. This paper concerns the rate of convergence in the multidimensional normal approximation of functional of Gaussian fields. The aim of the present work is to derive explicit upper bounds of the Kolmogorov distance for the rate of convergence instead of Wasserstein distance studied by Nourdin et al. [Ann. Inst. H. Poincaré(B Probab.Statist. 46(1 ( ]. 1. Introduction Let Z be a standard Gaussian random variable on a probability space (Ω, F, P. Suppose that {F n } is a sequence of real-valued random variables of an infinite-dimensional Gaussian field. In the paper [6] and [7], authors combine Stein s method and Malliavin calculus to derive explicit upper bounds for quantities of the type (1 E[h(F n ] E[h(Z], Received October 14, 014. Revised January 14, 015. Accepted January 19, Mathematics Subject Classification: 60H07. Key words and phrases: Malliavin calculus, Kolmogorov distance, Stein s method, multidimensional normal approximation, Wasserstein distance, fractional Brownian motion. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF funded by the Ministry of Education, Science and Technology (01R1A1A4A and NRF-013R1A1A Corresponding author. c The Kangwon-Kyungki Mathematical Society, 015. This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License ( -nc/3.0/ which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

2 Y.T. Kim and H.S. Park where h is a suitable test function. In the paper [9], authors extend the results of [6]and [7] to the multidimensional normal approximation of functional of Gaussian fields in Wasserstein distance. For a given function f : R R, the Stein equation associated with f is defined by ( f(x E[f(Z] = h (x xh(x for all x R. A solution to the equation ( is a function h such that h is Lebesguealmost everywhere differentiable and there exists a version of h satisfying (. If h Lip(1, where Lip(1 is the collection of all functions with Lipschitz constant bounded by 1, then the equation ( has a soluiton h such that h 1 and h. Recall that Wasserstein distance between the laws of two real-valued random variables X and Y is defined by d W (X, Y = sup E[h(X] E[h(Y ]. h Lip(1 In the paper [9], authors obtain explicit upper bounds of d W in the case when Z is a d-dimensional Gaussian vector, F = (F (1,..., F (d of smooth functionals of Gaussian fields, and d W is Wasserstein distance probability law on R d. In this paper, we consider the case when the test function h is nonsmooth such as the indicator functions of Borel-measurable convex sets. The test function of the Kolmogorov distance is such a class. This distance is defined by d Kol (X, Y = sup E[h(X] E[h(Y ]. {h=1 (,z] :z R d } For the proof of quantitative Breuer-Major theorems in [8], the upper bound of the Kolmogorov distance is obtained by using the relation (see Theorem 3.1 in [3] (3 d Kol (X, Y d W (X, Y. In this paper, by using the smoothing inequality, we directly derive an explicit upper bound of the Kolmogorov distance for a sequence {F n = (F n (1,..., F n (d, n 1} As an application, we find an explicit upper bound of the Kolmogorov distance in the Breuer-Major central limit theorem for fractional Brownian motion. (For the Wasserstein distance, see Theorem 4.1 in [9]. We stress that our upper bound is more

3 Kolmogorov distance for Multivariate normal approximation 3 efficient than the upper bound obtained by the relationship (3 as our upper bound converges to zero more fast.. Preliminaries In this section, we recall some basic facts about Malliavin calculus for Gaussian processes. The reader is referred to [10] for a more detailed explanation. Suppose that H is a real separable Hilbert space with scalar product denoted by <, > H. Let B = {B(h, h H} be an isonormal Gaussian process, that is a centered Gaussian family of random variables such that E[B(hB(g] = h, g H. Let S be the class of smooth and cylindrical random variables F of the form (4 F = f(b(ϕ 1,, B(ϕ n, where n 1, f Cb (Rn and ϕ i H, i = 1,, n. The Malliavin derivative of F with respect to B is the element of L (Ω, H defined by n f (5 DF = (B(ϕ 1,, B(ϕ n ϕ i, x i i=1 We denote by D l,p the closure of its associated smooth random variable class with respect to the norm l F p l,p = E( F p + E( D k F p. H k We denote by δ the adjoint of the operator D, also called the divergence operator. The domain of δ, denoted by Dom(δ, is an element u L (Ω; H such that k=1 E(< DF, u > H C(E F 1/ for all F D l,. If u Dom(δ, then δ(u is the element of L (Ω defined by the duality relationship E[F δ(u] = E[ DF, u H ] for every F D 1,. Let F L (Ω be a square integrable random variable. The operator L is defined through the projection operator J n, n = 0, 1,..., as L = n=0 nj nf, and is called the infinitesimal generator of the Ornstein- Uhlhenbeck semigroup. The relationship between the operator D, δ,

4 4 Y.T. Kim and H.S. Park and L is given as follows: δdf = LF, that is, for F L (Ω the statement F Dom(L is equivalent to F Dom(δD (i.e. F D 1, and DF Dom(δ, and in this case δdf = LF. We also define the operator L 1, which is the pseudo-inverse of L, as L 1 F = n=1 1 J n n(f. Note that L 1 is an operator with values in D, and LL 1 F = F E[F ] for all F L (Ω. 3. Main results In this section, we derive an explicit upper bound of the Kolmogorov distance for normal approximation. We begin by the following simple lemma. Lemma 3.1. Let ( 1 f(t = a log + b 1 e t for t > 0, 1 e t where a and b are positive constants such that a < b. Then the minimum with respect to t is attained for t = 1 ( a (1 log, b and inf f(t = a(log(b log(a + a, t>0 Proof. The solution t of the equation f (t = 0 is given by t = 1 ( a (1 log. b It is clear that inf t>0 f(t = f(t = a(log(b log(a + a. We define the following smoothing of h by T t h for small t > 0: [ T t h(x = E h(e t x + ] 1 e t Z, where Z N (0, I. We use the following differential equation in [5] or ( in the book [1], (6 T t h(x Φh = Ψ t (x x Ψ t (x,

5 Kolmogorov distance for Multivariate normal approximation 5 where Ψ t (x = t { h(e s x + } 1 e s yφ(ydy ds. R d Let C be the class of all Borel convex sets in R d and h = h hdφ. R d In [1], the bound for the error arising from this smoothing is given by (7 sup E[ h(f n ] sup E[T t h(fn ] + b 1 e t e t, where b is a positive constant being independent of n. We first estimate, for small t > 0, (8 E[T t h(fn ] = E[ Ψ t (F n F n Ψ t (F n ], Obviously, for i, j = 1,..., d, ( x i x Ψ e s t(x = j t 1 e s { h(e s x + } 1 e s y R y d i y φ(ydy ds. j From the estimate φ(y R d y i y dy 1 for i, j = 1,..., d we have j (9 sup x i x Ψ t(x j x R d t ( e s 1 ds = log 1 e s 1 e t. Theorem 3.. Let Σ be a d d be a symmetric positive-definite matrix. Suppose that {F n = (F n (1,..., F n (d, n 1} is a sequence of R d - valued centered square integrable random variables such that F n (i D 1, for every i = 1,..., d and n 1. For n 1 such that 1A n < b, we have that sup E[h(F n ] E[h(Σ 1/ Z] (10 ( 1A n log(b log( 1A n + 1A n,

6 6 Y.T. Kim and H.S. Park where b is a positive constant, the norm 1 denotes the subordinate matrix norm for a matrix based on l 1 vector norms, and (11 A n = [ ( E Σ lv DL 1 F n (l, DF n (v H ]. Proof. Since C is invariant nonsingular, linear transformation, we have sup = sup E[h(F n ] E[h(Σ 1/ Z] E[h( F n ] E[h(Z]. Using the smoothing inequality (7 and (11 yields (1 sup sup By (8 and (9, we estimate = = (13 E[T t h( F n ] [ E i,j=1 i,l=1 [ E i,j=1 i,j=1 E[ h( F n ] x i x j Ψ t( F n δ i,j il j,v=1 jv E E[T t h( F n ] + c 1 e t e t. [ x i x j Ψ t( F n x i x j Ψ t( F n ] ] x i x Ψ t( F j n DL 1 F n (l, DF n (v H il jv il jv [ E r=1 Σ 1/ rl Σ 1/ rv DL 1 F (l n ] ], DF n (v H

7 (14 (15 Kolmogorov distance for Multivariate normal approximation 7 [ = E x i x Ψ t( F j n il jv i,j=1 ( ] Σ lv DL 1 F n (l, DF n (v H ( 1 log 1 e t i,j=1 [ Σlv E DL 1 F n (l ( 1 ( log sup 1 e t 1 l d il jv, DF (v n H ] E [ ( Σ lv DL 1 F (l n il i=1, DF (v n H ]. Since we take n 1 such that 1A n < b, it follows, from (7 and Lemma 3.1 together with (15, that (16 sup E[T t h( F n ] ( 1A n log(b log( 1A n + 1A n. Remark 3.3. By the Cauchy-Schwartz inequality, the right-hand side in (14 can be estimated as (17 ( 1 ( log 1 e t ij E [ j=1 i=1 ] ( Σlv DL 1 F n (l, DF n (v H

8 8 Y.T. Kim and H.S. Park By a similar estimate as for (15, we have, from (17, that sup E[T t h( F n ] (18 ( ab n log(b log(ab n where a = ( d d j=1 i=1 Σ 1/ ij and B n = E [ + ab n, ( Σlv DL 1 F n (l, DF n (v H ]. 4. Applications In this section, we use our main results in order to obtain an explicit upper bound of the Kolmogorov distance instead of the Wasserstein distance used for Theorem 4.1 in the paper [9] corresponding to Lemma 4.1 below. We recall that a fractional Brownian motion B H = {B H t, t 0}, with Hurst parameter H, is a centered Gaussian process with covariance R(s, t = E[B H t B H s ] = 1 (th + s H t s H. Fix an integer q. We assume that H < 1 1. Let us set q S n (t = 1 [nt] 1 σ H q (Bk+1 H Bk H, for t 0, n k=0 where H q is the qth Hermite polynomial function and σ = q! r Z ρ (r, ρ(r = 1 ( r + 1 H + r 1 H r H. In the paper [] or [4], authors prove that as n, S n f.d.d B H, where the notation f.d.d denotes convergence in the sense of finite-dimensional distributions. In the paper [9], authors obtain the multidimensional bound for the Wasserstein distance proved for {S n (t, t 0}.

9 Kolmogorov distance for Multivariate normal approximation 9 Lemma 4.1. For any fixed d 1 and 0 = t 1 < < t d, there exists a constant c, depending only on d, H and (t 0, t 1,..., t d such that for every n 1 d W (F n, Z c n 1/ for H (0, 1] n H 1 for H ( 1, q 3 n qh q+ 1 where Z N d (0, I d and F n = (F n (1,..., F n (d, F (i n = S n(t i S n (t i 1 ti t i 1. q ], for H ( q 3, q 1 ] q q If we use the relation (3, then the upper bound of the Kolmogorov distance equals n 1/4 for H (0, 1] (19 d Kol (F n, Z c n H 1 for H ( 1, q 3 ] q. n qh q+1 4 for H ( q 3, q 1 ] q q Theorem 4.. Let F n be a sequence given in Lemma 4.1. Then for sufficiently large n 1, we have log(nn 1/ for H (0, 1] (0 d Kol (F n, Z c log(nn H 1 for H ( 1, q 3 ] q. log(nn qh q+ 1 for H ( q 3, q 1 ] q q Proof. By ignoring terms in the upper bound (10 of Theorem 3. being of lower order than log(a n A n, we have, taking C = (, z], that (1 d Kol (F n, Z c log(a n A n. By the estimate (1 and Lemma 4.1, we get the results. Remark 4.3. we can see that the upper bound (0 obtained by using Theorem 3. is more efficient than that in (19 obtained by using Lemma 4.1 in the sense that the latter one converges to zero more slowly as n tends to infinity. Acknowledgements We would like to thank the editor and the anonymous referees for their comments which considerably improve the paper.

10 10 Y.T. Kim and H.S. Park References [1] Bhattacharya, R. N. and Ranga Rao. R (1986. Normal Approximation and Asymptotic Expansion. Krieger, Melbourne, FL. [] Breuer, P and Major, P. (1983. Central limit theorems for nonlinear functionals of Gaussian fieds, J. Multivariate Analysis, 13 (3, [3] Chen, L and Shao, Q.-M. (005. Stein s method for normal approximation, in: An Introduction to Stein s method, in Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 4, Singapore Univ. Press, Singapore, [4] Giraitis, L and Surgailis, D. (1985. CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 70 (3, [5] Götze, F.(009. On the rate of convergence in the multivariate CLT, Ann. Probab., 19, [6] Nourdin, I. and Peccati, G. (009. Stein s method on Wiener Chaos, Probab.Theory Related Fields, 145, [7] Nourdin, I. and Peccati, G.(009. Stein s method and exact Berry-Esseen asymptotics for functionals of Gaussian fields, Annals of Probab., 37 (6, [8] Nourdin, I. and Peccati, G and Podolskij, M. (011. Quantitative Breuer-Major theorems, Stochasic rocesses and their Applicatrions, 11, [9] Nourdin, I. and Peccati, G and Reveillac, A. (010. Multivariate normal approximation using Stein s method and Malliavin calculus, Ann. Inst. H. Poincaré(B Probab.Statist., 46 (1, [10] D. Nualart (006, Malliavin calculus and related topics, nd Ed. Springer. Yoon Tae Kim Department of Finance and Information Statistics Hallym University Chunchon 00-70, Korea ytkim@hallym.ac.kr Hyun Suk Park Department of Finance and Information Statistics Hallym University Chunchon 00-70, Korea hspark@hallym.ac.kr

Malliavin calculus and central limit theorems

Malliavin calculus and central limit theorems Malliavin calculus and central limit theorems David Nualart Department of Mathematics Kansas University Seminar on Stochastic Processes 2017 University of Virginia March 8-11 2017 David Nualart (Kansas

More information

arxiv: v1 [math.pr] 7 May 2013

arxiv: v1 [math.pr] 7 May 2013 The optimal fourth moment theorem Ivan Nourdin and Giovanni Peccati May 8, 2013 arxiv:1305.1527v1 [math.pr] 7 May 2013 Abstract We compute the exact rates of convergence in total variation associated with

More information

Stein s method and weak convergence on Wiener space

Stein s method and weak convergence on Wiener space Stein s method and weak convergence on Wiener space Giovanni PECCATI (LSTA Paris VI) January 14, 2008 Main subject: two joint papers with I. Nourdin (Paris VI) Stein s method on Wiener chaos (ArXiv, December

More information

Normal approximation of Poisson functionals in Kolmogorov distance

Normal approximation of Poisson functionals in Kolmogorov distance Normal approximation of Poisson functionals in Kolmogorov distance Matthias Schulte Abstract Peccati, Solè, Taqqu, and Utzet recently combined Stein s method and Malliavin calculus to obtain a bound for

More information

NEW FUNCTIONAL INEQUALITIES

NEW FUNCTIONAL INEQUALITIES 1 / 29 NEW FUNCTIONAL INEQUALITIES VIA STEIN S METHOD Giovanni Peccati (Luxembourg University) IMA, Minneapolis: April 28, 2015 2 / 29 INTRODUCTION Based on two joint works: (1) Nourdin, Peccati and Swan

More information

Stein s method on Wiener chaos

Stein s method on Wiener chaos Stein s method on Wiener chaos by Ivan Nourdin and Giovanni Peccati University of Paris VI Revised version: May 10, 2008 Abstract: We combine Malliavin calculus with Stein s method, in order to derive

More information

The Stein and Chen-Stein Methods for Functionals of Non-Symmetric Bernoulli Processes

The Stein and Chen-Stein Methods for Functionals of Non-Symmetric Bernoulli Processes ALEA, Lat. Am. J. Probab. Math. Stat. 12 (1), 309 356 (2015) The Stein Chen-Stein Methods for Functionals of Non-Symmetric Bernoulli Processes Nicolas Privault Giovanni Luca Torrisi Division of Mathematical

More information

The Stein and Chen-Stein methods for functionals of non-symmetric Bernoulli processes

The Stein and Chen-Stein methods for functionals of non-symmetric Bernoulli processes The Stein and Chen-Stein methods for functionals of non-symmetric Bernoulli processes Nicolas Privault Giovanni Luca Torrisi Abstract Based on a new multiplication formula for discrete multiple stochastic

More information

arxiv: v4 [math.pr] 19 Jan 2009

arxiv: v4 [math.pr] 19 Jan 2009 The Annals of Probability 28, Vol. 36, No. 6, 2159 2175 DOI: 1.1214/7-AOP385 c Institute of Mathematical Statistics, 28 arxiv:75.57v4 [math.pr] 19 Jan 29 ASYMPTOTIC BEHAVIOR OF WEIGHTED QUADRATIC AND CUBIC

More information

Quantitative Breuer-Major Theorems

Quantitative Breuer-Major Theorems Quantitative Breuer-Major Theorems arxiv:1005.3107v2 [math.pr] 6 Jun 2010 Ivan Nourdin Giovanni Peccati Mark Podolskij June 3, 2010 Abstract We consider sequences of random variables of the type S n =

More information

Stein s method and stochastic analysis of Rademacher functionals

Stein s method and stochastic analysis of Rademacher functionals E l e c t r o n i c J o u r n a l o f P r o b a b i l i t y Vol. 15 (010), Paper no. 55, pages 1703 174. Journal URL http://www.math.washington.edu/~ejpecp/ Stein s method and stochastic analysis of Rademacher

More information

Multi-dimensional Gaussian fluctuations on the Poisson space

Multi-dimensional Gaussian fluctuations on the Poisson space E l e c t r o n i c J o u r n a l o f P r o b a b i l i t y Vol. 15 (2010), Paper no. 48, pages 1487 1527. Journal URL http://www.math.washington.edu/~ejpecp/ Multi-dimensional Gaussian fluctuations on

More information

REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES. Byeong Moon Kim. 1. Introduction

REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES. Byeong Moon Kim. 1. Introduction Korean J. Math. 24 (2016), No. 1, pp. 71 79 http://dx.doi.org/10.11568/kjm.2016.24.1.71 REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES Byeong Moon Kim Abstract. In this paper, we determine

More information

arxiv: v1 [math.pr] 10 Jan 2019

arxiv: v1 [math.pr] 10 Jan 2019 Gaussian lower bounds for the density via Malliavin calculus Nguyen Tien Dung arxiv:191.3248v1 [math.pr] 1 Jan 219 January 1, 219 Abstract The problem of obtaining a lower bound for the density is always

More information

Stein's method meets Malliavin calculus: a short survey with new estimates. Contents

Stein's method meets Malliavin calculus: a short survey with new estimates. Contents Stein's method meets Malliavin calculus: a short survey with new estimates by Ivan Nourdin and Giovanni Peccati Université Paris VI and Université Paris Ouest Abstract: We provide an overview of some recent

More information

Quantitative stable limit theorems on the Wiener space

Quantitative stable limit theorems on the Wiener space Quantitative stable limit theorems on the Wiener space by Ivan Nourdin, David Nualart and Giovanni Peccati Université de Lorraine, Kansas University and Université du Luxembourg Abstract: We use Malliavin

More information

arxiv:math/ v2 [math.pr] 9 Mar 2007

arxiv:math/ v2 [math.pr] 9 Mar 2007 arxiv:math/0703240v2 [math.pr] 9 Mar 2007 Central limit theorems for multiple stochastic integrals and Malliavin calculus D. Nualart and S. Ortiz-Latorre November 2, 2018 Abstract We give a new characterization

More information

Cumulants on the Wiener Space

Cumulants on the Wiener Space Cumulants on the Wiener Space by Ivan Nourdin and Giovanni Peccati Université Paris VI and Université Paris Ouest Abstract: We combine innite-dimensional integration by parts procedures with a recursive

More information

BOUNDED WEAK SOLUTION FOR THE HAMILTONIAN SYSTEM. Q-Heung Choi and Tacksun Jung

BOUNDED WEAK SOLUTION FOR THE HAMILTONIAN SYSTEM. Q-Heung Choi and Tacksun Jung Korean J. Math. 2 (23), No., pp. 8 9 http://dx.doi.org/.568/kjm.23.2..8 BOUNDED WEAK SOLUTION FOR THE HAMILTONIAN SYSTEM Q-Heung Choi and Tacksun Jung Abstract. We investigate the bounded weak solutions

More information

Stein s Method: Distributional Approximation and Concentration of Measure

Stein s Method: Distributional Approximation and Concentration of Measure Stein s Method: Distributional Approximation and Concentration of Measure Larry Goldstein University of Southern California 36 th Midwest Probability Colloquium, 2014 Stein s method for Distributional

More information

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED. Sungsik Yun

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED. Sungsik Yun Korean J. Math. 3 05, No. 3, pp. 393 399 http://dx.doi.org/0.568/kjm.05.3.3.393 APPROXIMATE ADDITIVE MAPPINGS IN -BANACH SPACES AND RELATED TOPICS: REVISITED Sungsik Yun Abstract. W. Park [J. Math. Anal.

More information

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung Korean J. Math. 20 (2012), No. 4, pp. 477 483 http://dx.doi.org/10.11568/kjm.2012.20.4.477 HILBERT l-class FIELD TOWERS OF IMAGINARY l-cyclic FUNCTION FIELDS Hwanyup Jung Abstract. In this paper we study

More information

A Gentle Introduction to Stein s Method for Normal Approximation I

A Gentle Introduction to Stein s Method for Normal Approximation I A Gentle Introduction to Stein s Method for Normal Approximation I Larry Goldstein University of Southern California Introduction to Stein s Method for Normal Approximation 1. Much activity since Stein

More information

Stein s Method and Stochastic Geometry

Stein s Method and Stochastic Geometry 1 / 39 Stein s Method and Stochastic Geometry Giovanni Peccati (Luxembourg University) Firenze 16 marzo 2018 2 / 39 INTRODUCTION Stein s method, as devised by Charles Stein at the end of the 60s, is a

More information

STEIN MEETS MALLIAVIN IN NORMAL APPROXIMATION. Louis H. Y. Chen National University of Singapore

STEIN MEETS MALLIAVIN IN NORMAL APPROXIMATION. Louis H. Y. Chen National University of Singapore STEIN MEETS MALLIAVIN IN NORMAL APPROXIMATION Louis H. Y. Chen National University of Singapore 215-5-6 Abstract Stein s method is a method of probability approximation which hinges on the solution of

More information

arxiv: v2 [math.pr] 12 May 2015

arxiv: v2 [math.pr] 12 May 2015 Optimal Berry-Esseen bounds on the Poisson space arxiv:1505.02578v2 [math.pr] 12 May 2015 Ehsan Azmoodeh Unité de Recherche en Mathématiques, Luxembourg University ehsan.azmoodeh@uni.lu Giovanni Peccati

More information

A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH SPACE

A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH SPACE Theory of Stochastic Processes Vol. 21 (37), no. 2, 2016, pp. 84 90 G. V. RIABOV A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH

More information

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim Korean J. Math. 25 (2017), No. 4, pp. 469 481 https://doi.org/10.11568/kjm.2017.25.4.469 GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS Jong Kyu Kim, Salahuddin, and Won Hee Lim Abstract. In this

More information

Almost sure central limit theorems on the Wiener space

Almost sure central limit theorems on the Wiener space Stochastic Processes and their Applications 20 200) 607 628 www.elsevier.com/locate/spa Almost sure central limit theorems on the Wiener space Bernard Bercu a, Ivan Nourdin b,, Murad S. Taqqu c a Institut

More information

Probability approximation by Clark-Ocone covariance representation

Probability approximation by Clark-Ocone covariance representation Probability approximation by Clark-Ocone covariance representation Nicolas Privault Giovanni Luca Torrisi October 19, 13 Abstract Based on the Stein method and a general integration by parts framework

More information

arxiv: v2 [math.pr] 22 Aug 2009

arxiv: v2 [math.pr] 22 Aug 2009 On the structure of Gaussian random variables arxiv:97.25v2 [math.pr] 22 Aug 29 Ciprian A. Tudor SAMOS/MATISSE, Centre d Economie de La Sorbonne, Université de Panthéon-Sorbonne Paris, 9, rue de Tolbiac,

More information

Optimal Berry-Esseen bounds on the Poisson space

Optimal Berry-Esseen bounds on the Poisson space Optimal Berry-Esseen bounds on the Poisson space Ehsan Azmoodeh Unité de Recherche en Mathématiques, Luxembourg University ehsan.azmoodeh@uni.lu Giovanni Peccati Unité de Recherche en Mathématiques, Luxembourg

More information

Normal approximation of geometric Poisson functionals

Normal approximation of geometric Poisson functionals Institut für Stochastik Karlsruher Institut für Technologie Normal approximation of geometric Poisson functionals (Karlsruhe) joint work with Daniel Hug, Giovanni Peccati, Matthias Schulte presented at

More information

arxiv: v2 [math.pr] 14 Dec 2009

arxiv: v2 [math.pr] 14 Dec 2009 The Annals of Probability 29, Vol. 37, No. 6, 22 223 DOI: 1.1214/9-AOP473 c Institute of Mathematical Statistics, 29 arxiv:82.337v2 [math.pr] 14 Dec 29 ASYMPTOTIC BEHAVIOR OF WEIGHTED QUADRATIC VARIATIONS

More information

ON MEHLER S FORMULA. Giovanni Peccati (Luxembourg University) Conférence Géométrie Stochastique Nantes April 7, 2016

ON MEHLER S FORMULA. Giovanni Peccati (Luxembourg University) Conférence Géométrie Stochastique Nantes April 7, 2016 1 / 22 ON MEHLER S FORMULA Giovanni Peccati (Luxembourg University) Conférence Géométrie Stochastique Nantes April 7, 2016 2 / 22 OVERVIEW ı I will discuss two joint works: Last, Peccati and Schulte (PTRF,

More information

Stein s method, logarithmic Sobolev and transport inequalities

Stein s method, logarithmic Sobolev and transport inequalities Stein s method, logarithmic Sobolev and transport inequalities M. Ledoux University of Toulouse, France and Institut Universitaire de France Stein s method, logarithmic Sobolev and transport inequalities

More information

CAMBRIDGE TRACTS IN MATHEMATICS. General Editors B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B.TOTARO

CAMBRIDGE TRACTS IN MATHEMATICS. General Editors B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B.TOTARO CAMBRIDGE TRACTS IN MATHEMATICS General Editors B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B.TOTARO 192 Normal Approximations with Malliavin Calculus CAMBRIDGE TRACTS IN MATHEMATICS

More information

ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES

ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES ON THE STRUCTURE OF GAUSSIAN RANDOM VARIABLES CIPRIAN A. TUDOR We study when a given Gaussian random variable on a given probability space Ω, F,P) is equal almost surely to β 1 where β is a Brownian motion

More information

Wasserstein-2 bounds in normal approximation under local dependence

Wasserstein-2 bounds in normal approximation under local dependence Wasserstein- bounds in normal approximation under local dependence arxiv:1807.05741v1 [math.pr] 16 Jul 018 Xiao Fang The Chinese University of Hong Kong Abstract: We obtain a general bound for the Wasserstein-

More information

ERROR BOUNDS ON THE NON-NORMAL APPROXI- MATION OF HERMITE POWER VARIATIONS OF FRAC- TIONAL BROWNIAN MOTION

ERROR BOUNDS ON THE NON-NORMAL APPROXI- MATION OF HERMITE POWER VARIATIONS OF FRAC- TIONAL BROWNIAN MOTION Elect. Comm. in Probab. 13 28), 482 493 ELECTRONIC COMMUNICATIONS in PROBABILITY ERROR BOUNDS ON THE NON-NORMAL APPROXI- MATION OF HERMITE POWER VARIATIONS OF FRAC- TIONAL BROWNIAN MOTION JEAN-CHRISTOPHE

More information

SYMMETRIC WEIGHTED ODD-POWER VARIATIONS OF FRACTIONAL BROWNIAN MOTION AND APPLICATIONS

SYMMETRIC WEIGHTED ODD-POWER VARIATIONS OF FRACTIONAL BROWNIAN MOTION AND APPLICATIONS Communications on Stochastic Analysis Vol. 1, No. 1 18 37-58 Serials Publications www.serialspublications.com SYMMETRIC WEIGHTED ODD-POWER VARIATIONS OF FRACTIONAL BROWNIAN MOTION AND APPLICATIONS DAVID

More information

Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants

Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants ALEA,Lat. Am. J.Probab. Math. Stat.9(2), 473 500(2012) Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants Hermine Biermé 1, Aline Bonami 1, Ivan Nourdin 2 and Giovanni

More information

A REFINED ENUMERATION OF p-ary LABELED TREES

A REFINED ENUMERATION OF p-ary LABELED TREES Korean J. Math. 21 (2013), No. 4, pp. 495 502 http://dx.doi.org/10.11568/kjm.2013.21.4.495 A REFINED ENUMERATION OF p-ary LABELED TREES Seunghyun Seo and Heesung Shin Abstract. Let T n (p) be the set of

More information

Rough paths methods 4: Application to fbm

Rough paths methods 4: Application to fbm Rough paths methods 4: Application to fbm Samy Tindel Purdue University University of Aarhus 2016 Samy T. (Purdue) Rough Paths 4 Aarhus 2016 1 / 67 Outline 1 Main result 2 Construction of the Levy area:

More information

Regularity of the density for the stochastic heat equation

Regularity of the density for the stochastic heat equation Regularity of the density for the stochastic heat equation Carl Mueller 1 Department of Mathematics University of Rochester Rochester, NY 15627 USA email: cmlr@math.rochester.edu David Nualart 2 Department

More information

CONSTRUCTION OF THE HILBERT CLASS FIELD OF SOME IMAGINARY QUADRATIC FIELDS. Jangheon Oh

CONSTRUCTION OF THE HILBERT CLASS FIELD OF SOME IMAGINARY QUADRATIC FIELDS. Jangheon Oh Korean J. Math. 26 (2018), No. 2, pp. 293 297 https://doi.org/10.11568/kjm.2018.26.2.293 CONSTRUCTION OF THE HILBERT CLASS FIELD OF SOME IMAGINARY QUADRATIC FIELDS Jangheon Oh Abstract. In the paper [4],

More information

ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE. Sung-Ho Park

ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE. Sung-Ho Park Korean J. Math. 22 (201), No. 1, pp. 133 138 http://dx.doi.org/10.11568/kjm.201.22.1.133 ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE Sung-Ho Park Abstract. We show that a compact

More information

Itô formula for the infinite-dimensional fractional Brownian motion

Itô formula for the infinite-dimensional fractional Brownian motion Itô formula for the infinite-dimensional fractional Brownian motion Ciprian A. Tudor SAMOS-MATISSE Université de Panthéon-Sorbonne Paris 1 9, rue de Tolbiac, 75634 Paris France. January 13, 25 Abstract

More information

Density estimates and concentration inequalities with Malliavin calculus

Density estimates and concentration inequalities with Malliavin calculus Density estimates and concentration inequalities with Malliavin calculus Ivan Nourdin and Frederi G Viens Université Paris 6 and Purdue University Abstract We show how to use the Malliavin calculus to

More information

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE. Chang Il Kim and Se Won Park

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE. Chang Il Kim and Se Won Park Korean J. Math. 22 (2014), No. 2, pp. 339 348 http://d.doi.org/10.11568/kjm.2014.22.2.339 THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE Chang

More information

A Present Position-Dependent Conditional Fourier-Feynman Transform and Convolution Product over Continuous Paths

A Present Position-Dependent Conditional Fourier-Feynman Transform and Convolution Product over Continuous Paths International Journal of Mathematical Analysis Vol. 9, 05, no. 48, 387-406 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.589 A Present Position-Dependent Conditional Fourier-Feynman Transform

More information

Chapter 6. Stein s method, Malliavin calculus, Dirichlet forms and the fourth moment theorem

Chapter 6. Stein s method, Malliavin calculus, Dirichlet forms and the fourth moment theorem November 20, 2014 18:45 BC: 9129 - Festschrift Masatoshi Fukushima chapter6 page 107 Chapter 6 Stein s method, Malliavin calculus, Dirichlet forms and the fourth moment theorem Louis H.Y. Chen and Guillaume

More information

STRUCTURAL AND SPECTRAL PROPERTIES OF k-quasi- -PARANORMAL OPERATORS. Fei Zuo and Hongliang Zuo

STRUCTURAL AND SPECTRAL PROPERTIES OF k-quasi- -PARANORMAL OPERATORS. Fei Zuo and Hongliang Zuo Korean J Math (015), No, pp 49 57 http://dxdoiorg/1011568/kjm01549 STRUCTURAL AND SPECTRAL PROPERTIES OF k-quasi- -PARANORMAL OPERATORS Fei Zuo and Hongliang Zuo Abstract For a positive integer k, an operator

More information

A STUDY OF GENERALIZED ADAMS-MOULTON METHOD FOR THE SATELLITE ORBIT DETERMINATION PROBLEM

A STUDY OF GENERALIZED ADAMS-MOULTON METHOD FOR THE SATELLITE ORBIT DETERMINATION PROBLEM Korean J Math 2 (23), No 3, pp 27 283 http://dxdoiorg/568/kjm232327 A STUDY OF GENERALIZED ADAMS-MOULTON METHOD FOR THE SATELLITE ORBIT DETERMINATION PROBLEM Bum Il Hong and Nahmwoo Hahm Abstract In this

More information

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE Communications on Stochastic Analysis Vol. 4, No. 3 (21) 299-39 Serials Publications www.serialspublications.com COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE NICOLAS PRIVAULT

More information

NORMAL APPROXIMATION FOR WHITE NOISE FUNCTIONALS BY STEIN S METHOD AND HIDA CALCULUS

NORMAL APPROXIMATION FOR WHITE NOISE FUNCTIONALS BY STEIN S METHOD AND HIDA CALCULUS NORMAL APPROXIMATION FOR WHITE NOISE FUNCTIONALS BY STEIN S METHOD AND HIDA CALCULUS Louis H. Y. Chen Department of Mathematics National University of Singapore 0 Lower Kent Ridge Road, Singapore 9076

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

arxiv: v1 [math.ap] 18 May 2017

arxiv: v1 [math.ap] 18 May 2017 Littlewood-Paley-Stein functions for Schrödinger operators arxiv:175.6794v1 [math.ap] 18 May 217 El Maati Ouhabaz Dedicated to the memory of Abdelghani Bellouquid (2/2/1966 8/31/215) Abstract We study

More information

STEIN S METHOD AND NORMAL APPROXIMATION OF POISSON FUNCTIONALS

STEIN S METHOD AND NORMAL APPROXIMATION OF POISSON FUNCTIONALS The Annals of Probability 2010, Vol. 38, No. 2, 443 478 DOI: 10.1214/09-AOP477 Institute of Mathematical Statistics, 2010 STEIN S METHOD AND NORMAL APPROXIMATION OF POISSON FUNCTIONALS BY G. PECCATI, J.L.SOLÉ

More information

Differential Stein operators for multivariate continuous distributions and applications

Differential Stein operators for multivariate continuous distributions and applications Differential Stein operators for multivariate continuous distributions and applications Gesine Reinert A French/American Collaborative Colloquium on Concentration Inequalities, High Dimensional Statistics

More information

An Itô s type formula for the fractional Brownian motion in Brownian time

An Itô s type formula for the fractional Brownian motion in Brownian time An Itô s type formula for the fractional Brownian motion in Brownian time Ivan Nourdin and Raghid Zeineddine arxiv:131.818v1 [math.pr] 3 Dec 13 December 4, 13 Abstract Let X be a two-sided) fractional

More information

Asymptotic behavior of some weighted quadratic and cubic variations of the fractional Brownian motion

Asymptotic behavior of some weighted quadratic and cubic variations of the fractional Brownian motion Asymptotic behavior of some weighted quadratic and cubic variations of the fractional Brownian motion Ivan Nourdin To cite this version: Ivan Nourdin. Asymptotic behavior of some weighted quadratic and

More information

A general theorem on the stability of a class of functional equations including quadratic additive functional equations

A general theorem on the stability of a class of functional equations including quadratic additive functional equations Lee and Jung SpringerPlus 20165:159 DOI 10.1186/s40064-016-1771-y RESEARCH A general theorem on the stability of a class of functional equations including quadratic additive functional equations Yang Hi

More information

Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion

Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion Luis Barboza October 23, 2012 Department of Statistics, Purdue University () Probability Seminar 1 / 59 Introduction

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES

MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES D. NUALART Department of Mathematics, University of Kansas Lawrence, KS 6645, USA E-mail: nualart@math.ku.edu S. ORTIZ-LATORRE Departament de Probabilitat,

More information

IN AN ALGEBRA OF OPERATORS

IN AN ALGEBRA OF OPERATORS Bull. Korean Math. Soc. 54 (2017), No. 2, pp. 443 454 https://doi.org/10.4134/bkms.b160011 pissn: 1015-8634 / eissn: 2234-3016 q-frequent HYPERCYCLICITY IN AN ALGEBRA OF OPERATORS Jaeseong Heo, Eunsang

More information

-variation of the divergence integral w.r.t. fbm with Hurst parameter H < 1 2

-variation of the divergence integral w.r.t. fbm with Hurst parameter H < 1 2 /4 On the -variation of the divergence integral w.r.t. fbm with urst parameter < 2 EL ASSAN ESSAKY joint work with : David Nualart Cadi Ayyad University Poly-disciplinary Faculty, Safi Colloque Franco-Maghrébin

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

Contents. 1 Preliminaries 3. Martingales

Contents. 1 Preliminaries 3. Martingales Table of Preface PART I THE FUNDAMENTAL PRINCIPLES page xv 1 Preliminaries 3 2 Martingales 9 2.1 Martingales and examples 9 2.2 Stopping times 12 2.3 The maximum inequality 13 2.4 Doob s inequality 14

More information

Research Article Attracting Periodic Cycles for an Optimal Fourth-Order Nonlinear Solver

Research Article Attracting Periodic Cycles for an Optimal Fourth-Order Nonlinear Solver Abstract and Applied Analysis Volume 01, Article ID 63893, 8 pages doi:10.1155/01/63893 Research Article Attracting Periodic Cycles for an Optimal Fourth-Order Nonlinear Solver Mi Young Lee and Changbum

More information

Stokes formula on the Wiener space and n-dimensional Nourdin-Peccati analysis

Stokes formula on the Wiener space and n-dimensional Nourdin-Peccati analysis Stokes formula on the Wiener space and n-dimensional Nourdin-Peccati analysis by Hélène Airault 1, Paul Malliavin 2, Frederi Viens 3 1 Université de Picardie Jules Verne, Insset, 48 rue Raspail, 02100

More information

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee Korean J. Math. 22 (214), No. 1, pp. 123 131 http://dx.doi.org/1.11568/jm.214.22.1.123 PERTRBATION ANAYSIS FOR THE MATRIX EQATION X = I A X 1 A + B X 1 B Hosoo Lee Abstract. The purpose of this paper is

More information

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces YUAN-HENG WANG Zhejiang Normal University Department of Mathematics Yingbing Road 688, 321004 Jinhua

More information

Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order

Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order Abstract and Applied Analysis Volume 20, Article ID 923269, 3 pages doi:0.55/20/923269 Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order Soon-Mo Jung Mathematics

More information

Stein approximation for functionals of independent random sequences

Stein approximation for functionals of independent random sequences Stein approximation for functionals of independent random sequences Nicolas Privault Grzegorz Serafin November 7, 17 Abstract We derive Stein approximation bounds for functionals of uniform random variables,

More information

du+ z f 2(u) , which generalized the result corresponding to the class of analytic functions given by Nash.

du+ z f 2(u) , which generalized the result corresponding to the class of analytic functions given by Nash. Korean J. Math. 24 (2016), No. 3, pp. 36 374 http://dx.doi.org/10.11568/kjm.2016.24.3.36 SHARP HEREDITARY CONVEX RADIUS OF CONVEX HARMONIC MAPPINGS UNDER AN INTEGRAL OPERATOR Xingdi Chen and Jingjing Mu

More information

Malliavin Calculus: Analysis on Gaussian spaces

Malliavin Calculus: Analysis on Gaussian spaces Malliavin Calculus: Analysis on Gaussian spaces Josef Teichmann ETH Zürich Oxford 2011 Isonormal Gaussian process A Gaussian space is a (complete) probability space together with a Hilbert space of centered

More information

Almost sure limit theorems for U-statistics

Almost sure limit theorems for U-statistics Almost sure limit theorems for U-statistics Hajo Holzmann, Susanne Koch and Alesey Min 3 Institut für Mathematische Stochasti Georg-August-Universität Göttingen Maschmühlenweg 8 0 37073 Göttingen Germany

More information

Strong convergence theorems for total quasi-ϕasymptotically

Strong convergence theorems for total quasi-ϕasymptotically RESEARCH Open Access Strong convergence theorems for total quasi-ϕasymptotically nonexpansive multi-valued mappings in Banach spaces Jinfang Tang 1 and Shih-sen Chang 2* * Correspondence: changss@yahoo.

More information

INFINITUDE OF MINIMALLY SUPPORTED TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS WITH LOW APPROXIMATION ORDERS. Youngwoo Choi and Jaewon Jung

INFINITUDE OF MINIMALLY SUPPORTED TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS WITH LOW APPROXIMATION ORDERS. Youngwoo Choi and Jaewon Jung Korean J. Math. (0) No. pp. 7 6 http://dx.doi.org/0.68/kjm.0...7 INFINITUDE OF MINIMALLY SUPPORTED TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS WITH LOW APPROXIMATION ORDERS Youngwoo Choi and

More information

Giovanni Peccati. 1. Introduction QUANTITATIVE CLTS ON A GAUSSIAN SPACE: A SURVEY OF RECENT DEVELOPMENTS

Giovanni Peccati. 1. Introduction QUANTITATIVE CLTS ON A GAUSSIAN SPACE: A SURVEY OF RECENT DEVELOPMENTS ESAIM: PROCEEDINGS, January 214, Vol. 44, p. 61-78 SMAI Groupe MAS Journées MAS 212 Exposé plénier QUANTITATIVE CLTS ON A GAUSSIAN SPACE: A SURVEY OF RECENT DEVELOPMENTS Giovanni Peccati Abstract. I will

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index H > 1 2

Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index H > 1 2 Discrete approximation of stochastic integrals with respect to fractional Brownian motion of urst index > 1 2 Francesca Biagini 1), Massimo Campanino 2), Serena Fuschini 2) 11th March 28 1) 2) Department

More information

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis Introduction to Infinite Dimensional Stochastic Analysis By Zhi yuan Huang Department of Mathematics, Huazhong University of Science and Technology, Wuhan P. R. China and Jia an Yan Institute of Applied

More information

Kolmogorov Berry-Esseen bounds for binomial functionals

Kolmogorov Berry-Esseen bounds for binomial functionals Kolmogorov Berry-Esseen bounds for binomial functionals Raphaël Lachièze-Rey, Univ. South California, Univ. Paris 5 René Descartes, Joint work with Giovanni Peccati, University of Luxembourg, Singapore

More information

WHITE NOISE APPROACH TO THE ITÔ FORMULA FOR THE STOCHASTIC HEAT EQUATION

WHITE NOISE APPROACH TO THE ITÔ FORMULA FOR THE STOCHASTIC HEAT EQUATION Communications on Stochastic Analysis Vol. 1, No. 2 (27) 311-32 WHITE NOISE APPROACH TO THE ITÔ FORMULA FOR THE STOCHASTIC HEAT EQUATION ALBERTO LANCONELLI Abstract. We derive an Itô s-type formula for

More information

Areas associated with a Strictly Locally Convex Curve

Areas associated with a Strictly Locally Convex Curve KYUNGPOOK Math. J. 56(206), 583-595 http://dx.doi.org/0.5666/kmj.206.56.2.583 pissn 225-695 eissn 0454-824 c Kyungpook Mathematical Journal Areas associated with a Strictly Locally Convex Curve Dong-Soo

More information

ON THE PROBABILITY APPROXIMATION OF SPATIAL

ON THE PROBABILITY APPROXIMATION OF SPATIAL ON THE PROBABILITY APPROIMATION OF SPATIAL POINT PROCESSES Giovanni Luca Torrisi Consiglio Nazionale delle Ricerche Giovanni Luca Torrisi (CNR) Approximation of point processes May 2015 1 / 33 POINT PROCESSES

More information

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

Monotone variational inequalities, generalized equilibrium problems and fixed point methods Wang Fixed Point Theory and Applications 2014, 2014:236 R E S E A R C H Open Access Monotone variational inequalities, generalized equilibrium problems and fixed point methods Shenghua Wang * * Correspondence:

More information

Independence of some multiple Poisson stochastic integrals with variable-sign kernels

Independence of some multiple Poisson stochastic integrals with variable-sign kernels Independence of some multiple Poisson stochastic integrals with variable-sign kernels Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological

More information

SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES

SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES SEVER S DRAGOMIR Abstract Some sharp bounds for the Euclidean operator radius of two bounded linear operators in Hilbert

More information

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces International Journal of Mathematical Analysis Vol. 9, 015, no. 30, 1477-1487 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.1988/ijma.015.53100 A Fied Point Approach to the Stability of a Quadratic-Additive

More information

L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE. Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song

L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE. Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song Korean J. Math. 25 (2017), No. 2, pp. 279 301 https://doi.org/10.11568/kjm.2017.25.2.279 L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE Byeong Moon Kim, Woonjae Hwang,

More information

arxiv: v1 [math.pr] 7 Sep 2018

arxiv: v1 [math.pr] 7 Sep 2018 ALMOST SURE CONVERGENCE ON CHAOSES GUILLAUME POLY AND GUANGQU ZHENG arxiv:1809.02477v1 [math.pr] 7 Sep 2018 Abstract. We present several new phenomena about almost sure convergence on homogeneous chaoses

More information

Center of Gravity and a Characterization of Parabolas

Center of Gravity and a Characterization of Parabolas KYUNGPOOK Math. J. 55(2015), 473-484 http://dx.doi.org/10.5666/kmj.2015.55.2.473 pissn 1225-6951 eissn 0454-8124 c Kyungpook Mathematical Journal Center of Gravity and a Characterization of Parabolas Dong-Soo

More information

LAN property for ergodic jump-diffusion processes with discrete observations

LAN property for ergodic jump-diffusion processes with discrete observations LAN property for ergodic jump-diffusion processes with discrete observations Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Arturo Kohatsu-Higa (Ritsumeikan University, Japan) &

More information

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain Int. Journal of Math. Analysis, Vol. 7, 013, no. 55, 745-75 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.013.394 Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation

More information

Research Article Generalized Mann Iterations for Approximating Fixed Points of a Family of Hemicontractions

Research Article Generalized Mann Iterations for Approximating Fixed Points of a Family of Hemicontractions Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 008, Article ID 84607, 9 pages doi:10.1155/008/84607 Research Article Generalized Mann Iterations for Approximating Fixed Points

More information

Research Article Some Estimates of Certain Subnormal and Hyponormal Derivations

Research Article Some Estimates of Certain Subnormal and Hyponormal Derivations Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2008, Article ID 362409, 6 pages doi:10.1155/2008/362409 Research Article Some Estimates of Certain

More information