v = w if the same length and the same direction Given v, we have the negative v. We denote the length of v by v.

Size: px
Start display at page:

Download "v = w if the same length and the same direction Given v, we have the negative v. We denote the length of v by v."

Transcription

1 Linear Algebra [1] 4.1 Vectors and Lines Definition scalar : magnitude vector : magnitude and direction Geometrically, a vector v can be represented by an arrow. We denote the length of v by v. zero vector 0 : 0 = 0 Given v, we have the negative v. v = w if the same length and the same direction

2 Linear Algebra [2] sum v + w v + w v w w v + w v

3 Linear Algebra [3] scalar multiplication av (a R) v 2v 1 2 v 2v subtraction u v = u + ( v)

4 Linear Algebra [4] Thm. u, v, w : vectors, k, p R 1. u + v = v + u, 2. u + (v + w) = (u + v) + w 3. 0 s.t. 0 + u = u for each u. 4. For each u, u s.t. u + ( u) = k(u + v) = ku + kv, (k + p)u = ku + pu 6. (kp)u = k(pu), 7. 1 u = u

5 Linear Algebra [5] Thm. A, B, C : matrices of the same size, k, p F 1. A + B = B + A, 2. A + (B + C) = (A + B) + C 3. O s.t. O + A = A for each A. 4. For each A, A s.t. A + ( A) = O. 5. k(a + B) = ka + kb, (k + p)a = ka + pa 6. (kp)a = k(pa), 7. 1 A = A

6 Linear Algebra [6] Thm. f, g, h : continuous functions on D, k, p F 1. f + g = g + f, 2. f + (g + h) = (f + g) + h 3. 0 s.t. 0 + f = f for each f. 4. For each f, f s.t. f + ( f) = k(f + g) = kf + kg, (k + p)f = kf + pf 6. (kp)f = k(pf), 7. 1 f = f

7 Linear Algebra [7] The notion of vector space! 1. The set of matrices of the same size 2. The set of vectors in R 3 3. The set of continuous functions on D and so on.

8 Linear Algebra [8] The theorem says that we can manipulate vectors as if they are variables w.r.t. addition and scalar multiplication. Eg. 5(u 2v) + 6(5u + 2v) = 5u 10v + 30u + 12v = 35u + 2v.

9 Linear Algebra [9] Coordinates Consider a point P = (x, y, z). Then we obtain a vector p = OP : the position vector. Conversely, a vector p determines a unique point P. Thus we identify each point with the corresponding position vector. P (x, y, z) O p

10 Linear Algebra [10] Given u = (x, y, z) and u1 = (x1, y1, z1), we have u + u1 = (x + x1, y + y1, z + z1), au = (ax, ay, az), u u1 = (x x1, y y1, z z1).

11 Linear Algebra [11] Lines d P0 P p0 p O Assume that p0 and d are given. Then p is the position vector of a point P on the line if and only if p = p0 + td (t R).

12 Linear Algebra [12] If p = (x, y, z), d = (a, b, c), p0 = (x0, y0, z0), then we have = z0 + tc, y = y0 + tb, x = x0 + ta, (t R). This is the equation of the line through p0 parallel to d. Planes Later... we need the notion of inner product and cross product of vectors.

13 Linear Algebra [13] 5.1 Subspaces and Dimension Subspaces of F n vector = point in R 3 (x, y, z) coordinates????? (a1, a2,, an) R n = {(a1, a2,, an) ai R} = a1 a2. an ai R

14 Linear Algebra [14] C n = {(a1, a2,, an) ai C} = a1 a2. an ai C F n = R n or C n The n-tuples in F n will be called vectors.

15 Linear Algebra [15] Subspaces A subset U of F n is called a subspace if it satisfies the following conditions. 1. If X, Y U, then X + Y U. 2. If X U, then rx U for r F. Eg. 1. F n 2. {0} : the zero subspace

16 Linear Algebra [16] 3. a line through the origin in R n : {td} If t1d and t2d on the line, then t1d + t2d = (t1 + t2)d and r(t1d) = (rt1)d. 4. Let A be an m n matrix. We define nulla = kera = {X F n AX = O} and ima = {Y F m Y = AX for some X F n }. If X1, X2 kera, then A(X1 +X2) = AX1 +AX2 = O and A(rX1) = r(ax1) = O. If Y1, Y2 ima, then X1, X2 s.t. AX1 = Y1 and AX2 = Y2. Now A(X1 + X2) = Y1 + Y2 and A(rX1) = ry1.

17 Linear Algebra [17] 5. U = {(x, y) R 2 x 2 + y 2 = 1}. We have (1, 0), (0, 1) U, but (1, 0) + (0, 1) = (1, 1) / U. Thus U is not a subspace of R 2.

18 Linear Algebra [18] Spanning sets Def. Assume that X1, X2,, Xk F n. An expression a1x1 + a2x2 + + akxk is called a linear combination of X1, X2,, Xk (ai F). The span of X1, X2,, Xk is the set of all linear combinations of X1, X2,, Xk. span{x1, X2,, Xk} = {a1x1+a2x2+ +akxk ai F}

19 Linear Algebra [19] Thm. Assume that X1, X2,, Xk F n. 1. The span{x1, X2,, Xk} is a subspace of F n. 2. If W is a subspace containing X1, X2,, Xk, then span{x1, X2,, Xk} W. Proof. 1. Let U = span{x1, X2,, Xk}. If Y = s1x1 + + skxk, Z = t1x1 + + tkxk U, then Y + Z = (s1 + t1)x1 + + (sk + tk)xk U and ry = rs1x1 + + rskxk U. 2. Clear!

20 Linear Algebra [20] The span{x1, X2,, Xk} is the smallest subspace containing X1,, Xk. If U = span{x1, X2,, Xk}, then {X1, X2,, Xk} is a spanning set of U, and U is spanned by the Xi s. Eg. Recall Thm. Given AX = O, every solution is a linear combination of the basic solutions. Equivalently, the kera is the span of the basic solutions.

21 Linear Algebra [21] Assume A = [ C1 C2 Cn] : m n matrix. Then ima = span{c1, C2,, Cn}. Proof. For X F n, x1 AX = [ ] x2 C1 C2 Cn = x1c1+x2c2+ +xncn. xn ima = {AX X F n } = {x1c1 + x2c2 + + xncn} = span{c1, C2,, Cn}

22 Linear Algebra [22] Independence Def. {X1, X2,, Xk} : linearly independent if t1x1 + t2x2 + + tkxk = 0 implies t1 = t2 = = tk = 0. Thm. If {X1, X2,, Xk} is linearly independent, X span{x1, X2,, Xk} has a unique representation as a linear combination of the Xi s. Proof. r1x1 + + rkxk = s1x1 + + skxk (r1 s1)x1 + + (rk sk)xk = 0 Thus we have ri = si for all i.

23 Linear Algebra [23] Eg. X1, X2, X1 + X2 2X1 + 2X2 = 2(X1 + X2) Eg ,, r s t = r s =, r = s = t = t

24 Linear Algebra [24] Eg , 2, 2, r r r r4 1 r4 2 0 = 0 r r = 0 r

25 Linear Algebra [25] , 2, Eg. {X, Y } : indep. {2X + 3Y, X 5Y }: indep. r(2x + 3Y ) + s(x 5Y ) = O (2r + s)x + (3r 5s)Y = O 2r + s = 0, 3r 5s = 0 r = s = 0

26 Linear Algebra [26] Eg. lin. dep. lin. indep. lin. dep. lin. indep.

27 Linear Algebra [27] Thm. TFAE 1. A is invertible. 2. The columns of A are linearly independent. 3. The columns of A span F n. 4. The rows of A are linearly independent. 5. The rows of A span F n. 6. ima = F n. 7. kera = O.

28 Linear Algebra [28] Proof. x1 AX = [ ] x2 C1 C2 Cn = x1c1+x2c2+ +xncn. xn AX = O x1c1 + x2c2 + + xncn = O 2 AX = O has only the trivial solution. kera = O AX = B x1c1 + x2c2 + + xncn = B 3 AX = B has a solution for every B F n ima = F n A is invertible A T is invertible

29 Linear Algebra [29] Eg. 1 0, ,, A = , det A =

30 Linear Algebra [30] Dimension Def. U F n : a subspace A set {X1, X2,, Xk} is a basis of U, if 1. {X1, X2,, Xk} is linearly independent, 2. U = span{x1, X2,, Xk}. Thm. If {X1, X2,, Xk} and {Y1, Y2,, Ym} are two bases of U, then k = m. Def. the number of vectors in a basis of U = the dimension of U = dim U

31 Linear Algebra [31] Eg. For F n, E1 = 1, E2 = ,, En = ; the standard basis of F n Eg. If {X1, X2,, Xn} is a basis of F n and A is invertible, then {AX1, AX2,, AXn} is also a basis of F n.

32 Linear Algebra [32] Eg. Consider AX = O. Recall that kera=the span of the basic solutions. In fact, the basic solutions are linearly independent. The basic solutions form a basis for kera. Eg. Subspaces of R If dim U = 3, then U = R If dim U = 2, then U is a plane through O. 3. If dim U = 1, then U is a line through O. 4. If dim U = 0, then U = {O}.

33 Linear Algebra [33] Thm. Assume that dim U = m = B. Then B is linearly independent B spans U; in either case, B is a basis of U.

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by Linear Algebra [] 4.2 The Dot Product and Projections. In R 3 the dot product is defined by u v = u v cos θ. 2. For u = (x, y, z) and v = (x2, y2, z2), we have u v = xx2 + yy2 + zz2. 3. cos θ = u v u v,

More information

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V.

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. 6.2 SUBSPACES DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. HMHsueh 1 EX 1 (Ex. 1) Every vector space

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

Vector Spaces. distributive law u,v. Associative Law. 1 v v. Let 1 be the unit element in F, then

Vector Spaces. distributive law u,v. Associative Law. 1 v v. Let 1 be the unit element in F, then 1 Def: V be a set of elements with a binary operation + is defined. F be a field. A multiplication operator between a F and v V is also defined. The V is called a vector space over the field F if: V is

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

General Vector Space (3A) Young Won Lim 11/19/12

General Vector Space (3A) Young Won Lim 11/19/12 General (3A) /9/2 Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information

x y + z = 3 2y z = 1 4x + y = 0

x y + z = 3 2y z = 1 4x + y = 0 MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Math 21b: Linear Algebra Spring 2018

Math 21b: Linear Algebra Spring 2018 Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Linear Algebra MATH20F Midterm 1

Linear Algebra MATH20F Midterm 1 University of California San Diego NAME TA: Linear Algebra Wednesday, October st, 9 :am - :5am No aids are allowed Be sure to write all row operations used Remember that you can often check your answers

More information

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS Math 50B Midterm II Information Spring 019 SOLUTIONS TO PRACTICE PROBLEMS Problem 1. Determine whether each set S below forms a subspace of the given vector space V. Show carefully that your answer is

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

Linear Algebra (Math-324) Lecture Notes

Linear Algebra (Math-324) Lecture Notes Linear Algebra (Math-324) Lecture Notes Dr. Ali Koam and Dr. Azeem Haider September 24, 2017 c 2017,, Jazan All Rights Reserved 1 Contents 1 Real Vector Spaces 6 2 Subspaces 11 3 Linear Combination and

More information

x = t 1 x 1 + t 2 x t k x k

x = t 1 x 1 + t 2 x t k x k Def.: Given vectors x,...,x k in R n, the set of all their linear combinations is called their span, and is denoted by span(x,...,x k ) Thm.: span(x,...,x k ) is a subspace of R n Def.: If V is a subspace

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

Linear Algebra. Week 7

Linear Algebra. Week 7 Linear Algebra. Week 7 Dr. Marco A Roque Sol 10 / 09 / 2018 If {v 1, v 2,, v n } is a basis for a vector space V, then any vector v V, has a unique representation v = x 1 v 1 + x 2 v 2 + + x n v n where

More information

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0 Linear Independence: Suppose that V is a vector space and that x, x 2,, x k belong to V {x, x 2,, x k } are linearly independent if r x + r 2 x 2 + + r k x k = only for r = r 2 = = r k = The vectors x,

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

Vector Spaces ปร ภ ม เวกเตอร

Vector Spaces ปร ภ ม เวกเตอร Vector Spaces ปร ภ ม เวกเตอร 1 5.1 Real Vector Spaces ปร ภ ม เวกเตอร ของจ านวนจร ง Vector Space Axioms (1/2) Let V be an arbitrary nonempty set of objects on which two operations are defined, addition

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

Lecture 17: Section 4.2

Lecture 17: Section 4.2 Lecture 17: Section 4.2 Shuanglin Shao November 4, 2013 Subspaces We will discuss subspaces of vector spaces. Subspaces Definition. A subset W is a vector space V is called a subspace of V if W is itself

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 26, 2010 Linear system Linear system Ax = b, A C m,n, b C m, x C n. under-determined

More information

MATH 304 Linear Algebra Lecture 15: Linear transformations (continued). Range and kernel. Matrix transformations.

MATH 304 Linear Algebra Lecture 15: Linear transformations (continued). Range and kernel. Matrix transformations. MATH 304 Linear Algebra Lecture 15: Linear transformations (continued). Range and kernel. Matrix transformations. Linear mapping = linear transformation = linear function Definition. Given vector spaces

More information

Math 415 Exam I. Name: Student ID: Calculators, books and notes are not allowed!

Math 415 Exam I. Name: Student ID: Calculators, books and notes are not allowed! Math 415 Exam I Calculators, books and notes are not allowed! Name: Student ID: Score: Math 415 Exam I (20pts) 1. Let A be a square matrix satisfying A 2 = 2A. Find the determinant of A. Sol. From A 2

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

ICS 6N Computational Linear Algebra Vector Space

ICS 6N Computational Linear Algebra Vector Space ICS 6N Computational Linear Algebra Vector Space Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 24 Vector Space Definition: A vector space is a non empty set V of

More information

NAME MATH 304 Examination 2 Page 1

NAME MATH 304 Examination 2 Page 1 NAME MATH 4 Examination 2 Page. [8 points (a) Find the following determinant. However, use only properties of determinants, without calculating directly (that is without expanding along a column or row

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

Lecture 11: Vector space and subspace

Lecture 11: Vector space and subspace Lecture : Vector space and subspace Vector space. R n space Definition.. The space R n consists of all column vector v with n real components, i.e. R n = { v : v = [v,v 2,...,v n ] T, v j R,j =,2,...,n

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 4 Linear Spaces Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan October 28, 2002 4.1 Introduction

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

MATH Linear Algebra

MATH Linear Algebra MATH 304 - Linear Algebra In the previous note we learned an important algorithm to produce orthogonal sequences of vectors called the Gramm-Schmidt orthogonalization process. Gramm-Schmidt orthogonalization

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Definitions for Quizzes

Definitions for Quizzes Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

More information

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by Seminar 1 1. Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets N, Z, Q, R, C? 2. Let A = {a 1, a 2, a 3 }.

More information

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space

More information

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span Chapter 3 More about Vector Spaces Linear Independence, Basis and Dimension Vincent Astier, School of Mathematical Sciences, University College Dublin 3. Contents Linear Combinations, Span Linear Independence,

More information

Proofs for Quizzes. Proof. Suppose T is a linear transformation, and let A be a matrix such that T (x) = Ax for all x R m. Then

Proofs for Quizzes. Proof. Suppose T is a linear transformation, and let A be a matrix such that T (x) = Ax for all x R m. Then Proofs for Quizzes 1 Linear Equations 2 Linear Transformations Theorem 1 (2.1.3, linearity criterion). A function T : R m R n is a linear transformation if and only if a) T (v + w) = T (v) + T (w), for

More information

Chapter 7. Linear Algebra: Matrices, Vectors,

Chapter 7. Linear Algebra: Matrices, Vectors, Chapter 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems Linear algebra includes the theory and application of linear systems of equations, linear transformations, and eigenvalue problems.

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces Chapter 2 General Vector Spaces Outline : Real vector spaces Subspaces Linear independence Basis and dimension Row Space, Column Space, and Nullspace 2 Real Vector Spaces 2 Example () Let u and v be vectors

More information

Vector Spaces ปร ภ ม เวกเตอร

Vector Spaces ปร ภ ม เวกเตอร Vector Spaces ปร ภ ม เวกเตอร 5.1 Real Vector Spaces ปร ภ ม เวกเตอร ของจ านวนจร ง Vector Space Axioms (1/2) Let V be an arbitrary nonempty set of objects on which two operations are defined, addition and

More information

Math 290, Midterm II-key

Math 290, Midterm II-key Math 290, Midterm II-key Name (Print): (first) Signature: (last) The following rules apply: There are a total of 20 points on this 50 minutes exam. This contains 7 pages (including this cover page) and

More information

A = u + V. u + (0) = u

A = u + V. u + (0) = u Recall: Last time we defined an affine subset of R n to be a subset of the form A = u + V = {u + v u R n,v V } where V is a subspace of R n We said that we would use the notation A = {u,v } to indicate

More information

Lecture 23: 6.1 Inner Products

Lecture 23: 6.1 Inner Products Lecture 23: 6.1 Inner Products Wei-Ta Chu 2008/12/17 Definition An inner product on a real vector space V is a function that associates a real number u, vwith each pair of vectors u and v in V in such

More information

Matrix Operations: Determinant

Matrix Operations: Determinant Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant

More information

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2 OHSX XM5 Linear Algebra: Multiple Choice Exercises for Chapter. In the following, a set is given together with operations of addition and scalar multiplication. Which is not a vector space under the given

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

1.4 Linear Transformation I

1.4 Linear Transformation I .4. LINEAR TRANSFORMATION I.4 Linear Transformation I MATH 9 FALL 99 PRELIM # 5 9FA9PQ5.tex.4. a) Consider the vector transformation y f(x) from V to V such that if y (y ; y ); x (x ; x ); y (x + x ) p

More information

Chapter 6. Orthogonality and Least Squares

Chapter 6. Orthogonality and Least Squares Chapter 6 Orthogonality and Least Squares Section 6.1 Inner Product, Length, and Orthogonality Orientation Recall: This course is about learning to: Solve the matrix equation Ax = b Solve the matrix equation

More information

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning:

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning: Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u 2 1 + u 2 2 = u 2. Geometric Meaning: u v = u v cos θ. u θ v 1 Reason: The opposite side is given by u v. u v 2 =

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii) . Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

An overview of key ideas

An overview of key ideas An overview of key ideas This is an overview of linear algebra given at the start of a course on the mathematics of engineering. Linear algebra progresses from vectors to matrices to subspaces. Vectors

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Lecture 1: Review of linear algebra

Lecture 1: Review of linear algebra Lecture 1: Review of linear algebra Linear functions and linearization Inverse matrix, least-squares and least-norm solutions Subspaces, basis, and dimension Change of basis and similarity transformations

More information

9.6: Matrix Exponential, Repeated Eigenvalues. Ex.: A = x 1 (t) = e t 2 F.M.: If we set

9.6: Matrix Exponential, Repeated Eigenvalues. Ex.: A = x 1 (t) = e t 2 F.M.: If we set 9.6: Matrix Exponential, Repeated Eigenvalues x Ax, A : n n (1) Def.: If x 1 (t),...,x n (t) is a fundamental set of solutions (F.S.S.) of (1), then X(t) x 1 (t),...,x n (t) (n n) is called a fundamental

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra Lecture: Linear algebra. 1. Subspaces. 2. Orthogonal complement. 3. The four fundamental subspaces 4. Solutions of linear equation systems The fundamental theorem of linear algebra 5. Determining the fundamental

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

Math 2114 Common Final Exam May 13, 2015 Form A

Math 2114 Common Final Exam May 13, 2015 Form A Math 4 Common Final Exam May 3, 5 Form A Instructions: Using a # pencil only, write your name and your instructor s name in the blanks provided. Write your student ID number and your CRN in the blanks

More information

A proof of the Jordan normal form theorem

A proof of the Jordan normal form theorem A proof of the Jordan normal form theorem Jordan normal form theorem states that any matrix is similar to a blockdiagonal matrix with Jordan blocks on the diagonal. To prove it, we first reformulate it

More information

Control Systems. Linear Algebra topics. L. Lanari

Control Systems. Linear Algebra topics. L. Lanari Control Systems Linear Algebra topics L Lanari outline basic facts about matrices eigenvalues - eigenvectors - characteristic polynomial - algebraic multiplicity eigenvalues invariance under similarity

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Linear Algebra: Homework 7

Linear Algebra: Homework 7 Linear Algebra: Homework 7 Alvin Lin August 6 - December 6 Section 3.5 Exercise x Let S be the collection of vectors in R y that satisfy the given property. In each case, either prove that S forms a subspace

More information