Differentiability with respect to initial data for a scalar conservation law

Size: px
Start display at page:

Download "Differentiability with respect to initial data for a scalar conservation law"

Transcription

1 Differentiability with respect to initial data for a scalar conservation law François BOUCHUT François JAMES Abstract We linearize a scalar conservation law around an entropy initial datum. The resulting equation is a linear conservation law with discontinuous coefficient, solved in the context of duality solutions, for which existence and uniqueness hold. We interpret these solutions as weak derivatives with respect to the initial data for the nonlinear equation. Proceedings of the seventh Conference on Hyperbolic Problems (Zürich 1998), M. Fey & R. Jeltsch, Eds., International Series of Numerical Mathematics, 129 Birkhäuser, Basel, 1999, Introduction Consider the one-dimensional scalar conservation law t u + x f(u) = 0, 0 < t < T, x R, (1) where f is a C 1 convex function, provided with entropy admissible initial data u L (R). Kružkov s results [4] assert that the entropy solution u to (1) lies in L (]0, T [ R) C(0, T ; L 1 loc (R)), and that the following contraction property holds: if u (resp. v) corresponds to the initial data u (resp. v ), then for all R > 0 and any t > 0 u(t, x) v(t, x) dx u (x) v (x) dx, (2) x R x R+Mt where M = max{ f (s), s max( u L, v L )}. This can be interpreted as a continuity result with respect to initial data in L 1 loc. Another kind of stability results was proved by e.g. Majda [5] in the very general setting of a multi-dimensional system of equations: when u is an admissible shock, then the solution corresponding to a smooth perturbation of the shock is also an admissible shock. Mathématiques, Applications et Physique Mathématique d Orléans, UMR CNRS 6628, Université d Orléans, BP 6759, Orléans Cedex 2, FRANCE, francois.bouchut@ens.fr & francois.james@univ-orleans.fr 1

2 The aim of this paper is to give a few hints about the analysis of a different point of view. We are going to prove some kind of differentiability with respect to initial data, thus generalizing (2). The derivative of the operator u u is solution to the equation obtained by linearizing (1) in the neighborhood of some given u : t µ + x (a(t, x)µ) = 0, a(t, x) = f (u(t, x)). (3) We shall prove existence and uniqueness for the corresponding Cauchy problem, thus obtaining the first order term of a Taylor expansion of the operator. When applied to the perturbation of a shock, we can recover the perturbed shock as well as an approximation of its position. We would like to mention here that a numerical application of this framework is used by Olazabal [6] in fluid dynamics, where a 2-dimensional perturbation of a 1-dimensional shock is computed by simultaneously discretizing in a convenient way both (1) and (3) (see also [3]). It turns out that the conservation law with discontinuous coefficients (3) has to be solved in the space of measures on R. This leads to the classical problem of defining the product aµ of a discontinuous function by a measure. Moreover, in order to use (3) for the stability analysis of (1), we need to define this product in such a way that we have weak stability when the coefficient a is perturbed. This was achieved in a preceding paper by the authors [1, 2], where the so-called duality solutions are defined. For these solutions, existence and uniqueness hold for the Cauchy problem associated to (3), as well as stability. These results are recalled without proof in Section 2. In Section 3 we interpret the above results as weak differentiability results with respect to an entropy initial datum, when the flux f is strictly convex. Actually, the solution to (3) behaves like a directional or Gâteaux derivative of the operator which to u associates the entropy solution to (1). However, this is not rigorously a derivative, since u lies in L 1 loc (R), and the derivative is continuous only in the weak sense of measures. We also consider the example of an entropy initial shock, and show how to recover Majda s result. 2 Duality solutions We recall here briefly the definition and main properties of the so-called duality solutions, which were introduced by Bouchut and James [1, 2]. For detailed results and proofs, we refer to [2]. Duality solutions are measure-valued solutions µ belonging to the space S M = C([0, T ], M loc (R) σ(m loc (R), C c (R))), where σ denotes the usual weak topology. They are defined as weak solutions, the test functions being Lipschitz solutions to the backward linear transport equation t p + a(t, x) x p = 0, p(t,.) = p T Lip(R). (4) 2

3 A formal computation shows that t (pµ) + x [a(t, x)pµ] = 0, and thus d p, µ = 0, (5) dt which defines the duality solutions for suitable p-s. It is well known (see e.g. Oleinik [7]) that the existence of solutions to (4) is ensured by the so-called one-sided Lipschitz condition x a α(t) in ]0, T [ R, α L 1 (]0, T [), (6) and that this existence result gives uniqueness for (1) the same will occur for (3). The point here is that there is no uniqueness for (4) even when (6) holds. The corner stone in the construction of duality solutions is therefore the introduction of the notion of reversible solutions to (4). We shall not need here the precise properties of reversible solutions. We only have to know that they can be characterized in various ways: support properties of x p, monotonicity properties, total variation properties, entropy inequalities. We shall admit that there is existence and uniqueness to the backward Cauchy problem (4) in the class of reversible solutions. We now restrict ourselves to those p-s in (5). More precisely, we state the following definition. Definition 2.1 We say that µ S M is a duality solution to (3) if for any 0 < τ T, and any reversible solution p to (4) with compact support in x, the function t p(x, t)µ(t, dx) is constant on [0, τ]. R The main results concerning the Cauchy problem associated to (3) are summarized as follows (see Bouchut & James [2]). Theorem 2.2 (Cauchy problem) 1) Given µ 0 M loc (R), there exists a unique µ S M duality solution to (3), such that µ(., 0) = µ 0. 2) This solution satisfies for any x 1 < x 2 and t [0, T ] µ(t, dx) µ 0 (dx). (7) [x 1,x 2] [x 1 a t,x 2+ a t] 3) There exists a bounded Borel function â, such that â = a almost everywhere, and t µ + x (âµ) = 0 in the distributional sense. The set of duality solutions is clearly a vector space, but it has to be noted that a duality solution is not defined as a solution in the sense of distributions. The product âµ is defined a posteriori, by the equation itself. Remark 2.3 It is useful to notice that L distributional solutions to (3) are duality solutions. 3

4 We turn now to the most important property of duality solutions, namely weak stability. Theorem 2.4 (Weak stability) Let (a n ) L (]0, T [ R) be a bounded sequence, with a n a in L (]0, T [ R) w. Assume x a n α n (t), where (α n ) is bounded in L 1 (]0, T [), x a α L 1 (]0, T [). Consider a sequence (µ n ) S M of duality solutions to t µ n + x (a n µ n ) = 0 in ]0, T [ R, such that µ n (0,.) is bounded in M loc (R), and µ n (0,.) µ 0 M loc (R). Then µ n µ in S M, where µ S M is the duality solution to t µ + x (aµ) = 0 in ]0, T [ R, µ(0,.) = µ 0. Moreover, â n µ n âµ weakly in M loc (]0, T [ R). Remark 2.5 Duality solutions can be defined if α L 1 (]0, T [) is replaced by α L 1 loc (]0, T [). The same existence result holds, but uniqueness is lost. A weakened form of Theorem 2.4 is valid, up to a subsequence of (µ n ). 3 Differentiability Let us now interpret these results as differentiability results. We first compute some kind of directional derivative of the solution with respect to the initial data. Next, we apply this to the stability analysis of a shock. Theorem 3.1 Assume that f L and f γ > 0. Consider an entropy admissible initial datum u, i.e. x u C for some constant C. Let u λ be the solution of (1) with initial datum u + λδu, where λ > 0 and δu L (R), and set w λ = (u λ u)/λ. Then w λ µ in S M, where µ is the unique duality solution to t µ + x (aµ) = 0, µ(0,.) = δu. (8) Proof. We first have to check that (8) is well-posed. But this follows immediately since f is strictly convex and smooth: indeed Oleinik s entropy condition and the fact that u is admissible imply that a = f (u) satisfies (6) with α = constant and x u C. Next, we notice that w λ is a L distributional solution to the equation t w λ + x (a λ w λ ) = 0, w λ (x, 0) = δu (x), (9) f(u λ ) f(u) if u λ u, where a λ = u λ u f (u) if u λ = u. 4

5 The key point now is to prove that w λ is actually a duality solution to (9). Since w λ is a distributional solution, by Remark 2.3 we only have to verify that a λ satisfies (6) with some α L 1 loc (]0, T [). Once again we use Oleinik s entropy condition and the strict convexity of f, to obtain x u λ 1/(γt). A direct computation and the convexity of f lead to x a λ f /(γt). Finally, a λ is bounded in L (]0, T [ R) and converges almost everywhere to a = f (u), so that a λ a in L w as λ tends to 0. We are thus in position to apply the weakened version of the stability theorem 2.4 (see Remark 2.5), which gives exactly the expected convergence result, since the limit equation (8) has a unique solution. We actually proved here that µ can be interpreted as a weak directional derivative. Indeed, consider the operator J : L S M which to the initial data u associates the solution u to (1). The above convergence result states exactly that the duality solution µ to (3) is in a weak sense the derivative DJ(u ; δu ) of J at u in the direction δu. Moreover, (7) in Theorem 2.2 asserts exactly that DJ(u ; δu ) is a continuous linear operator on M loc (R) with respect to δu, which means that, also in some weak sense, J is Gâteaux differentiable in u, provided u is an admissible initial datum, and f is convex. We illustrate this result on a simple example: consider for u an admissible shock u = u l 1I x<0 + u r 1I x>0, with u l > u r, and assume that δu is a smooth compactly supported function. Denote by u R the solution to the unperturbed Riemann problem. Our result states that the solution u λ to this problem satisfies u λ = u R + λµ + λν λ, (10) where ν λ 0 in S M and µ solves (8). Actually, µ can be computed explicitely by integrating (8). This leads to a transport equation with discontinuous coefficient, which can be solved in the sense of duality solutions (see [2]). Differentiating the solution, we get µ(t, x) = δu (x f (u l )t)1i x<σt + δu (x f (u r )t)1i x>σt + + [ v 1 ((σ f (u r ))t) v 1 ((σ f (u l ))t) ] δ x σt, (11) where σ is the shock velocity, σ = [f(δu )]/[δu ], and v 1 a primitive of δu. Another approach to this problem, followed by Majda [5], is to prove directly that, for λ small enough, the solution u λ is a function with a smooth discontinuity line x = ξ λ (t). One can perform an asymptotic expansion of u λ and ξ λ in terms of λ. Quite straightforward computations, which are detailed for instance in [3], lead to the following expressions, up to higher order terms in λ. First, concerning the perturbed shock speed, σ λ = dξ λ /dt = σ 0 + λσ 1, with σ 0 (t) σ, σ 1 (t) = (f (u r ) σ)δu ((σ f (u r ))t) (f (u l ) σ)δu ((σ f (u l ))t) u r u l. Next, the solution is given by { ul + λδu u λ (t, x) = (x f (u l )t) for x < σt + λξ 1 (t), u r + λδu (x f (u r )t) for x > σt + λξ 1 (t), 5

6 where ξ 1 (t) = t 0 σ1 (s) ds. The last approach thus gives an approximation of the solution as a discontinuous function, as well as an approximation of the position of the perturbed shock. Our framework may seem strange at first sight, since we approximate a function by a measure concentrated on the original shock. However, the information on the perturbed shock position is also contained in formulæ (10)-(11), since the coefficient of the Dirac mass in (11) equals exactly (u r u l )ξ 1 (t). References [1] F. Bouchut and F. James, Équations de transport unidimensionnelles à coefficients discontinus, C.R. Acad. Sci. Paris, Série I, 320 (1995), [2] F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis TMA, 32 (1998), n 7, [3] E. Godlewski, M. Olazabal and P.-A. Raviart, On the linearization of hyperbolic systems of conservation laws. Application to stability, Équations aux dérivées partielles et applications, articles dédiés à J.-L. Lions, Gauthier- Villars, Paris, (1998), [4] S.N. Kružkov, First-order quasilinear equations in several independant variables, Math. USSR Sb., 10 (1970), [5] A. Majda, The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc., 275 (1982). [6] M. Olazabal Résolution numérique du système des perturbations linéaires d un écoulement MHD, Thèse université Paris 6, [7] O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl. (2), 26 (1963),

DUALITY SOLUTIONS FOR PRESSURELESS GASES, MONOTONE SCALAR CONSERVATION LAWS, AND UNIQUENESS. François Bouchut and François James

DUALITY SOLUTIONS FOR PRESSURELESS GASES, MONOTONE SCALAR CONSERVATION LAWS, AND UNIQUENESS. François Bouchut and François James DUALITY SOLUTIONS FOR PRESSURELESS GASES, MONOTONE SCALAR CONSERVATION LAWS, AND UNIQUENESS François Bouchut and François James Comm. Partial Diff. Eq., 24 (1999), n 11-12, 2173-2189 Mathématiques, Applications

More information

Fractal Conservation Laws: Global Smooth Solutions and Vanishing Regularization

Fractal Conservation Laws: Global Smooth Solutions and Vanishing Regularization Progress in Nonlinear Differential Equations and Their Applications, Vol. 63, 217 224 c 2005 Birkhäuser Verlag Basel/Switzerland Fractal Conservation Laws: Global Smooth Solutions and Vanishing Regularization

More information

Unconditionally stable scheme for Riccati equation

Unconditionally stable scheme for Riccati equation ESAIM: Proceedings, Vol. 8, 2, 39-52 Contrôle des systèmes gouvernés par des équations aux dérivées partielles http://www.emath.fr/proc/vol.8/ Unconditionally stable scheme for Riccati equation François

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

L p MAXIMAL REGULARITY FOR SECOND ORDER CAUCHY PROBLEMS IS INDEPENDENT OF p

L p MAXIMAL REGULARITY FOR SECOND ORDER CAUCHY PROBLEMS IS INDEPENDENT OF p L p MAXIMAL REGULARITY FOR SECOND ORDER CAUCHY PROBLEMS IS INDEPENDENT OF p RALPH CHILL AND SACHI SRIVASTAVA ABSTRACT. If the second order problem ü + B u + Au = f has L p maximal regularity for some p

More information

The Riemann problem. The Riemann problem Rarefaction waves and shock waves

The Riemann problem. The Riemann problem Rarefaction waves and shock waves The Riemann problem Rarefaction waves and shock waves 1. An illuminating example A Heaviside function as initial datum Solving the Riemann problem for the Hopf equation consists in describing the solutions

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Renormalized and entropy solutions of partial differential equations. Piotr Gwiazda

Renormalized and entropy solutions of partial differential equations. Piotr Gwiazda Renormalized and entropy solutions of partial differential equations Piotr Gwiazda Note on lecturer Professor Piotr Gwiazda is a recognized expert in the fields of partial differential equations, applied

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

Contractive metrics for scalar conservation laws

Contractive metrics for scalar conservation laws Contractive metrics for scalar conservation laws François Bolley 1, Yann Brenier 2, Grégoire Loeper 34 Abstract We consider nondecreasing entropy solutions to 1-d scalar conservation laws and show that

More information

Convergence Rate of Nonlinear Switched Systems

Convergence Rate of Nonlinear Switched Systems Convergence Rate of Nonlinear Switched Systems Philippe JOUAN and Saïd NACIRI arxiv:1511.01737v1 [math.oc] 5 Nov 2015 January 23, 2018 Abstract This paper is concerned with the convergence rate of the

More information

L 1 stability of conservation laws for a traffic flow model

L 1 stability of conservation laws for a traffic flow model Electronic Journal of Differential Equations, Vol. 2001(2001), No. 14, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information

High order geometric smoothness for conservation laws

High order geometric smoothness for conservation laws High order geometric smoothness for conservation laws Martin Campos-Pinto, Albert Cohen, and Pencho Petrushev Abstract The smoothness of the solutions of 1D scalar conservation laws is investigated and

More information

Convergence of a first order scheme for a non local eikonal equation

Convergence of a first order scheme for a non local eikonal equation Convergence of a first order scheme for a non local eikonal equation O. Alvarez, E. Carlini, R. Monneau, E. Rouy March 22, 2005 Abstract We prove the convergence of a first order finite difference scheme

More information

ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR TERM

ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR TERM Internat. J. Math. & Math. Sci. Vol. 22, No. 3 (999 587 595 S 6-72 9922587-2 Electronic Publishing House ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR

More information

Solutions in the sense of distributions. Solutions in the sense of distributions Definition, non uniqueness

Solutions in the sense of distributions. Solutions in the sense of distributions Definition, non uniqueness Solutions in the sense of distributions Definition, non uniqueness 1. Notion of distributions In order to build weak solutions to the Hopf equation, we need to define derivatives of non smooth functions,

More information

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE FRANÇOIS BOLLEY Abstract. In this note we prove in an elementary way that the Wasserstein distances, which play a basic role in optimal transportation

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Structurally Stable Singularities for a Nonlinear Wave Equation

Structurally Stable Singularities for a Nonlinear Wave Equation Structurally Stable Singularities for a Nonlinear Wave Equation Alberto Bressan, Tao Huang, and Fang Yu Department of Mathematics, Penn State University University Park, Pa. 1682, U.S.A. e-mails: bressan@math.psu.edu,

More information

Seong Joo Kang. Let u be a smooth enough solution to a quasilinear hyperbolic mixed problem:

Seong Joo Kang. Let u be a smooth enough solution to a quasilinear hyperbolic mixed problem: Comm. Korean Math. Soc. 16 2001, No. 2, pp. 225 233 THE ENERGY INEQUALITY OF A QUASILINEAR HYPERBOLIC MIXED PROBLEM Seong Joo Kang Abstract. In this paper, e establish the energy inequalities for second

More information

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Alberto Bressan ( ), Paolo Baiti ( ) and Helge Kristian Jenssen ( ) ( ) Department of Mathematics, Penn State University, University

More information

Équation de Burgers avec particule ponctuelle

Équation de Burgers avec particule ponctuelle Équation de Burgers avec particule ponctuelle Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France 7 juin 2010 En collaboration avec B. Andreianov, F. Lagoutière et T. Takahashi Nicolas Seguin

More information

ON COMPARISON PRINCIPLES FOR

ON COMPARISON PRINCIPLES FOR Monografías Matemáticas García de Galdeano 39, 177 185 (214) ON COMPARISON PRINCIPLES FOR WEAK SOLUTIONS OF DOUBLY NONLINEAR REACTION-DIFFUSION EQUATIONS Jochen Merker and Aleš Matas Abstract. The weak

More information

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM JENICĂ CRÎNGANU We derive existence results for operator equations having the form J ϕu = N f u, by using

More information

REGULARITY THROUGH APPROXIMATION FOR SCALAR CONSERVATION LAWS

REGULARITY THROUGH APPROXIMATION FOR SCALAR CONSERVATION LAWS SIAM J. MATH. ANAL. c 1988 Society for Industrial and Applied Mathematics Vol. 19, No. 4, pp. 1 XX, July 1988 003 REGULARITY THROUGH APPROXIMATION FOR SCALAR CONSERVATION LAWS BRADLEY J. LUCIER Abstract.

More information

Math Partial Differential Equations 1

Math Partial Differential Equations 1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv)

More information

DIMINISHING FUNCTIONALS FOR NONCLASSICAL ENTROPY SOLUTIONS SELECTED BY KINETIC RELATIONS

DIMINISHING FUNCTIONALS FOR NONCLASSICAL ENTROPY SOLUTIONS SELECTED BY KINETIC RELATIONS DIMINISHING FUNCTIONALS FOR NONCLASSICAL ENTROPY SOLUTIONS SELECTED BY KINETIC RELATIONS MARC LAFOREST AND PHILIPPE G. LEFLOCH Abstract. We consider nonclassical entropy solutions to scalar conservation

More information

Scalar conservation laws with moving density constraints arising in traffic flow modeling

Scalar conservation laws with moving density constraints arising in traffic flow modeling Scalar conservation laws with moving density constraints arising in traffic flow modeling Maria Laura Delle Monache Email: maria-laura.delle monache@inria.fr. Joint work with Paola Goatin 14th International

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

Compactness in Ginzburg-Landau energy by kinetic averaging

Compactness in Ginzburg-Landau energy by kinetic averaging Compactness in Ginzburg-Landau energy by kinetic averaging Pierre-Emmanuel Jabin École Normale Supérieure de Paris AND Benoît Perthame École Normale Supérieure de Paris Abstract We consider a Ginzburg-Landau

More information

Internal Stabilizability of Some Diffusive Models

Internal Stabilizability of Some Diffusive Models Journal of Mathematical Analysis and Applications 265, 91 12 (22) doi:1.16/jmaa.21.7694, available online at http://www.idealibrary.com on Internal Stabilizability of Some Diffusive Models Bedr Eddine

More information

Applications of the compensated compactness method on hyperbolic conservation systems

Applications of the compensated compactness method on hyperbolic conservation systems Applications of the compensated compactness method on hyperbolic conservation systems Yunguang Lu Department of Mathematics National University of Colombia e-mail:ylu@unal.edu.co ALAMMI 2009 In this talk,

More information

STABILITY ESTIMATES FOR SCALAR CONSERVATION LAWS WITH MOVING FLUX CONSTRAINTS. Maria Laura Delle Monache. Paola Goatin

STABILITY ESTIMATES FOR SCALAR CONSERVATION LAWS WITH MOVING FLUX CONSTRAINTS. Maria Laura Delle Monache. Paola Goatin Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X doi:10.3934/xx.xx.xx.xx pp. X XX STABILITY ESTIMATES FO SCALA CONSEVATION LAWS WITH MOVING FLUX CONSTAINTS Maria Laura Delle Monache Department

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Regularity and compactness for the DiPerna Lions flow

Regularity and compactness for the DiPerna Lions flow Regularity and compactness for the DiPerna Lions flow Gianluca Crippa 1 and Camillo De Lellis 2 1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. g.crippa@sns.it 2 Institut für Mathematik,

More information

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws Stefano Bianchini and Alberto Bressan S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy. E-mail addresses: bianchin@mis.mpg.de,

More information

Existence and Decay Rates of Solutions to the Generalized Burgers Equation

Existence and Decay Rates of Solutions to the Generalized Burgers Equation Existence and Decay Rates of Solutions to the Generalized Burgers Equation Jinghua Wang Institute of System Sciences, Academy of Mathematics and System Sciences Chinese Academy of Sciences, Beijing, 100080,

More information

NONCLASSICAL SHOCK WAVES OF CONSERVATION LAWS: FLUX FUNCTION HAVING TWO INFLECTION POINTS

NONCLASSICAL SHOCK WAVES OF CONSERVATION LAWS: FLUX FUNCTION HAVING TWO INFLECTION POINTS Electronic Journal of Differential Equations, Vol. 2006(2006), No. 149, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) NONCLASSICAL

More information

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS PORTUGALIAE MATHEMATICA Vol. 59 Fasc. 2 2002 Nova Série OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS J. Saint Jean Paulin and H. Zoubairi Abstract: We study a problem of

More information

Stability of Mach Configuration

Stability of Mach Configuration Stability of Mach Configuration Suxing CHEN Fudan University sxchen@public8.sta.net.cn We prove the stability of Mach configuration, which occurs in moving shock reflection by obstacle or shock interaction

More information

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Hongjun Gao Institute of Applied Physics and Computational Mathematics 188 Beijing, China To Fu Ma Departamento de Matemática

More information

The Hopf argument. Yves Coudene. IRMAR, Université Rennes 1, campus beaulieu, bat Rennes cedex, France

The Hopf argument. Yves Coudene. IRMAR, Université Rennes 1, campus beaulieu, bat Rennes cedex, France The Hopf argument Yves Coudene IRMAR, Université Rennes, campus beaulieu, bat.23 35042 Rennes cedex, France yves.coudene@univ-rennes.fr slightly updated from the published version in Journal of Modern

More information

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1.

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1. A strong comparison result for viscosity solutions to Hamilton-Jacobi-Bellman equations with Dirichlet condition on a non-smooth boundary and application to parabolic problems Sébastien Chaumont a a Institut

More information

Numerical methods for conservation laws with a stochastically driven flux

Numerical methods for conservation laws with a stochastically driven flux Numerical methods for conservation laws with a stochastically driven flux Håkon Hoel, Kenneth Karlsen, Nils Henrik Risebro, Erlend Briseid Storrøsten Department of Mathematics, University of Oslo, Norway

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/ Volume 3, Issue 3, Article 46, 2002 WEAK PERIODIC SOLUTIONS OF SOME QUASILINEAR PARABOLIC EQUATIONS WITH DATA MEASURES N.

More information

Régularité des équations de Hamilton-Jacobi du premier ordre et applications aux jeux à champ moyen

Régularité des équations de Hamilton-Jacobi du premier ordre et applications aux jeux à champ moyen Régularité des équations de Hamilton-Jacobi du premier ordre et applications aux jeux à champ moyen Daniela Tonon en collaboration avec P. Cardaliaguet et A. Porretta CEREMADE, Université Paris-Dauphine,

More information

Asymptotic Behavior for Semi-Linear Wave Equation with Weak Damping

Asymptotic Behavior for Semi-Linear Wave Equation with Weak Damping Int. Journal of Math. Analysis, Vol. 7, 2013, no. 15, 713-718 HIKARI Ltd, www.m-hikari.com Asymptotic Behavior for Semi-Linear Wave Equation with Weak Damping Ducival Carvalho Pereira State University

More information

FLUX IDENTIFICATION IN CONSERVATION LAWS 2 It is quite natural to formulate this problem more or less like an optimal control problem: for any functio

FLUX IDENTIFICATION IN CONSERVATION LAWS 2 It is quite natural to formulate this problem more or less like an optimal control problem: for any functio CONVERGENCE RESULTS FOR THE FLUX IDENTIFICATION IN A SCALAR CONSERVATION LAW FRANCOIS JAMES y AND MAURICIO SEP ULVEDA z Abstract. Here we study an inverse problem for a quasilinear hyperbolic equation.

More information

LECTURE 3 Functional spaces on manifolds

LECTURE 3 Functional spaces on manifolds LECTURE 3 Functional spaces on manifolds The aim of this section is to introduce Sobolev spaces on manifolds (or on vector bundles over manifolds). These will be the Banach spaces of sections we were after

More information

L 1 Stability for scalar balance laws. Control of the continuity equation with a non-local flow.

L 1 Stability for scalar balance laws. Control of the continuity equation with a non-local flow. L 1 Stability for scalar balance laws. Control of the continuity equation with a non-local flow. Magali Mercier Institut Camille Jordan, Lyon Beijing, 16th June 2010 Pedestrian traffic We consider tu +

More information

On a simple model of isothermal phase transition

On a simple model of isothermal phase transition On a simple model of isothermal phase transition Nicolas Seguin Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 6 France Micro-Macro Modelling and Simulation of Liquid-Vapour Flows

More information

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

AN OVERVIEW ON SOME RESULTS CONCERNING THE TRANSPORT EQUATION AND ITS APPLICATIONS TO CONSERVATION LAWS

AN OVERVIEW ON SOME RESULTS CONCERNING THE TRANSPORT EQUATION AND ITS APPLICATIONS TO CONSERVATION LAWS AN OVERVIEW ON SOME RESULTS CONCERNING THE TRANSPORT EQUATION AND ITS APPLICATIONS TO CONSERVATION LAWS GIANLUCA CRIPPA AND LAURA V. SPINOLO Abstract. We provide an informal overview on the theory of transport

More information

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS EXISTECE AD REGULARITY RESULTS FOR SOME OLIEAR PARABOLIC EUATIOS Lucio BOCCARDO 1 Andrea DALL AGLIO 2 Thierry GALLOUËT3 Luigi ORSIA 1 Abstract We prove summability results for the solutions of nonlinear

More information

Spectrum and Exact Controllability of a Hybrid System of Elasticity.

Spectrum and Exact Controllability of a Hybrid System of Elasticity. Spectrum and Exact Controllability of a Hybrid System of Elasticity. D. Mercier, January 16, 28 Abstract We consider the exact controllability of a hybrid system consisting of an elastic beam, clamped

More information

Sharp estimates for a class of hyperbolic pseudo-differential equations

Sharp estimates for a class of hyperbolic pseudo-differential equations Results in Math., 41 (2002), 361-368. Sharp estimates for a class of hyperbolic pseudo-differential equations Michael Ruzhansky Abstract In this paper we consider the Cauchy problem for a class of hyperbolic

More information

Existence Theory for Hyperbolic Systems of Conservation Laws with General Flux-Functions

Existence Theory for Hyperbolic Systems of Conservation Laws with General Flux-Functions Existence Theory for Hyperbolic Systems of Conservation Laws with General Flux-Functions Tatsuo Iguchi & Philippe G. LeFloch Abstract For the Cauchy problem associated with a nonlinear, strictly hyperbolic

More information

Some asymptotic properties of solutions for Burgers equation in L p (R)

Some asymptotic properties of solutions for Burgers equation in L p (R) ARMA manuscript No. (will be inserted by the editor) Some asymptotic properties of solutions for Burgers equation in L p (R) PAULO R. ZINGANO Abstract We discuss time asymptotic properties of solutions

More information

Oscillating waves and optimal smoothing effect for one-dimensional nonlinear scalar conservation laws

Oscillating waves and optimal smoothing effect for one-dimensional nonlinear scalar conservation laws arxiv:1302.1345v1 [math.ap] 6 Feb 2013 Oscillating waves and optimal smoothing effect for one-dimensional nonlinear scalar conservation laws Pierre Castelli and Stéphane Junca February 7, 2013 Pierre Castelli

More information

A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift

A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift IFP-UNC-518 TAR-UNC-054 gr-qc/9607006 A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift Andrew Abrahams, Arlen Anderson, Yvonne Choquet-Bruhat[*] and James W. York,

More information

Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions

Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions Marie Hélène Vignal UMPA, E.N.S. Lyon 46 Allée d Italie 69364 Lyon, Cedex 07, France abstract. We are interested

More information

Generalized function algebras as sequence space algebras

Generalized function algebras as sequence space algebras Generalized function algebras as sequence space algebras Antoine Delcroix Maximilian F. Hasler Stevan Pilipović Vincent Valmorin 24 April 2002 Abstract A topological description of various generalized

More information

Hyperbolic Systems of Conservation Laws

Hyperbolic Systems of Conservation Laws Hyperbolic Systems of Conservation Laws III - Uniqueness and continuous dependence and viscous approximations Alberto Bressan Mathematics Department, Penn State University http://www.math.psu.edu/bressan/

More information

KOSZUL DUALITY AND CODERIVED CATEGORIES (AFTER K. LEFÈVRE)

KOSZUL DUALITY AND CODERIVED CATEGORIES (AFTER K. LEFÈVRE) KOSZUL DUALITY AND CODERIVED CATEGORIES (AFTER K. LEFÈVRE) BERNHARD KELLER Abstract. This is a brief report on a part of Chapter 2 of K. Lefèvre s thesis [5]. We sketch a framework for Koszul duality [1]

More information

Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation

Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation Joshua Ballew Abstract In this article, a simplified, hyperbolic model of the non-linear, degenerate parabolic

More information

Optimal stopping time formulation of adaptive image filtering

Optimal stopping time formulation of adaptive image filtering Optimal stopping time formulation of adaptive image filtering I. Capuzzo Dolcetta, R. Ferretti 19.04.2000 Abstract This paper presents an approach to image filtering based on an optimal stopping time problem

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

Lecture Notes on Hyperbolic Conservation Laws

Lecture Notes on Hyperbolic Conservation Laws Lecture Notes on Hyperbolic Conservation Laws Alberto Bressan Department of Mathematics, Penn State University, University Park, Pa. 16802, USA. bressan@math.psu.edu May 21, 2009 Abstract These notes provide

More information

Pseudo-monotonicity and degenerate elliptic operators of second order

Pseudo-monotonicity and degenerate elliptic operators of second order 2002-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 09, 2002, pp 9 24. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

Mañé s Conjecture from the control viewpoint

Mañé s Conjecture from the control viewpoint Mañé s Conjecture from the control viewpoint Université de Nice - Sophia Antipolis Setting Let M be a smooth compact manifold of dimension n 2 be fixed. Let H : T M R be a Hamiltonian of class C k, with

More information

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks C. Imbert and R. Monneau June 24, 2014 Abstract We study Hamilton-Jacobi equations on networks in the case where Hamiltonians

More information

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze GUSTAF GRIPENBERG PHILIPPE CLÉMENT STIG-OLOF LONDEN Smoothness in fractional evolution equations and conservation laws Annali della Scuola

More information

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Jinkai Li Department of Mathematics The Chinese University of Hong Kong Dynamics of Small Scales in Fluids ICERM, Feb

More information

THE GENERALIZED GOURSAT-DARBOUX PROBLEM FOR A THIRD ORDER OPERATOR. 1. Introduction In this paper we study the generalized Goursat-Darboux problem

THE GENERALIZED GOURSAT-DARBOUX PROBLEM FOR A THIRD ORDER OPERATOR. 1. Introduction In this paper we study the generalized Goursat-Darboux problem PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 5, Number, February 997, Pages 47 475 S 000-9939(97)03684-8 THE GENERALIZED GOURSAT-DARBOUX PROBLEM FOR A THIRD ORDER OPERATOR JAIME CARVALHO E SILVA

More information

On the Cauchy Problems for Polymer Flooding with Gravitation

On the Cauchy Problems for Polymer Flooding with Gravitation On the Cauchy Problems for Polymer Flooding with Gravitation Wen Shen Mathematics Department, Penn State University. Email: wxs27@psu.edu November 5, 2015 Abstract We study two systems of conservation

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni Relaxation methods and finite element schemes for the equations of visco-elastodynamics Chiara Simeoni Department of Information Engineering, Computer Science and Mathematics University of L Aquila (Italy)

More information

Numerical methods for a fractional diffusion/anti-diffusion equation

Numerical methods for a fractional diffusion/anti-diffusion equation Numerical methods for a fractional diffusion/anti-diffusion equation Afaf Bouharguane Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux 1, France Berlin, November 2012 Afaf Bouharguane Numerical

More information

Global unbounded solutions of the Fujita equation in the intermediate range

Global unbounded solutions of the Fujita equation in the intermediate range Global unbounded solutions of the Fujita equation in the intermediate range Peter Poláčik School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Eiji Yanagida Department of Mathematics,

More information

Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions

Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions Jean-François Coulombel and Thierry Goudon CNRS & Université Lille, Laboratoire Paul Painlevé, UMR CNRS 854 Cité

More information

Entropic Schemes for Conservation Laws

Entropic Schemes for Conservation Laws CONSTRUCTVE FUNCTON THEORY, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2002, pp. 1-6. Entropic Schemes for Conservation Laws Bojan Popov A new class of Godunov-type numerical methods (called here entropic)

More information

Various lecture notes for

Various lecture notes for Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

More information

Generalized Budan-Fourier theorem and virtual roots

Generalized Budan-Fourier theorem and virtual roots Generalized Budan-Fourier theorem and virtual roots Michel Coste Tomas Lajous Henri Lombardi. Marie-Françoise Roy July 8, 2004 In this Note we give a proof of a generalized version of the classical Budan-Fourier

More information

Sharp estimates of bounded solutions to some semilinear second order dissipative equations

Sharp estimates of bounded solutions to some semilinear second order dissipative equations Sharp estimates of ounded solutions to some semilinear second order dissipative equations Cyrine Fitouri & Alain Haraux Astract. Let H, V e two real Hilert spaces such that V H with continuous and dense

More information

Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces

Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces 2002-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 09, 2002, pp 203 220. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

Global well-posedness for semi-linear Wave and Schrödinger equations. Slim Ibrahim

Global well-posedness for semi-linear Wave and Schrödinger equations. Slim Ibrahim Global well-posedness for semi-linear Wave and Schrödinger equations Slim Ibrahim McMaster University, Hamilton ON University of Calgary, April 27th, 2006 1 1 Introduction Nonlinear Wave equation: ( 2

More information

arxiv: v2 [math.ap] 1 Jul 2011

arxiv: v2 [math.ap] 1 Jul 2011 A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime arxiv:1105.3074v2 [math.ap] 1 Jul 2011 Abstract Philippe G. efloch 1 and Mai Duc Thanh 2 1 aboratoire

More information

Existence and uniqueness of solutions for nonlinear ODEs

Existence and uniqueness of solutions for nonlinear ODEs Chapter 4 Existence and uniqueness of solutions for nonlinear ODEs In this chapter we consider the existence and uniqueness of solutions for the initial value problem for general nonlinear ODEs. Recall

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

Numerical Methods for Hyperbolic Conservation Laws Lecture 4

Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Wen Shen Department of Mathematics, Penn State University Email: wxs7@psu.edu Oxford, Spring, 018 Lecture Notes online: http://personal.psu.edu/wxs7/notesnumcons/

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

More information

Hysteresis rarefaction in the Riemann problem

Hysteresis rarefaction in the Riemann problem Hysteresis rarefaction in the Riemann problem Pavel Krejčí 1 Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic E-mail: krejci@math.cas.cz Abstract. We consider

More information

Generalized Budan-Fourier theorem and virtual roots

Generalized Budan-Fourier theorem and virtual roots Generalized Budan-Fourier theorem and virtual roots Michel Coste Tomas Lajous Henri Lombardi. Marie-Françoise Roy In this Note we give a proof of a generalized version of the classical Budan-Fourier theorem,

More information

AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL OF THE INVISCID BURGERS EQUATION IN THE PRESENCE OF SHOCKS

AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL OF THE INVISCID BURGERS EQUATION IN THE PRESENCE OF SHOCKS December 7, 2007 10:10 WSPC/INSTRUCTION FILE Castro- Palacios- Mathematical Models and Methods in Applied Sciences c World Scientific Publishing Company AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL

More information

Numerical schemes for short wave long wave interaction equations

Numerical schemes for short wave long wave interaction equations Numerical schemes for short wave long wave interaction equations Paulo Amorim Mário Figueira CMAF - Université de Lisbonne LJLL - Séminaire Fluides Compréssibles, 29 novembre 21 Paulo Amorim (CMAF - U.

More information

Model adaptation in hierarchies of hyperbolic systems

Model adaptation in hierarchies of hyperbolic systems Model adaptation in hierarchies of hyperbolic systems Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France February 15th, 2012 DFG-CNRS Workshop Nicolas Seguin (LJLL, UPMC) 1 / 29 Outline of the

More information

Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity

Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity Sylvie Méléard, Sepideh Mirrahimi September 2, 214 Abstract We perform an asymptotic analysis

More information

LERAY LIONS DEGENERATED PROBLEM WITH GENERAL GROWTH CONDITION

LERAY LIONS DEGENERATED PROBLEM WITH GENERAL GROWTH CONDITION 2005-Oujda International Conference on Nonlinear Analysis. Electronic Journal of Differential Equations, Conference 14, 2006, pp. 73 81. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

More information