# Physical Science. Thermal Energy & Heat

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Physical Science Thermal Energy & Heat

2 Sometimes called internal energy Depends on the object's mass, temperature, and phase (solid, liquid, gas) TOTAL potential and kinetic energy of all the particles in an object Thermal Energy

3 Heat vs. Temperature Heat n The spontaneous flow of THERMAL energy from a hot object to a cold object Temperature n a measure of how hot or cold an object is compared to a reference point n A measure of the AVERAGE kine;c energy of the par;cles in an object

4 Let s compare Temp, Thermal Energy, & Heat!! Temperature a measure of the AVERAGE kinetic energy of the individual particles of a substance. Thermal energy TOTAL energy of all of the particles Heat THERMAL energy moving from a warmer object to a cooler object, trying to reach thermodynamic equilibrium. Which of these can we measure?

5 Thermal energy vs. temp Now remember that thermal energy, unlike temperature, depends on mass Compare a cup of tea and a teapot full of tea, both at the same temperature Is the average kinetic energy the same in both? YES! (that s why they have the same temperature) Which has more thermal energy and why? The teapot because it has more particles (mass)!

6 Thermal energy varies with temperature Compare a cup of hot tea with a cup of cold tea Assume each cup is the same size and has the same mass Does each cup have the same amount of particles? Yes Which has the higher average kinetic energy? Hot tea So, which has the greater thermal energy? Hot tea

7 Thermal energy Which has more thermal energy? Pitcher of cool lemonade or cup of hot tea? Pot of boiling water or an iceberg? Eureka - Temperature vs. heat

8 So, how do thermometers work? Thermal expansion and contraction Particles move faster and expand as they warm So, as the temperature increases, the alcohol in the tube expands and its height increases

9 Absolute zero- that temperature where the individual particles contain no more energy. The particles (atoms and/or molecules) cease vibrating. No movement occurs. Absolute Zero -459 o -273 o 0 o

10 Warm-up Section 16-1 Review p.478 In which direction does heat flow on its own spontaneously? Name 2 variables that affect the thermal energy of an object. Why is it necessary to have regularly spaced gaps between sections of a concrete sidewalk?

11 Calorimeter Measures changes in thermal energy Uses the principle that heat flows from a hotter object to a colder object until both reach the same temperature. Read p.478 in textbook

12 Thermodynamics

13 Heat Transfer n Heat moves in only one direc;on: from a warmer object to a cooler object n Two drinks in the same room: n The hot coffee to room temp because... n The iced tea to room temp because...

14 Hot coffee cools to room temp because the heat of the coffee is transferred to the cooler temperature of the room. A cold glass of Iced tea soon warms up to the surrounding room temperature because the warmer temperature of the room s surroundings is transferred to the colder glass of iced tea thereby warming it up.

15 Heat Transfer n Heat is transferred in one of three ways: Conduction Convection Radiation n Specific Heat Video

16

17 Conduction Conduction heat is transferred from one object to another by direct contact. Examples include: a metal spoon in hot water gets hot or a pot gets hot as it sits on an electric stove. Fastest in solids. Much slower in gases. Why? (think about collisions)

18 Conductors vs. Insulators Conductor a material that transfers heat well: metal, tile, glass Insulator a material that does not transfer heat well: air, carpet, wood, wool

19 n Why does a ;le floor feel colder than a wood floor, even though they're both at room temperature? The ;le feels colder because it is a bejer conductor and transfers thermal energy rapidly away from your skin.

20 Why does a thick wool sweater keep you warm?

21 Convection Convection the transfer of thermal energy when particles of a fluid move from one place to another.the particles transfer the heat. Examples include: a pot of boiling water sets up convection currents to move the hot water at the bottom of the pot being heated to the cooler water at the top of the pot, convection currents in a heated room keep the temperature uniform.

22 Convection of warm air n Air is heated by sunlight n The temperature of the air Increases n The air Expands n The less dense air Rises n The denser air Sinks

23 Radiation Radiation transfer of energy by electromagnetic waves. Examples include: the Sun s energy traveling through space and heating up the Earth w/out heating space itself, Heat lamps used at fast food restaurants, and the radiator of a car dissipating the heat of an engine.

24 Radiation n All objects radiate energy: a fire, the sun, your body n As temp goes up the rate at which it radiates goes up

25 What type of heat transfer is represented by each arrow?

26 Laws of Thermodynamics 1 st Law- energy is conserved 2 nd Law- heat energy can only go from a cold to a hot object if work is done Refigerator A heat engine converts heat into work One consequence of the 2 nd law is that the efficiency of a heat engine is always less than 100% Waste heat must be lost for the heat engine to work!!! 3 rd Law- absolute zero can t be reached

27 Laws and Principles Boyle's Law - for a gas at a constant temperature, if you increase the pressure on the gas, the volume will decrease, and vise versa (ind. prop.) Ex.: -step on a Pringle's can -squeezing a balloon

28 A whoopie cushion utilizes Boyle s Law.

29

30 Charle's Law For a gas at a constant pressure, if you increase the temperature, then the volume will increase, and v/v. Ex.: Hot air balloon, car tires

31

32 Charles Law is similar to what other concept which we have discussed this chapter?

33 Pascal s Principle Pascal s Principle states that pressure exerted on a fluid is transmitted equally throughout the fluid.

34 As a downward force is applied to the piston, the increased pressure is transmitted throughout the entire system. P = F/A and P = F/A 10 Pa = 50 N/5 m 2 and 10 Pa = 500N/50 m 2

35 Examples: -squeezing a tube of toothpaste -The Blob -Pressurizing the cabin of an airplane

36 Carlos made a balloon rocket as shown in the picture. According to Pascal s Principle, what would happen if the rocket had an opening on both ends instead of just the one. Explain.

37 Bernoulli's Principle If you increase the speed of a fluid moving over the surface of a material, the pressure will decrease as a result (i.e. fluid velocity and pressure are indir. prop.) Ex.: Airplane wing, frisbee, fan blade, treading water

38

39

40

41 Archimede's Principle The buoyant (upward) force on an object submerged in a fluid is equal to the weight of the fluid displaced by that object. Buoyancy is the ability of an object to rise or float in a fluid.

42 Ex.: underwater handstand, lifting a submerged rock, finding your weight in a vacuum.

43 Let s say you accidentally fill your bathtub all the way full. So you know when you get in, some of the water will have to overflow.

44 If you were to collect all of the water that overflowed and weigh it (in Newtons), then that would be the amount of buoyant force pushing up on you in the tub.

45 So if you weight 668 N (about 150 pounds), and the water which you caused to overflow (displaced) weighed 620 N (about 139 pounds), then your weight as you sit in the tub would be about 48 N (11 pounds), if you were sitting on a scale on the bottom of the tub.

46 Buoyant Force h - Weight i Net Force

47 So if you lifted a 200 pound rock underwater, which displaced 160 pounds of water, how much it would make the rock seem to weigh?

48

49 Heating Systems Central heating systemsuse convection to distribute heat Radiators-steam, and boilers- water Put heat into the air it rises, circulates, then falls Controlled by a bimetallic thermometer

50 Electric Baseboardheating element similar to a oven is used to create radiation and convection Space heaters are small examples Forced-Air: use fans to circulate hot air, vents on floor

51 Cooling Systems Heat pumps- reverse the flow of heat energy Refrigerant- fluid that vaporizes absorbing heat and condenses when giving off heat Must do work to reverse flow of heat energy

52 Refrigerator Puts cold air into warm Heat coil beneath fridge releases heat produced by the work

53 Air Conditioners Heats the outdoor air Warm air flows from inside the house into the AC, then as heats is removed from coil cold air is created

54 Ideal Gas Law The constant value in the ideal gas law depends on the number of par;cles. PV=nRT n number of moles R = 8.31 Pam 3 /molk In general, the ideal gas law predicts the behavior of gases very well, except under condi;ons of high pressures or low temperatures.

### Unit 3: States of Matter, Heat and Gas Laws

Unit 3 - Stevens 1 Unit 3: States of Matter, Heat and Gas Laws Vocabulary: Solid Term Definition Example Liquid Gas No definite shape, but definite volume; Particles close together, but can move around

### Conduction is the transfer of heat by the direct contact of particles of matter.

Matter and Energy Chapter 9 energy flows from a material at a higher temperature to a material at a lower temperature. This process is called heat transfer. How is heat transferred from material to material,

### Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

### Chapter: Heat and States

Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

### Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures.

Thermal Energy Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures. And remember: heat will always transfer from a warm object to a cold object. HEAT

### Thermal Energy and Heat Notes. Ch. 14

Thermal Energy and Heat Notes Ch. 14 Temperature When scien

### Temperature and Heat. Chapter 10. Table of Contents. Chapter 10. Chapter 10. Bellringer. Objectives. Chapter 10. Chapter 10

Heat and Heat Technology Table of Contents Temperature and Heat Section 3 Matter and Heat Bellringer Objectives The temperature of boiling water is 100 on the Celsius scale and 212 on the Fahrenheit scale.

### Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

CHAPTER 14 SECTION Heat and Temperature 2 Energy Transfer KEY IDEAS As you read this section, keep these questions in mind: What are three kinds of energy transfer? What are conductors and insulators?

### What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

### Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

### Thermal Effects. IGCSE Physics

Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

### Kinetic Theory of Matter. Matter & Energy

Kinetic Theory of Matter Matter & Energy 1 Kinetic Theory of Matter All matter is made up of atoms and molecules that act as tiny particles. 2 Kinetic Theory of Matter These tiny particles are always in

### Temperature, Thermal Energy, and Heat

Temperature, Thermal Energy, and Heat Textbook pages 424 435 Section 10.1 Summary Before You Read We often use the terms heat and temperature interchangeably. Do you think they mean the same thing? Explain

### Matter and Thermal Energy

Section States of Matter Can you identify the states of matter present in the photo shown? Kinetic Theory The kinetic theory is an explanation of how particles in matter behave. Kinetic Theory The three

### What Is Air Temperature?

2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

### Heat can be transferred by. and by radiation Conduction

Heat can be transferred by conduction, by convection, and by radiation. The spontaneous transfer of heat is always from warmer objects to cooler objects. If several objects near one another have different

### Section 1 Matter and Energy

CHAPTER OUTLINE Section 1 Matter and Energy Key Idea questions > What makes up matter? > What is the difference between a solid, a liquid, and a gas? > What kind of energy do all particles of matter have?

### The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

The Kinetic Theory of Matter Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 6 HEAT Kinetic Theory of Matter: Matter is made up of tiny particles (atoms or molecules) that are always in

### Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis

1 Thermal Energy Vocabulary for Chapter 6 Thermal Energy Broughton High School Physical Science Vocabulary No.# Term Page # Definition 2 1. Degrees 2. Higher Specific Heat 3. Heat of Vaporization 4. Radiation

### We call the characteristic of a system that determines how much its temperature will change heat capacity.

3/3 Measuring Heat If all we do is add heat to a system its temperature will rise. How much the temperature rises depends on the system. We call the characteristic of a system that determines how much

### PHYSICS 149: Lecture 26

PHYSICS 149: Lecture 26 Chapter 14: Heat 14.1 Internal Energy 14.2 Heat 14.3 Heat Capacity and Specific Heat 14.5 Phase Transitions 14.6 Thermal Conduction 14.7 Thermal Convection 14.8 Thermal Radiation

### There are three phases of matter: Solid, liquid and gas

FLUIDS: Gases and Liquids Chapter 4 of text There are three phases of matter: Solid, liquid and gas Solids: Have form, constituents ( atoms and molecules) are in fixed positions (though they can vibrate

### Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

### What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy?

CHAPTER 3 3 Changes of State SECTION States of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a change of state? What happens during a change

### States of Matter Unit

Learning Target Notes Section 1: Matter and Energy What makes up matter? Matter is made of atoms and molecules that are in constant motion. Kinetic Theory of Matter A. Particles that make up matter are

### Chapter: States of Matter

Table of Contents Chapter: States of Matter Section 1: Matter Section 2: Changes of State Section 3: Behavior of Fluids 1 What is matter? Matter is anything that takes up space and has mass. Matter Matter

### 4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

Physics Module Form 4 Chapter 4 - Heat GCKL 2010 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. (, Temperature ) is a form of energy that flows from a hot body to a cold body.

### Electric energy Radiant energy Nuclear energy

CHAPTER 7 LESSON 1: FORMS OF ENERGY Potential Energy Stored Energy Energy Kinetic Potential Work What is Energy? Mechanical Sound Thermal Electric Radiant Nuclear Potential is stored due to the interactions

### Topic 6: Transferring Energy

Topic 6: Transferring Energy Transferring Energy Thermal energy can be transferred 3 ways: 1) Radiation 2) Conduction 3) Convection 1) RADIATIONTRANSFERS ENERGY Use p. 226 to answer the following questions

### Matter, States of Matter, Gas Laws, Phase Changes, and Thermal Energy

Matter, States of Matter, Gas Laws, Phase Changes, and Thermal Energy Double Jeopardy Jeopardy! Matter Tempera ture Phase Changes Heat Transfer Thermal Energy vs Heat 100 100 100 100 100 200 200 200 200

### Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Chapter 8: TEMPERATURE, HEAT, AND THERMODYNAMICS This lecture will help you understand: Temperature Absolute Zero Internal Energy Heat Quantity of Heat The Laws of Thermodynamics

### HEAT How is thermal energy transferred?

HEAT How is thermal energy transferred? Give an example of conduction? What is a convection current? Explain radiant energy? 1/3/2017 Heat Notes 1 1/3/2017 Heat Notes 2 NEED TO KNOW VOCABULARY: Conduction

### Chapter 11 Thermal Transport

Chapter 11 Thermal Transport GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define the following terms, and use them in an operational

### The sun s energy is transferred to the Earth with a wide range of wave lengths consisting of visible light, infrared, and ultraviolet.

TEACHING LEARNING COLLABORATIVE (TLC) EARTH SCIENCE Heat Moves Grade 6 Created by: Sandra Cornell (Terrace Middle School); Sue Cascio (Coyote Valley Elementary School); and Stacy Holland (Terrace Middle

### SPH3U1 Lesson 03 Energy

THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

### Physics 101: Lecture 26 Conduction, Convection, Radiation

Final Physics 101: Lecture 26 Conduction, Convection, Radiation Today s lecture will cover Textbook Chapter 14.4-14.9 Physics 101: Lecture 26, Pg 1 Review Heat is FLOW of energy Flow of energy may increase

### Comparing the actual value and the experimental value on heat. By conservation of energy

Topic: Heat 1. Temperature and thermometers a. Temperature: - measure degree of hotness. -measure the average kinetic energy of molecules in random motions. b. Fixed points: -Lower fixed point: temperature

### Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor?

Exercises 22.1 Conduction (pages 431 432) 1. Define conduction. 2. What is a conductor? 3. are the best conductors. 4. In conduction, between particles transfer thermal energy. 5. Is the following sentence

### Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Chapter 8: TEMPERATURE, HEAT, AND THERMODYNAMICS This lecture will help you understand: Temperature Absolute Zero Internal Energy Heat Quantity of Heat The Laws of Thermodynamics

### Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity

Name: Block: Date: IP 614 Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity All these questions are real MCAS questions! 1. In a copper wire, a temperature increase is the result of which

### Part I- Review how the molecules for a solid, liquid and gas differ at a constant temperature.

Temperature and Kinetic Energy Web Quest 8 th Grade PSI Science Classwork 1 Name Part I- Review how the molecules for a solid, liquid and gas differ at a constant temperature. 1. Follow this link: http://www.middleschoolchemistry.com/multimedia/chapter1/lesson5.

### CHAPTER 4 - STATES OF MATTER. Mr. Polard Physical Science Ingomar Middle School

CHAPTER 4 - STATES OF MATTER Mr. Polard Physical Science Ingomar Middle School SECTION 1 MATTER VOCABULARY SECTION 1 Matter : anything that takes up space and has mass (pg 72, 102) Solid : Matter with

### HEAT HISTORY. D. Whitehall

1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

### Assess why particular characteristics are necessary for effective conduction KEY POINTS

Conduction LEARNING OBJECTIVES Assess why particular characteristics are necessary for effective conduction KEY POINTS On a microscopic scale, conduction occurs as rapidly moving or vibrating atoms and

### Notes: Matter and Change

Name Chemistry-PAP Notes: Matter and Change Period: I. What is Chemistry? is the study of composition, structure, and properties of matter and energy associated with the changes it undergoes. is defined

### Heat Transfer. Heat Transfer. Convection Heat transfer due to the actual motion of a fluid. Conduction Heat transfer by successive atomic collisions

Heat Transfer What are the different ways that heat can move from one place to another? Heat Transfer What are the different ways that heat can move from one place to another? Conduction Convection Radiation

### Matter and Its Properties. Unit 2

Matter and Its Properties Unit 2 Lesson 1: Physical & Chemical Properties & Changes Unit 2: Matter and Its Properties Section 1: Physical Properties & Change Lesson 1: Physical & Chemical Properties &

### Key Concept Heat in Earth s atmosphere is transferred by radiation, conduction, and convection.

Section 2 Atmospheric Heating Key Concept Heat in Earth s atmosphere is transferred by radiation, conduction, and convection. What You Will Learn Solar energy travels through space as radiation and passes

### Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up What is energy, and what are energy transformations? What do you think?

### Temperature and Heat 4.1. Temperature depends on particle movement Energy flows from warmer to cooler objects. 4.3

Temperature and Heat NEW the BIG idea Heat is a flow of energy due to temperature differences. 4.1 Temperature depends on particle movement. 4.2 Energy flows from warmer to cooler objects. 4.3 The transfer

### 3 Types of Heat Transfer

3 Types of Heat Transfer The movement of heat from a warmer object to a cooler object. Heat Transfer- 1. Conduction Heat transfer by direct contact of molecules. In other words, when one molecule runs

### Science 7 Unit C: Heat and Temperature. Topic 6. Transferring Energy. pp WORKBOOK. Name:

Science 7 Unit C: Heat and Temperature Topic 6 Transferring Energy pp. 226-236 WORKBOOK Name: 0 Read pp. 226-227 object or material that can transfer energy to other objects Example: light bulb, the Sun

### Notes: Matter and Change

Name Chemistry-PAP Notes: Matter and Change Period: I. What is Chemistry? is the study of composition, structure, and properties of matter and energy associated with the changes it undergoes. is defined

### a e v rag a e Reme m mb m er:

QOD All objects sitting in a room should reach the same temperature. Yet if you pick up a cup made of glass, it feels cooler than a cup made of plastic. How is this possible? How can two objects be the

### Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

### kinetic molecular theory thermal energy.

Thermal Physics 1 Thermal Energy The kinetic molecular theory is based on the assumption that matter is made up of tiny particles that are always in motion. In a hot object the particles are moving faster

### Matter & Energy. Objectives: properties and structures of the different states of matter.

Matter & Energy Objectives: 1. Use the kinetic theory to describe the properties and structures of the different states of matter. 2. Describe energy transfers involved in changes of state. 3. Describe

### Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

### Thermodynamics and States of Matter

Thermodynamics and States of Matter There are three states (also called phases) ) of matter. The picture to the side represents the same chemical substance, just in different states. There are three states

### States of Matter: Study Guide

Name: nswer KEY States of Matter: Study Guide Period: Date: 1. Describe the volume, shape and molecular arrangement in the following states of matter: Solid Volume Shape Molecular rrangement Definite Definite

### Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics

Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Temperature and Thermal Equilibrium Linear Expansion

### 2Energy in transit UNCORRECTED PAGE PROOFS. CHApteR

CHApteR 2Energy in transit Thermal imaging shows the temperature of these people. Their faces and hands are red and white as these areas are producing heat and are not covered by clothing. ReMeMBeR Before

### SPECIFIC HEAT CAPACITY AND HEAT OF FUSION

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION Apparatus on each table: Thermometer, metal cube, complete calorimeter, outer calorimeter can (aluminum only), balance, 4 styrofoam cups, graduated container,

### Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

### Physical Science Jeopardy!

Physical Science Jeopardy! Properties of Matter Light and EM Spectrum Atoms & Periodic Table Heat Transfer Forces 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30 40 40 40 40 40 50 50 50 50 50 10- Jan noticed

### Why Does the Mantle Move the Way it Does?

Why Does the Mantle Move the Way it Does? In the demonstration, you observed warm water rising through cool water. You also observed cool water sinking to replace the warm water. The movement of a fluid

Academic Year 2016-2017 First Term Science Revision sheets PHYSICS ( Answer key ) Name: Grade: 10 Date: Section: (A) Science Practice : Q1: Choose the letter of the choice that best answer the questions:

Conduction Thermal energy is transferred from place to place by conduction, convection, and radiation. Conduction is the transfer of thermal energy by collisions between particles in matter. Conduction

### Exercises Temperature (pages ) 1. Define temperature. 2. Explain how a common liquid thermometer works.

Exercises 21.1 Temperature (pages 407 408) 1. Define temperature. 2. Explain how a common liquid thermometer works. Match each number with the corresponding description. Temperature Description 3. 273

### Thermal energy 7 TH GRADE SCIENCE

Thermal energy 7 TH GRADE SCIENCE Temperature There s more to temperature than the idea of hot and cold. Remember that all matter is made up of tiny particles that are constantly moving even in solid objects.

### Academic Year First Term. Science Revision sheets PHYSICS

Academic Year 2016-2017 First Term Science Revision sheets PHYSICS Name: Grade: 10 Date: Section: (A) Science Practice : Q1: Choose the letter of the choice that best answer the questions: 1. What term

### Thermal Conductivity, k

Homework # 85 Specific Heats at 20 C and 1 atm (Constant Pressure) Substance Specific Heat, c Substance Specific Heat, c kcal/kg C J/kg C kcal/kg C J/kg C Solids Aluminum 0.22 900 Brass 0.090 377 Copper

### Chapter 4: Heat Capacity and Heat Transfer

Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer 4.1 Material Structure 4.2 Temperature and Material Properties 4.3 Heating

### THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

### Chapter 17. Work, Heat, and the First Law of Thermodynamics Topics: Chapter Goal: Conservation of Energy Work in Ideal-Gas Processes

Chapter 17. Work, Heat, and the First Law of Thermodynamics This false-color thermal image (an infrared photo) shows where heat energy is escaping from a house. In this chapter we investigate the connection

### Living with Thermal Expansion and Contraction

7.5 Living with Thermal Expansion and Contraction Key Question: How do thermal expansion and contraction affect everyday objects? Temperatures change all the time. In general, days are warmer than nights.

### Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

### Clouds and Rain Unit (3 pts)

Name: Section: Clouds and Rain Unit (Topic 8A-2) page 1 Clouds and Rain Unit (3 pts) As air rises, it cools due to the reduction in atmospheric pressure Air mainly consists of oxygen molecules and nitrogen

### Engineering Thermodynamics. Chapter 5. The Second Law of Thermodynamics

5.1 Introduction Chapter 5 The Second aw of Thermodynamics The second law of thermodynamics states that processes occur in a certain direction, not in just any direction. Physical processes in nature can

### VISUAL PHYSICS ONLINE THERMODYNAMICS THERMAL ENERGY

VISUAL PHYSICS ONLINE THERMODYNAMICS THERMAL ENERGY INTERNAL ENERGY A thermodynamic System is composed of molecules in a solid state and/or a liquid and/or a gas state. The molecules always have some random

### Changing States of Matter By Cindy Grigg

By Cindy Grigg 1 On Earth, almost all matter exists in just three states. Matter is usually a solid, a liquid, or a gas. Plasma, the fourth state of matter, is rare on Earth. It sometimes can be found

### CHAPTER 3 TEST REVIEW

IB PHYSICS Name: Period: Date: # Marks: 52 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 3 TEST REVIEW 1. Water at a temperature of 0 C is kept in a thermally insulated container.

### 11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory

11/9/017 AP PHYSICS UNIT Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory CHAPTER 13 SECOND LAW OF THERMODYNAMICS IRREVERSIBLE PROCESSES The U G of the water-earth system at the

### Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

### Heat Transfer. Phys101 Lectures 33, 34. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation.

Phys101 Lectures 33, 34 Heat Transfer Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation. Ref: 14-1,2,3,4,6,7,8. Page 1 Heat as Energy Transfer We often

### Thermochemistry, Reaction Rates, & Equillibrium

Thermochemistry, Reaction Rates, & Equillibrium Reaction Rates The rate at which chemical reactions occur Reaction Rates RXN rate = rate at which reactants change into products over time. This tells you

### Kinetic Theory. States of Matter. Thermal Energy. Four States of Matter. Kinetic Energy. Solid. Liquid. Definition: How particles in matter behave

Kinetic Theory Definition: How particles in matter behave States of Matter All Matter is composed of small particles. Particles are in constant random motion. Particles collide with each other and walls

### Energy in Thermal Processes. Heat and Internal Energy

Energy in Thermal Processes Heat and Internal Energy Internal energy U: associated with the microscopic components of a system: kinetic and potential energies. The larger the number of internal degrees

### Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

### States of Matter CHAPTER 3. Chapter Preview

CHAPTER 3 States of Matter Chapter Preview 1 Matter and Energy Kinetic Theory Energy s Role Energy and Changes of State Conservation of Mass and Energy 2 Fluids Buoyant Force Fluids and Pressure Fluids

### Energy - Heat, Light, and Sound

Energy - Heat, Light, and Sound Source: Utah State Office of Education A two-year-old has plenty of it, and the sun has a bunch of it. Do you know what it is? If not, let me give you a definition: A source

### Chapter 13 Temperature, Heat Transfer, and the First Law of Thermodynamics

Chapter 13 Temperature, Heat Transfer, and the First Law of Thermodynamics Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic

### Vocabulary. Pressure Absolute zero Charles Law Boyle s Law (take a moment to look up and record definitions in your notes)

The Gas Laws Vocabulary Pressure Absolute zero Charles Law Boyle s Law (take a moment to look up and record definitions in your notes) Key Concepts What causes gas pressure in a closed container? What

### Final MC questions for practice

Final MC questions for practice 1) Whirl a rock at the end of a string and it follows a circular path. If the string breaks, the tendency of the rock is to A) continue to follow a circular path. B) follow

### Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

### Keep the Heat Test School Name. Team Number

Keep the Heat Test 1-28-2012 School Name Team Number Circle the all of the correct answer to the below questions. One or more of the answers can be correct, if more than on one answer is correct, circle

### Temp vs. Heat. Absolute Temperature Scales. Common Temperature Scales. Thermal Energy. Heat and Temperature are not the same!!

Thermal Energy Heat and Temperature are not the same!! Cold is the absence of heat, not an energy Same concept as light/dark Cold can t come in, heat flows out Heat flows from High Temp Low Temp Temp vs.

### CHAPTER 15 The Laws of Thermodynamics. Units

CHAPTER 15 The Laws of Thermodynamics Units The First Law of Thermodynamics Thermodynamic Processes and the First Law Human Metabolism and the First Law The Second Law of Thermodynamics Introduction Heat