Hopfield Network Recurrent Netorks

Size: px
Start display at page:

Download "Hopfield Network Recurrent Netorks"

Transcription

1 Hopfield Network Recurrent Netorks w 2 w n E.P. P.E. y (k) Auto-Associative Memory: Given an initial n bit pattern returns the closest stored (associated) pattern. No P.E. self-feedback! w 2 w n2 E.P.2 P.E.2 y 2 (k) ( k) Dynamics : s n i w i y ( k) i ( ) ( s ) ( k+ ) k f y w n w 2n E.P.n P.E.n y n (k) Hopfield Network with n Processing Elements Network Initialization: Binary f ( s Output Vector: activation ) hold if if s s () y x y function : ( ) [ y ] ( k) k i > L < L previous value, if s L Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 84

2 Hopfield Network... w 2 w n E.P. P.E. y (k) - Fast training and fast data recovery - IIR system with no input (only I.C.) - Guaranteed stability - Good for VLSI implementation w 2 w n2 E.P.2 P.E.2 y 2 (k) -Operating Forms (firing order) Asynchronous Synchronous Sequential w n w 2n E.P.n P.E.n y n (k) Initial Condition End Value (stable) Hopfield Network with n Processing Elements Possible Hopfield Network states (8) with Processing Elements (Illustration of a typical recovery state evolution. From I.C. to E.V.) Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 85

3 Hopfield Network... Learning: The patterns to be stored in the associative memory are chosen a priori. m distinct patterns. Each of the form: A p p p p [ a a a ], with a or. ( L, ) p 2 K n i usually w i m p (2a p i )(2a p ) p a i ( 2 ) Obs: converts / to /+ p i w i is incremented by if a a otherwise it is decremented Procedure is repeated for each i, for every A p. Learning is analogous to reinforcement learning p Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 86

4 Hopfield Network - Example Symbol Training Vector L A [ ] T A 2 [ ] a a 2 a a 4 a 5 a 6 a 7 a 8 a 9 Patterns to be stored as x matrices: Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 87 + A [ ] W m p p p i i a a w ) )(2 2 ( Weigth Matrix

5 Hopfield Network - Example ] [ () y x New pattern presented to the trained network: Fired P.E. P.E. Sum P.E. Output New output vector Sequential operation of the network: Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 88 ] [ W y x < >, ) ( :, s if value previous hold s if s if s f L function activation Binary Remember Convergence to L Pattern

6 Hopfield Network ava demos Demonstrations available in the www, e.g.: Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 89

7 Hopfield N. final considerations Stability proof Cohen and Grossberg, 98. W symmetric with zero diagonal Energy funcition always decreases. E 2 i w i y i y y L E - Energia Energy da rede of the network Spurious Padrão Pattern espúrio Initial Valor Inicial State Hopfield Network Limitations: Not necessarily the closest pattern is returned. Differences between patterns. Not all patterns have equal emphasis (size of attraction basins). Spurious patterns, i.e., patterns evoked that are not part of the stored set. Maximum number of stored patterns is limited. m,5n / log n, m patterns, n bits network Padrão Recovered recuperado Pattern Stored Padrões Patterns armazenados Estados States Typical Energy and Patterns illustration for Hopfield Newtworks Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 9

8 Radial Basis Functions - Moody & Darken, 989,... - Function Approximators - Inspiration: sensoricc overlapped reception fields in the cortex - Localized activity of the processing elements a i e µ x i i 2 σ i Gaussian (Average, Variance) a a i e p w i i b ml: w weigth b bias.4 Weighted Sum of Radial Basis Transfer Functions.2 pw pw2 pwn Output a Input p p Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 9

9 Radial Basis Functions... a a radbas( dist( w, p)* b) X: -.8 Y: w-p MatLab Implementation [net,tr] newrb(p,t,goal,spread,mn) P - RxQ matrix, Q input vectors ( pattern ), T - SxQ matrix, Q obective vectors ( target ), GOAL - desired mean square error, default., SPREAD - radial basis function spread, default., MN - Maximum number of neurons, default is Q. Output a Weighted Sum of Radial Basis Transfer Functions Input p Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 92

10 Radial Basis Functions... Learning: add neurons incrementally - Where? To obtain the largest quadratic errror reductions at each step min e spread to low - Good fitting (at the training points)! - Bad interpolation! spread to high - Good fitting at low frequencies - Good interpolation in some ranges! Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 9

11 Radial Basis Functions... Heuristics: x i+ xi < SPREAD < xmax xmin Target function 26 Amostras samplesda Função Function Função Aprox. Aprox. with 2 RBF RBF - 2 neuros neurônios spread OK - Good fitting! - Good interpolation! Bad extrapolation (is a very difficult task) Pattern Conclusions - Faster training faster, but uses more neurons than MLP. - Incremental Training, new points can be learned without losing prior knowledge. -You can use a priori knowledge to locate neurons (which is not possible in a MLP). - Fixed spread Incremental traning suboptimal solution!! Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 94

12 Comparison RBF x MLP RBF comparison - MSE over ti:.:,yiexp(-.*ti).*sin(.*ti.*ti)) samples (2) function MSE 5 RBFs.62 RBFs.25 5 RBFs.28 2 RBFs MLP comparison - MSE over ti:.:,yiexp(-.*ti).*sin(.*ti.*ti)) samples (2) function MSE 5 MLPs.672 MLPs MLPs MLPs RBF more neurons better fitting best solution newrbe (exact fitting!) MLP too much neurons worse fitting (bad interpolation) Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 95

13 Unsupervised Learning Competitive Layer Find vector codes that describe the data distribution No known desired Code Vectors They should reflect the Inner statistical distribution of the process Used in Data Compression Example: Code symbols that will be transmitted over a communication channel. For the comprehension the variability of the signal is considered as noise, and so, discarded. Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 96

14 Competitive Layer o code vectors training vectors x test vectors Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 97

15 Borders (Voronoi Diagram) o code vectors + training vectors x test vectors Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 98

16 Ex. Classification Borders o code vectors + training vectors x test vectors Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 99

17 Bias Bias adustment to to help weak neurons Bias (only Euclidean distance) Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic

18 Learning Vector Quantization No known desired Code Vectors Data points belong to Classes Code Vectors should reflect the Inner statistical distribution of the process Class A Class B Input Vectors Current input Class C Code vectors Class(X)Class(Wc) LVQ, LVQ2., LVQ, OLVQ Enhanced Algorithms -Dead neurons -Neighborhood definition Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic

19 Self Organizing Maps Kohonen, 982 Unsupervised learning One active layer with neighborhood constrains Code Vectors should reflect the Inner statistical distribution of the process Triangular distribution.6 Weight Vectors SOM Map W(i,2) W(i,) Weird unsuccessful training Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic 2

20 ANN General Characteristics Positive Learning Parallelism Distributed knowledge Fault Tolerant Associative Memory Robust against Noise No exhaustive modelling To obtain successful ANN a good process knowledge is recommended in order to design experiments that produce useful data sets! Negative Knowledge acquisition only by learning ( E.g., Wich topology is best suit?) Introspection is not possible ( What is the contribution of this neuron?) The logical inference is hard to obtain ( Why this output for this situation? ) Learning is slow Very sensitive to initial conditions There is no free lunch! Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Christian Mohr

Christian Mohr Christian Mohr 20.12.2011 Recurrent Networks Networks in which units may have connections to units in the same or preceding layers Also connections to the unit itself possible Already covered: Hopfield

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Artificial Intelligence Hopfield Networks

Artificial Intelligence Hopfield Networks Artificial Intelligence Hopfield Networks Andrea Torsello Network Topologies Single Layer Recurrent Network Bidirectional Symmetric Connection Binary / Continuous Units Associative Memory Optimization

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Sample Exam COMP 9444 NEURAL NETWORKS Solutions

Sample Exam COMP 9444 NEURAL NETWORKS Solutions FAMILY NAME OTHER NAMES STUDENT ID SIGNATURE Sample Exam COMP 9444 NEURAL NETWORKS Solutions (1) TIME ALLOWED 3 HOURS (2) TOTAL NUMBER OF QUESTIONS 12 (3) STUDENTS SHOULD ANSWER ALL QUESTIONS (4) QUESTIONS

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

CHAPTER IX Radial Basis Function Networks

CHAPTER IX Radial Basis Function Networks Ugur HAICI - METU EEE - ANKARA 2/2/2005 CHAPTER IX Radial Basis Function Networks Introduction Radial basis function (RBF) networks are feed-forward networks trained using a supervised training algorithm.

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Neural Networks. Hopfield Nets and Auto Associators Fall 2017

Neural Networks. Hopfield Nets and Auto Associators Fall 2017 Neural Networks Hopfield Nets and Auto Associators Fall 2017 1 Story so far Neural networks for computation All feedforward structures But what about.. 2 Loopy network Θ z = ቊ +1 if z > 0 1 if z 0 y i

More information

Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1.

Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1. CompNeuroSci Ch 10 September 8, 2004 10 Associative Memory Networks 101 Introductory concepts Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1 Figure 10 1: A key

More information

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required.

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In humans, association is known to be a prominent feature of memory.

More information

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche April Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche BIOLOGICAL NEURAL NETWORKS The brain can be seen as a highly

More information

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN ,

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN , Relevance determination in learning vector quantization Thorsten Bojer, Barbara Hammer, Daniel Schunk, and Katharina Tluk von Toschanowitz University of Osnabrück, Department of Mathematics/ Computer Science,

More information

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions BACK-PROPAGATION NETWORKS Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks Cannot approximate (learn) non-linear functions Difficult (if not impossible) to design

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. Part 3A: Hopfield Network III. Recurrent Neural Networks A. The Hopfield Network 1 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. III. Recurrent Neural Networks A. The Hopfield Network 2/9/15 1 2/9/15 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs output net

More information

Introduction to Neural Networks: Structure and Training

Introduction to Neural Networks: Structure and Training Introduction to Neural Networks: Structure and Training Professor Q.J. Zhang Department of Electronics Carleton University, Ottawa, Canada www.doe.carleton.ca/~qjz, qjz@doe.carleton.ca A Quick Illustration

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Computational Intelligence Lecture 6: Associative Memory

Computational Intelligence Lecture 6: Associative Memory Computational Intelligence Lecture 6: Associative Memory Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Computational Intelligence

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Alexandre Allauzen Anne Auger Michèle Sebag LIMSI LRI Oct. 4th, 2012 This course Bio-inspired algorithms Classical Neural Nets History

More information

Neural Network to Control Output of Hidden Node According to Input Patterns

Neural Network to Control Output of Hidden Node According to Input Patterns American Journal of Intelligent Systems 24, 4(5): 96-23 DOI:.5923/j.ajis.2445.2 Neural Network to Control Output of Hidden Node According to Input Patterns Takafumi Sasakawa, Jun Sawamoto 2,*, Hidekazu

More information

Radial-Basis Function Networks. Radial-Basis Function Networks

Radial-Basis Function Networks. Radial-Basis Function Networks Radial-Basis Function Networks November 00 Michel Verleysen Radial-Basis Function Networks - Radial-Basis Function Networks p Origin: Cover s theorem p Interpolation problem p Regularization theory p Generalized

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET Unit-. Definition Neural network is a massively parallel distributed processing system, made of highly inter-connected neural computing elements that have the ability to learn and thereby acquire knowledge

More information

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir Supervised (BPL) verses Hybrid (RBF) Learning By: Shahed Shahir 1 Outline I. Introduction II. Supervised Learning III. Hybrid Learning IV. BPL Verses RBF V. Supervised verses Hybrid learning VI. Conclusion

More information

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs L0: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

On the Hopfield algorithm. Foundations and examples

On the Hopfield algorithm. Foundations and examples General Mathematics Vol. 13, No. 2 (2005), 35 50 On the Hopfield algorithm. Foundations and examples Nicolae Popoviciu and Mioara Boncuţ Dedicated to Professor Dumitru Acu on his 60th birthday Abstract

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Hopfield Network for Associative Memory

Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory 1 The next few units cover unsupervised models Goal: learn the distribution of a set of observations Some observations

More information

Extending the Associative Rule Chaining Architecture for Multiple Arity Rules

Extending the Associative Rule Chaining Architecture for Multiple Arity Rules Extending the Associative Rule Chaining Architecture for Multiple Arity Rules Nathan Burles, James Austin, and Simon O Keefe Advanced Computer Architectures Group Department of Computer Science University

More information

Neural Networks Lecture 7: Self Organizing Maps

Neural Networks Lecture 7: Self Organizing Maps Neural Networks Lecture 7: Self Organizing Maps H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Cellular Automata Evolution for Pattern Recognition

Cellular Automata Evolution for Pattern Recognition Cellular Automata Evolution for Pattern Recognition Pradipta Maji Center for Soft Computing Research Indian Statistical Institute, Kolkata, 700 108, INDIA Under the supervision of Prof. P Pal Chaudhuri

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

INTERNATIONAL COMPUTER SCIENCE INSTITUTE

INTERNATIONAL COMPUTER SCIENCE INSTITUTE -. How Receptive Field Parameters Affect eural Learning Stephen M. Omohundro Barlett W. Mel TR-91-010 January, 1991 ITERATIOAL COMPUTER SCIECE ISTITUTE 1947 Center Street, Suite 600 Berkeley, California

More information

Defining Feedforward Network Architecture. net = newff([pn],[s1 S2... SN],{TF1 TF2... TFN},BTF,LF,PF);

Defining Feedforward Network Architecture. net = newff([pn],[s1 S2... SN],{TF1 TF2... TFN},BTF,LF,PF); Appendix D MATLAB Programs for Neural Systems D.. Defining Feedforward Network Architecture Feedforward networks often have one or more hidden layers of sigmoid neurons followed by an output layer of linear

More information

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines COMP9444 17s2 Boltzmann Machines 1 Outline Content Addressable Memory Hopfield Network Generative Models Boltzmann Machine Restricted Boltzmann

More information

Lecture 5: Recurrent Neural Networks

Lecture 5: Recurrent Neural Networks 1/25 Lecture 5: Recurrent Neural Networks Nima Mohajerin University of Waterloo WAVE Lab nima.mohajerin@uwaterloo.ca July 4, 2017 2/25 Overview 1 Recap 2 RNN Architectures for Learning Long Term Dependencies

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Artificial Neural Networks Examination, March 2002

Artificial Neural Networks Examination, March 2002 Artificial Neural Networks Examination, March 2002 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) Learning Vector Quantization (LVQ) Introduction to Neural Computation : Guest Lecture 2 John A. Bullinaria, 2007 1. The SOM Architecture and Algorithm 2. What is Vector Quantization? 3. The Encoder-Decoder

More information

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories //5 Neural Netors Associative memory Lecture Associative memories Associative memories The massively parallel models of associative or content associative memory have been developed. Some of these models

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

8. Lecture Neural Networks

8. Lecture Neural Networks Soft Control (AT 3, RMA) 8. Lecture Neural Networks Learning Process Contents of the 8 th lecture 1. Introduction of Soft Control: Definition and Limitations, Basics of Intelligent" Systems 2. Knowledge

More information

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition Radial Basis Function Networks Ravi Kaushik Project 1 CSC 84010 Neural Networks and Pattern Recognition History Radial Basis Function (RBF) emerged in late 1980 s as a variant of artificial neural network.

More information

Introduction to Convolutional Neural Networks 2018 / 02 / 23

Introduction to Convolutional Neural Networks 2018 / 02 / 23 Introduction to Convolutional Neural Networks 2018 / 02 / 23 Buzzword: CNN Convolutional neural networks (CNN, ConvNet) is a class of deep, feed-forward (not recurrent) artificial neural networks that

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Learning Vector Quantization

Learning Vector Quantization Learning Vector Quantization Neural Computation : Lecture 18 John A. Bullinaria, 2015 1. SOM Architecture and Algorithm 2. Vector Quantization 3. The Encoder-Decoder Model 4. Generalized Lloyd Algorithms

More information

A Reservoir Sampling Algorithm with Adaptive Estimation of Conditional Expectation

A Reservoir Sampling Algorithm with Adaptive Estimation of Conditional Expectation A Reservoir Sampling Algorithm with Adaptive Estimation of Conditional Expectation Vu Malbasa and Slobodan Vucetic Abstract Resource-constrained data mining introduces many constraints when learning from

More information

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Huffman Encoding

More information

Memories Associated with Single Neurons and Proximity Matrices

Memories Associated with Single Neurons and Proximity Matrices Memories Associated with Single Neurons and Proximity Matrices Subhash Kak Oklahoma State University, Stillwater Abstract: This paper extends the treatment of single-neuron memories obtained by the use

More information

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Fall, 2018 Outline Introduction A Brief History ANN Architecture Terminology

More information

9 Competitive Neural Networks

9 Competitive Neural Networks 9 Competitive Neural Networks the basic competitive neural network consists of two layers of neurons: The distance-measure layer, The competitive layer, also known as a Winner-Takes-All (WTA) layer The

More information

Learning Long Term Dependencies with Gradient Descent is Difficult

Learning Long Term Dependencies with Gradient Descent is Difficult Learning Long Term Dependencies with Gradient Descent is Difficult IEEE Trans. on Neural Networks 1994 Yoshua Bengio, Patrice Simard, Paolo Frasconi Presented by: Matt Grimes, Ayse Naz Erkan Recurrent

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

CHAPTER 3. Pattern Association. Neural Networks

CHAPTER 3. Pattern Association. Neural Networks CHAPTER 3 Pattern Association Neural Networks Pattern Association learning is the process of forming associations between related patterns. The patterns we associate together may be of the same type or

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Vincent Barra LIMOS, UMR CNRS 6158, Blaise Pascal University, Clermont-Ferrand, FRANCE January 4, 2011 1 / 46 1 INTRODUCTION Introduction History Brain vs. ANN Biological

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

In the Name of God. Lectures 15&16: Radial Basis Function Networks

In the Name of God. Lectures 15&16: Radial Basis Function Networks 1 In the Name of God Lectures 15&16: Radial Basis Function Networks Some Historical Notes Learning is equivalent to finding a surface in a multidimensional space that provides a best fit to the training

More information

Artificial Neural Networks The Introduction

Artificial Neural Networks The Introduction Artificial Neural Networks The Introduction 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

Machine Learning and Adaptive Systems. Lectures 3 & 4

Machine Learning and Adaptive Systems. Lectures 3 & 4 ECE656- Lectures 3 & 4, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2015 What is Learning? General Definition of Learning: Any change in the behavior or performance

More information

y(n) Time Series Data

y(n) Time Series Data Recurrent SOM with Local Linear Models in Time Series Prediction Timo Koskela, Markus Varsta, Jukka Heikkonen, and Kimmo Kaski Helsinki University of Technology Laboratory of Computational Engineering

More information

Neural Networks Lecture 2:Single Layer Classifiers

Neural Networks Lecture 2:Single Layer Classifiers Neural Networks Lecture 2:Single Layer Classifiers H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi Neural

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

Learning Vector Quantization with Training Count (LVQTC)

Learning Vector Quantization with Training Count (LVQTC) DFUB 95/20 Learning Vector Quantization with Training Count (LVQTC) ROBERTO ODORICO University of Bologna Istituto Nazionale di Fisica Nucleare, Bologna Abstract Kohonen's Learning Vector Quantization

More information

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation)

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation) Learning for Deep Neural Networks (Back-propagation) Outline Summary of Previous Standford Lecture Universal Approximation Theorem Inference vs Training Gradient Descent Back-Propagation

More information

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand

More information

Neural Networks biological neuron artificial neuron 1

Neural Networks biological neuron artificial neuron 1 Neural Networks biological neuron artificial neuron 1 A two-layer neural network Output layer (activation represents classification) Weighted connections Hidden layer ( internal representation ) Input

More information

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets Neural Networks for Machine Learning Lecture 11a Hopfield Nets Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Hopfield Nets A Hopfield net is composed of binary threshold

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

In the Name of God. Lecture 9: ANN Architectures

In the Name of God. Lecture 9: ANN Architectures In the Name of God Lecture 9: ANN Architectures Biological Neuron Organization of Levels in Brains Central Nervous sys Interregional circuits Local circuits Neurons Dendrite tree map into cerebral cortex,

More information

HOPFIELD neural networks (HNNs) are a class of nonlinear

HOPFIELD neural networks (HNNs) are a class of nonlinear IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 4, APRIL 2005 213 Stochastic Noise Process Enhancement of Hopfield Neural Networks Vladimir Pavlović, Member, IEEE, Dan Schonfeld,

More information

Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters

Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters Proceedings of the Federated Conference on Computer Science and Information Systems pp 69 73 ISBN 978-83-60810-51-4 Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters

More information

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Winter 2019 7 Recurrent etworks of Threshold (Binary) eurons: Basis for Associative Memory 7.1 The network The basic challenge in associative networks, also referred

More information

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi

More information

Neural Networks and Ensemble Methods for Classification

Neural Networks and Ensemble Methods for Classification Neural Networks and Ensemble Methods for Classification NEURAL NETWORKS 2 Neural Networks A neural network is a set of connected input/output units (neurons) where each connection has a weight associated

More information

Neural Networks Lecture 6: Associative Memory II

Neural Networks Lecture 6: Associative Memory II Neural Networks Lecture 6: Associative Memory II H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi Neural

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

Storage Capacity of Letter Recognition in Hopfield Networks

Storage Capacity of Letter Recognition in Hopfield Networks Storage Capacity of Letter Recognition in Hopfield Networks Gang Wei (gwei@cs.dal.ca) Zheyuan Yu (zyu@cs.dal.ca) Faculty of Computer Science, Dalhousie University, Halifax, N.S., Canada B3H 1W5 Abstract:

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Reservoir Computing and Echo State Networks

Reservoir Computing and Echo State Networks An Introduction to: Reservoir Computing and Echo State Networks Claudio Gallicchio gallicch@di.unipi.it Outline Focus: Supervised learning in domain of sequences Recurrent Neural networks for supervised

More information

Neural Network Analysis of Russian Parliament Voting Patterns

Neural Network Analysis of Russian Parliament Voting Patterns eural etwork Analysis of Russian Parliament Voting Patterns Dusan Husek Acad. of Sci. of the Czech Republic, Institute of Computer Science, the Czech Republic Email: dusan@cs.cas.cz Alexander A. Frolov

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks Facultés Universitaires Notre-Dame de la Paix 27 March 2007 Outline 1 Introduction 2 Fundamentals Biological neuron Artificial neuron Artificial Neural Network Outline 3 Single-layer ANN Perceptron Adaline

More information

Explaining Results of Neural Networks by Contextual Importance and Utility

Explaining Results of Neural Networks by Contextual Importance and Utility Explaining Results of Neural Networks by Contextual Importance and Utility Kary FRÄMLING Dep. SIMADE, Ecole des Mines, 158 cours Fauriel, 42023 Saint-Etienne Cedex 2, FRANCE framling@emse.fr, tel.: +33-77.42.66.09

More information

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 31 Luglio - 4 Agosto 2017

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 31 Luglio - 4 Agosto 2017 Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 31 Luglio - 4 Agosto 2017 www.u4learn.it Ing. Giuseppe La Tona Sommario Machine Learning definition Machine Learning Problems Artificial Neural

More information

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML)

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML) Machine Learning Fall 2017 Kernels (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang (Chap. 12 of CIML) Nonlinear Features x4: -1 x1: +1 x3: +1 x2: -1 Concatenated (combined) features XOR:

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Fall 2005; Revised for Winter 2017 7 Rate-Based Recurrent etworks of Threshold eurons: Basis for Associative Memory 7.1 A recurrent network with threshold elements The

More information

1. A discrete-time recurrent network is described by the following equation: y(n + 1) = A y(n) + B x(n)

1. A discrete-time recurrent network is described by the following equation: y(n + 1) = A y(n) + B x(n) Neuro-Fuzzy, Revision questions June, 25. A discrete-time recurrent network is described by the following equation: y(n + ) = A y(n) + B x(n) where A =.7.5.4.6, B = 2 (a) Sketch the dendritic and signal-flow

More information

Multilayer Perceptron

Multilayer Perceptron Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Single Perceptron 3 Boolean Function Learning 4

More information