Predicting Model of Traffic Volume Based on Grey-Markov

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Predicting Model of Traffic Volume Based on Grey-Markov"

Transcription

1 Vo. No. Modern Apped Scence Predctng Mode of Traffc Voume Based on Grey-Marov Ynpeng Zhang Zhengzhou Muncpa Engneerng Desgn & Research Insttute Zhengzhou 5005 Chna Abstract Grey-marov forecastng mode of traffc voume was founded by appyng the mode of GM () and Marov random process theory. The mode utzes the advantages of Grey-marov GM () forecastng mode and Marov random process n order to dscover the deveopng and varyng tendency of the forecastng data sequences of traffc voume. The anayss of an exampe ndcates that the grey-marov mode has good forecastng accuracy and exceent appcabty n predctng traffc voume. Keywords: Grey theory Grey-marov mode Predcton of traffc voume. Introducton Generay the pannng of a hghway s desgned on the bass of the traffc voume predcton. The so-caed defnton of traffc voume predcton s to study and cacuate the nsde ncrease and change of traffc and to obtan a voume n terms of desgn years accordng to the varety of transportaton capacty and the deveopment of economy and socety n the past present and future etc. Athough many earners have processed arge quantty of researches for predctng the traffc voume the resut s st bad.the transportaton engneerng s a compcated system whch ncudes many factors many structura ayers and many targets. The traffc nformaton contans the obvousy ayer compexty of structure the fuzzy reaton of constructon the varety of deveopment and the ndetermnaton of coeffcents and data. Because of the nfuence of some artfca factors unaffectedy envronmenta change and the restrcton of the technque methods at present t eads to the resut that the statstc or forecast data embrace some errors mstaes scarcty or faes. So the compcated system of traffc voume predcton s a representatvey grey probem (Zhang and Luo 00). The grey mode has been apped n the traffc voume predcton and prmary maes use of mode GM () to perform the forecast (Wen et a.006; Xue and Zeng 006). Because the souton of mode GM () s an exponenta curve that s smooth t doesn t match wth those data that are vbraton sequences and ts forecast accuracy s ower. The study object of marov transton mode s a dynamc system whch forecasts the future by anayzng the nsde reguaton of deveopment n tme to come and t refects the nfuence degree and aws whch es n the transton process of factors from one state to the other. The marov transton mode s sutabe for the souton to predct these stochastc data sequences that are steady but n the reastc word these raw sequences are vbratng and changng n a certan varety trend. From the anayss above we now that the mode GM () and the marov mode coud be ntegrated wth each other to forecast by ther advantages. That s: mode GM () can be used to forecast the change trend of data sequences whe the marov mode can be used to decde the vbraton reguaton of ther deveopment and both can be joned together to become a grey-marov forecast mode. Snce t maes fu use of the od nformaton gven from these raw data and ncreases the forecast accuracy the appcaton of the grey-marov forecast mode whch provdes a new method to predct these greaty stochastc data sequences has been mproved further.. Estabshment of the Mathematcs Mode. Mode of GM() The grey GM () mode can mae use of the dscrete data seres to estabsh a equaton of grey contnuous dfferenta equaton by addng these data from the frst n Accumuatng Generaton Operator (AGO) and the equaton can be soved to perform the forecast (Deng 990). Let x be a raw seres whch s as foow: = { () L } = L n X x x x n Let x accumuated addng once and the accumuated generatng seres s obtaned: x = x x () L x ( n) () { } 6

2 Modern Apped Scence March 00 where By dfferentatng () ( 0) x = x ( ) = L n = x a whtened dfferenta equaton s obtaned dx dt The whtened tme-response of Eq. () s as foow (Deng 990): + ax = u () ( 0 ) () u a a xˆ + = x e + Let the souton u a ˆx accumuate subtratng once and the accumuated subtraton seres s obtaned: xˆ + = xˆ + xˆ (5) The curve of ˆx refects the vbraton trend of the raw seres. Fnay we can adopt the method of Deng (Deng 990) to chec the mode accuracy.. Grey marov chan Let { X n n T} be a marov chan where mn T( n ) and j L (L s caed status seres then the expressng (Sha 99) ( + ) p = P X = j X = (6) m n m s caed the n th step transton probabty and the matrx composed by transton matrx of Marov chan whch s expressed as: P ( n) ( n) ( n ) () p s caed the nth step probabty = p (7) If the eements transton probabtes of marov chan are grey t w be caed a grey marov chan and can be made up of a grey transton matrx (He and Bao 99). In the actua appcaton we now that t s dffcut to mae certan the vaues of transton probabty for t acs some nformaton but t s easy to have the nformaton of grey zone p by studyng the transton probabty. When the transton matrx s a grey matrx t s requred that the eements of whtenzaton matrx P % ( ) = p % s provded that p ( ) 0 % = L. () p j= % j L ; When the premnary dstrbuton of a marov mted chan s P = ( p p L p ) and the whtenzaton transton probabty matrx s P % ( ) = p % then we can get the next step dstrbuton of the chan: P = P P% (8) The second step can be expressed as: P = P P% = P 0 P% (9) The rest may be deduced by anaogy and the n th step dstrbuton s shown as: Pn = P P% n From Eq. t can be seen that we can easy forecast any future dstrbuton of the system f we have aready nown the raw dstrbuton and the grey transton probabty matrx.. Grey-marov mode Let x { x x () x ( n) } = L be a raw data seres. After we have checed the mode accuracy we get the 7

3 Vo. No. smuaton sequence as: xˆ { xˆ xˆ () xˆ ( n) } 8 = L by mode GM(). Let ˆ Modern Apped Scence ( 0 ) y xˆ = for a vbraton sequence Yˆ whch s a marov chan we can dvde t nto states accordng to the concrete crcumstance and ts any state can be expressed as: = % % ˆ = y + A % y ( ) % = + B = L () ˆ where A and B are constant whch can be decded by the dfference between the forecast vaue and the raw data. Yˆ s a functon whch s changed n tme and so are the grey whtened eements of % %. If N ( m ) s the data number of the raw seres whch transfer m step from to j and N s the number of data that are n the grey zone then we ca: N p ( m) = j = L () N the m th step transton probabty. The transton matrx R( m ) s as foow: p( m) p( m) L p ( m) p( m) p( m) p ( m) Rm L = () M M M M p( m) p( m) L p( m) R( m ) refects the transton reguaton between dfferent states and s the foundaton of the forecast mode of grey marov. We can predct the future trend of the system by studyng the stochastc transton matrx R( m ). In practca appcaton f the forecast vaues s to be paced n the zone then nvestgate the th ne of the matrx R nsde and f max{ pj } = pr we can concude the next state of the system may transfer ts state from j to r. If R has more than two nes whose probabty vaues are same ae or cose to each other and t s dffcut to decde the next drecton of the system wth certan t s needed to study and chec the matrx R() or R( m )(m ). At the same tme t can decde the transton of the system by checng R or R( m )(m ) and ~ ~ aso be made sure the forecast zone [ ]. Fnay the eventua forecast s n the mdde pont of the grey zone then got: Yˆ = ( % +% ) () whch aso can be expressed as: Yˆ = yˆ + ( A + B) (5). Exampe Anayss The data of a hghway s traffc voume through years are sted n Tab... Estabshment of GM () mode From tabe we get x ={ }. After do them n AGO we obtan x ={ }. Then we can have two constants: a = u = 65.. dx By combnng wth Eq. () we can estabsh the mode GM(): x = 65.. dt After sovng the equaton tme-response functon can be obtaned as:

4 Modern Apped Scence March xˆ ( + ) = 97.e From Eq. (5) t can be got: yˆ xˆ ( ) xˆ ( ) xˆ = + = +. The examnaton resut of the predcton accuracy s as foow: x = 96.7 S = 06.0 q =.5 S = 7.. The post-examnaton margn rato s as foow: C = S / S = < 0.5. The probabty of tte error s as foow: P{ q q < 0.675S} = P{ q q < 80.0} = > 0.95 The accuracy grade of the forecast s exceent (Deng 990).. Compartmentazaton of the predcton Accordng to the raw traffc voume and for smpfcaton the predcton vaues can be dvded nto four states by Eq. () as foows: =[ % % ]: % ˆ = y 0.x % ˆ = y 0.05x =[ % =[ % =[ % % ]: % = y x % = ˆ 0.05 ŷ % ]: % = % y ( ) ŷ ˆ = x % ]: % = y + x % y ( ) ˆ 0.05 ˆ = + 0.x =[ % ˆ = y x % ˆ = y + 0.x where y ˆ s the forecast traffc as mode GM () and x s the annua average traffc voume. If we show the vaues of the fact the predcton yˆ and four states through these years we w obtan a dagram sted as Fg. n whch there are four parae and symmetry band dstrcts form the top to the bottom.. Cacuaton of the transton probabty From Fg. we now that the number of raw sequence whch s n the zone of s N = N = N = N = and s the number of raw data from to respectvey by a step. If the rest may be deduced n the same way we can cacuate the number of raw transton data. Fnay we have % ]: % / / / / p whch maes up of the matrx R = 0 / 0 / 0 / / 0 forecast the transton state of the traffc voume n the future.. Decson of the predcton and vbraton zone by Eq. (). Accordng to R we can By studyng R we now that the average predcton of 00w mosty be n the vbraton zone whch s [ ].Then usng formua () or (5) we have ˆ Y (00) = ( )=65. In the same way we can get Y ˆ (00) =58 Y ˆ (00) =6660 Y ˆ (00) =76 Y ˆ (005) =99. Concuson The grey mode GM () refects the macroscopca reguaton the marov mode shows the vbraton deveopment of the mcrocosmc system and both not ony have the mutua advantage but aso can mae fu use of the nformaton whch s ncuded n these raw data. Therefore the forecastng grey-marov mode has much hgher accuracy reabty and appcaton n the traffc voume predcton. On the other hand because the predcton accuracy s n ne wth the raw data seres and the dvded states but there s not a gven standard that can reay unfy and sette these probems and the appcaton of the mode st needs a further research and mprovement. 9

5 Vo. No. Modern Apped Scence References Deng J. L. (990). Grey system theory tutora Huazhong Unversty of Scence and Technoogy Press Wuhan Chna. He Y. and BaoY. D. (99). Grey marov chan predcton mode and the mpcaton. Systems Engneerng Theory and Practce 99(): -7. Sha J. Z. (99). Marten decson programmng and ts appcaton n management Natona Defence Industry Press Beng Chna. Wen K. G. Qu S. R. and Wang J. (006). An urban traffc fows predcton mode based on system grey theory. Transactons of Shenyang Lgong Unversty 006 5(): -. Xue C. M. and Zeng Y. K. (006). On grey predcton mode for road traffc freght voume. Journa of Kunmng Unversty of Scence and Technoogy ( Scence and Technoogy) 006 (): Zhang X. T. and Luo X. H. (00). The appcaton of grey theory and mode n traffc voume predcton. Hghway 00(8): -7. Tabe. Hstorca Traffc Voume Year AADT (n/d) AADT=Annua Average Day Traffc Fgure. Annua Average Traffc Voume 50

Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques

Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques Energes 20, 4, 73-84; do:0.3390/en40073 Artce OPEN ACCESS energes ISSN 996-073 www.mdp.com/journa/energes Short-Term Load Forecastng for Eectrc Power Systems Usng the PSO-SVR and FCM Custerng Technques

More information

ON AUTOMATIC CONTINUITY OF DERIVATIONS FOR BANACH ALGEBRAS WITH INVOLUTION

ON AUTOMATIC CONTINUITY OF DERIVATIONS FOR BANACH ALGEBRAS WITH INVOLUTION European Journa of Mathematcs and Computer Scence Vo. No. 1, 2017 ON AUTOMATC CONTNUTY OF DERVATONS FOR BANACH ALGEBRAS WTH NVOLUTON Mohamed BELAM & Youssef T DL MATC Laboratory Hassan Unversty MORO CCO

More information

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) ,

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) , A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS Dr. Derald E. Wentzen, Wesley College, (302) 736-2574, wentzde@wesley.edu ABSTRACT A lnear programmng model s developed and used to compare

More information

Optimization of JK Flip Flop Layout with Minimal Average Power of Consumption based on ACOR, Fuzzy-ACOR, GA, and Fuzzy-GA

Optimization of JK Flip Flop Layout with Minimal Average Power of Consumption based on ACOR, Fuzzy-ACOR, GA, and Fuzzy-GA Journa of mathematcs and computer Scence 4 (05) - 5 Optmzaton of JK Fp Fop Layout wth Mnma Average Power of Consumpton based on ACOR, Fuzzy-ACOR, GA, and Fuzzy-GA Farshd Kevanan *,, A Yekta *,, Nasser

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Designing of Combined Continuous Lot By Lot Acceptance Sampling Plan

Designing of Combined Continuous Lot By Lot Acceptance Sampling Plan Internatonal Journal o Scentc Research Engneerng & Technology (IJSRET), ISSN 78 02 709 Desgnng o Combned Contnuous Lot By Lot Acceptance Samplng Plan S. Subhalakshm 1 Dr. S. Muthulakshm 2 1 Research Scholar,

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

THE CURRENT BALANCE Physics 258/259

THE CURRENT BALANCE Physics 258/259 DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set

More information

Note On Some Identities of New Combinatorial Integers

Note On Some Identities of New Combinatorial Integers Apped Mathematcs & Informaton Scences 5(3 (20, 500-53 An Internatona Journa c 20 NSP Note On Some Identtes of New Combnatora Integers Adem Kııçman, Cenap Öze 2 and Ero Yımaz 3 Department of Mathematcs

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Research on the Fuzzy Control for Vehicle Semi-active Suspension. Xiaoming Hu 1, a, Wanli Li 1,b

Research on the Fuzzy Control for Vehicle Semi-active Suspension. Xiaoming Hu 1, a, Wanli Li 1,b Advanced Materals Research Onlne: 0-0- ISSN: -9, Vol., pp -9 do:0.0/www.scentfc.net/amr.. 0 Trans Tech Publcatons, Swterland Research on the Fuy Control for Vehcle Sem-actve Suspenson Xaomng Hu, a, Wanl

More information

Networked Cooperative Distributed Model Predictive Control Based on State Observer

Networked Cooperative Distributed Model Predictive Control Based on State Observer Apped Mathematcs, 6, 7, 48-64 ubshed Onne June 6 n ScRes. http://www.scrp.org/journa/am http://dx.do.org/.436/am.6.73 Networed Cooperatve Dstrbuted Mode redctve Contro Based on State Observer Ba Su, Yanan

More information

Decentralized Adaptive Control for a Class of Large-Scale Nonlinear Systems with Unknown Interactions

Decentralized Adaptive Control for a Class of Large-Scale Nonlinear Systems with Unknown Interactions Decentrazed Adaptve Contro for a Cass of Large-Scae onnear Systems wth Unknown Interactons Bahram Karm 1, Fatemeh Jahangr, Mohammad B. Menhaj 3, Iman Saboor 4 1. Center of Advanced Computatona Integence,

More information

Numerical integration in more dimensions part 2. Remo Minero

Numerical integration in more dimensions part 2. Remo Minero Numerca ntegraton n more dmensons part Remo Mnero Outne The roe of a mappng functon n mutdmensona ntegraton Gauss approach n more dmensons and quadrature rues Crtca anass of acceptabt of a gven quadrature

More information

Statistical Evaluation of WATFLOOD

Statistical Evaluation of WATFLOOD tatstcal Evaluaton of WATFLD By: Angela MacLean, Dept. of Cvl & Envronmental Engneerng, Unversty of Waterloo, n. ctober, 005 The statstcs program assocated wth WATFLD uses spl.csv fle that s produced wth

More information

Parameter Estimation for Dynamic System using Unscented Kalman filter

Parameter Estimation for Dynamic System using Unscented Kalman filter Parameter Estmaton for Dynamc System usng Unscented Kalman flter Jhoon Seung 1,a, Amr Atya F. 2,b, Alexander G.Parlos 3,c, and Klto Chong 1,4,d* 1 Dvson of Electroncs Engneerng, Chonbuk Natonal Unversty,

More information

Amusing Properties of Odd Numbers Derived From Valuated Binary Tree

Amusing Properties of Odd Numbers Derived From Valuated Binary Tree IOSR Journal of Mathematcs (IOSR-JM) e-iss: 78-578, p-iss: 19-765X. Volume 1, Issue 6 Ver. V (ov. - Dec.016), PP 5-57 www.osrjournals.org Amusng Propertes of Odd umbers Derved From Valuated Bnary Tree

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

A MIN-MAX REGRET ROBUST OPTIMIZATION APPROACH FOR LARGE SCALE FULL FACTORIAL SCENARIO DESIGN OF DATA UNCERTAINTY

A MIN-MAX REGRET ROBUST OPTIMIZATION APPROACH FOR LARGE SCALE FULL FACTORIAL SCENARIO DESIGN OF DATA UNCERTAINTY A MIN-MAX REGRET ROBST OPTIMIZATION APPROACH FOR ARGE SCAE F FACTORIA SCENARIO DESIGN OF DATA NCERTAINTY Travat Assavapokee Department of Industra Engneerng, nversty of Houston, Houston, Texas 7704-4008,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

Grey prediction model in world women s pentathlon performance prediction applied research

Grey prediction model in world women s pentathlon performance prediction applied research Avalable onlne www.jocpr.com Journal of Chemcal and Pharmaceutcal Research, 4, 6(6):36-4 Research Artcle ISSN : 975-7384 CODEN(USA) : JCPRC5 Grey predcton model n world women s pentathlon performance predcton

More information

22.51 Quantum Theory of Radiation Interactions

22.51 Quantum Theory of Radiation Interactions .51 Quantum Theory of Radaton Interactons Fna Exam - Soutons Tuesday December 15, 009 Probem 1 Harmonc oscator 0 ponts Consder an harmonc oscator descrbed by the Hamtonan H = ω(nˆ + ). Cacuate the evouton

More information

Study on Non-Linear Dynamic Characteristic of Vehicle. Suspension Rubber Component

Study on Non-Linear Dynamic Characteristic of Vehicle. Suspension Rubber Component Study on Non-Lnear Dynamc Characterstc of Vehcle Suspenson Rubber Component Zhan Wenzhang Ln Y Sh GuobaoJln Unversty of TechnologyChangchun, Chna Wang Lgong (MDI, Chna [Abstract] The dynamc characterstc

More information

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator Latest Trends on Crcuts, Systems and Sgnals Scroll Generaton wth Inductorless Chua s Crcut and Wen Brdge Oscllator Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * Abstract An nductorless Chua

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

A parametric Linear Programming Model Describing Bandwidth Sharing Policies for ABR Traffic

A parametric Linear Programming Model Describing Bandwidth Sharing Policies for ABR Traffic parametrc Lnear Programmng Mode Descrbng Bandwdth Sharng Poces for BR Traffc I. Moschoos, M. Logothets and G. Kokknaks Wre ommuncatons Laboratory, Dept. of Eectrca & omputer Engneerng, Unversty of Patras,

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods

Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods Uncertanty Specfcaton and Propagaton for Loss Estmaton Usng FOSM Methods J.W. Baer and C.A. Corne Dept. of Cv and Envronmenta Engneerng, Stanford Unversty, Stanford, CA 94305-400 Keywords: Sesmc, oss estmaton,

More information

Dmitry A. Zaitsev Odessa National Telecommunication Academy Kuznechnaya, 1, Odessa, Ukraine

Dmitry A. Zaitsev Odessa National Telecommunication Academy Kuznechnaya, 1, Odessa, Ukraine th Worksho on Agorthms and Toos for Petr Nets, Setember - October, 4, Unversty of Paderborn, Germany, 75-8 Sovng the fundamenta equaton of Petr net usng the decomoston nto functona subnets Dmtry A Zatsev

More information

Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints

Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints Internatona Journa Optma of Contro, Guaranteed Automaton, Cost Contro and Systems, of Lnear vo Uncertan 3, no Systems 3, pp 397-4, wth Input September Constrants 5 397 Optma Guaranteed Cost Contro of Lnear

More information

Optimum Selection Combining for M-QAM on Fading Channels

Optimum Selection Combining for M-QAM on Fading Channels Optmum Seecton Combnng for M-QAM on Fadng Channes M. Surendra Raju, Ramesh Annavajjaa and A. Chockangam Insca Semconductors Inda Pvt. Ltd, Bangaore-56000, Inda Department of ECE, Unversty of Caforna, San

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

ABSTRACT

ABSTRACT RELIABILITY AND SENSITIVITY ANALYSIS OF THE K-OUT-OF-N:G WARM STANDBY PARALLEL REPAIRABLE SYSTEM WITH REPLACEMENT AT COMMON-CAUSE FAILURE USING MARKOV MODEL M. A. El-Damcese 1 and N. H. El-Sodany 2 1 Mathematcs

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

III. Econometric Methodology Regression Analysis

III. Econometric Methodology Regression Analysis Page Econ07 Appled Econometrcs Topc : An Overvew of Regresson Analyss (Studenmund, Chapter ) I. The Nature and Scope of Econometrcs. Lot s of defntons of econometrcs. Nobel Prze Commttee Paul Samuelson,

More information

Study on Active Micro-vibration Isolation System with Linear Motor Actuator. Gong-yu PAN, Wen-yan GU and Dong LI

Study on Active Micro-vibration Isolation System with Linear Motor Actuator. Gong-yu PAN, Wen-yan GU and Dong LI 2017 2nd Internatonal Conference on Electrcal and Electroncs: echnques and Applcatons (EEA 2017) ISBN: 978-1-60595-416-5 Study on Actve Mcro-vbraton Isolaton System wth Lnear Motor Actuator Gong-yu PAN,

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Prediction Error of the Multivariate Additive Loss Reserving Method for Dependent Lines of Business

Prediction Error of the Multivariate Additive Loss Reserving Method for Dependent Lines of Business Predcton Error of the Mutvarate Addtve Loss Reservng Method for Dependent Lnes of Busness by Mchae Merz and Maro V Wüthrch ABSTRACT Often n non-fe nsurance, cams reserves are the argest poston on the abty

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. 9 No. 3 4 pp. 69-8 Solvng Fractonal Nonlnear Fredholm Integro-dfferental Equatons va Hybrd of Ratonalzed Haar Functons Yadollah Ordokhan

More information

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T.

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T. Assgnment 5 Smulaton for Logstcs Mont, N.E. Yunta, T. November 26, 2007 1. Smulaton Desgn The frst objectve of ths assgnment s to derve a 90% two-sded Confdence Interval (CI) for the average watng tme

More information

Polite Water-filling for Weighted Sum-rate Maximization in MIMO B-MAC Networks under. Multiple Linear Constraints

Polite Water-filling for Weighted Sum-rate Maximization in MIMO B-MAC Networks under. Multiple Linear Constraints 2011 IEEE Internatona Symposum on Informaton Theory Proceedngs Pote Water-fng for Weghted Sum-rate Maxmzaton n MIMO B-MAC Networks under Mutpe near Constrants An u 1, Youjan u 2, Vncent K. N. au 3, Hage

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

Key words. corner singularities, energy-corrected finite element methods, optimal convergence rates, pollution effect, re-entrant corners

Key words. corner singularities, energy-corrected finite element methods, optimal convergence rates, pollution effect, re-entrant corners NESTED NEWTON STRATEGIES FOR ENERGY-CORRECTED FINITE ELEMENT METHODS U. RÜDE1, C. WALUGA 2, AND B. WOHLMUTH 2 Abstract. Energy-corrected fnte eement methods provde an attractve technque to dea wth eptc

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

B and H sensors for 3-D magnetic property testing

B and H sensors for 3-D magnetic property testing B and H sensors for 3-D magnetc property testng Zh We Ln, Jan Guo Zhu, You Guang Guo, Jn Jang Zhong, and Ha We Lu Faculty of Engneerng, Unversty of Technology, Sydney, PO Bo 123, Broadway, SW 2007, Australa

More information

Over-Temperature protection for IGBT modules

Over-Temperature protection for IGBT modules Over-Temperature protecton for IGBT modules Ke Wang 1, Yongjun Lao 2, Gaosheng Song 1, Xanku Ma 1 1 Mtsubsh Electrc & Electroncs (Shangha) Co., Ltd., Chna Room2202, Tower 3, Kerry Plaza, No.1-1 Zhongxns

More information

Geometric drawings of K n with few crossings

Geometric drawings of K n with few crossings Geometrc drawngs of K n wth few crossngs Bernardo M. Ábrego, Slva Fernández-Merchant Calforna State Unversty Northrdge {bernardo.abrego,slva.fernandez}@csun.edu ver 9 Abstract We gve a new upper bound

More information

( ) r! t. Equation (1.1) is the result of the following two definitions. First, the bracket is by definition a scalar product.

( ) r! t. Equation (1.1) is the result of the following two definitions. First, the bracket is by definition a scalar product. Chapter. Quantum Mechancs Notes: Most of the matera presented n ths chapter s taken from Cohen-Tannoudj, Du, and Laoë, Chap. 3, and from Bunker and Jensen 5), Chap... The Postuates of Quantum Mechancs..

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

A Derivative-Free Algorithm for Bound Constrained Optimization

A Derivative-Free Algorithm for Bound Constrained Optimization Computatona Optmzaton and Appcatons, 21, 119 142, 2002 c 2002 Kuwer Academc Pubshers. Manufactured n The Netherands. A Dervatve-Free Agorthm for Bound Constraned Optmzaton STEFANO LUCIDI ucd@ds.unroma.t

More information

A Hybrid Forecast of Exchange Rate based on Discrete Grey-Markov and Grey Neural Network Model

A Hybrid Forecast of Exchange Rate based on Discrete Grey-Markov and Grey Neural Network Model A Hybrd Forecast of Exchange Rate based on Dscrete Grey-Marov and Grey eural etwor Model Gol Km a, R Su Yun b ( a Center of atural Scence, Unversty of Scences, Pyongyang, DPR Korea, E-mal: golm4@yahoocom

More information

Item calibration in incomplete testing designs

Item calibration in incomplete testing designs Pscoógca (20), 32, 07-32 Item cabraton n ncompete testng desgns Theo JHM Eggen * & Norman D Verhest** *Cto/Unversty of Twente, The etherands **Cto, The etherands Ths study dscusses the justfabty of tem

More information

A principal component analysis and entropy value calculate method in SPSS for MDLAP model

A principal component analysis and entropy value calculate method in SPSS for MDLAP model A prncpa component anayss and entropy vaue cacuate method n SPSS for MDLAP mode ZIPENG ZHANG Schoo of Management scence and Engneerng, Shandong Norma Unversty, Jnan, Chna, HONGGUO WANG Schoo of nformaton

More information

A Short Term Forecasting Method for Wind Power Generation System based on BP Neural Networks

A Short Term Forecasting Method for Wind Power Generation System based on BP Neural Networks Advanced Scence and Technology Letters Vol.83 (ISA 05), pp.7-75 http://dx.do.org/0.457/astl.05.83.4 A Short Term Forecastng Method for Wnd Power Generaton System based on BP Neural Networks Shenghu Wang,

More information

A Network Intrusion Detection Method Based on Improved K-means Algorithm

A Network Intrusion Detection Method Based on Improved K-means Algorithm Advanced Scence and Technology Letters, pp.429-433 http://dx.do.org/10.14257/astl.2014.53.89 A Network Intruson Detecton Method Based on Improved K-means Algorthm Meng Gao 1,1, Nhong Wang 1, 1 Informaton

More information

Calculus of Variations Basics

Calculus of Variations Basics Chapter 1 Calculus of Varatons Bascs 1.1 Varaton of a General Functonal In ths chapter, we derve the general formula for the varaton of a functonal of the form J [y 1,y 2,,y n ] F x,y 1,y 2,,y n,y 1,y

More information

XII.3 The EM (Expectation-Maximization) Algorithm

XII.3 The EM (Expectation-Maximization) Algorithm XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Analytical Chemistry Calibration Curve Handout

Analytical Chemistry Calibration Curve Handout I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

arxiv: v1 [cs.gt] 28 Mar 2017

arxiv: v1 [cs.gt] 28 Mar 2017 A Dstrbuted Nash qubrum Seekng n Networked Graphca Games Farzad Saehsadaghan, and Lacra Pave arxv:7009765v csgt 8 Mar 07 Abstract Ths paper consders a dstrbuted gossp approach for fndng a Nash equbrum

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department o Chemca ngneerng ro. Km, Jong Hak .5 Fugacty & Fugacty Coecent : ure Speces µ > provdes undamenta crteron or phase equbrum not easy to appy to sove probem Lmtaton o gn (.9

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Achieving Optimal Throughput Utility and Low Delay with CSMA-like Algorithms: A Virtual Multi-Channel Approach

Achieving Optimal Throughput Utility and Low Delay with CSMA-like Algorithms: A Virtual Multi-Channel Approach IEEE/AM TRANSATIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 20X Achevng Optma Throughput Utty and Low Deay wth SMA-ke Agorthms: A Vrtua Mut-hanne Approach Po-Ka Huang, Student Member, IEEE, and Xaojun Ln,

More information

Testing for seasonal unit roots in heterogeneous panels

Testing for seasonal unit roots in heterogeneous panels Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

Correspondence. Performance Evaluation for MAP State Estimate Fusion I. INTRODUCTION

Correspondence. Performance Evaluation for MAP State Estimate Fusion I. INTRODUCTION Correspondence Performance Evauaton for MAP State Estmate Fuson Ths paper presents a quanttatve performance evauaton method for the maxmum a posteror (MAP) state estmate fuson agorthm. Under dea condtons

More information

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 1 Chapters 14, 15 & 16 Professor Ahmad, Ph.D. Department of Management Revsed August 005 Chapter 14 Formulas Smple Lnear Regresson Model: y =

More information

Andreas C. Drichoutis Agriculural University of Athens. Abstract

Andreas C. Drichoutis Agriculural University of Athens. Abstract Heteroskedastcty, the sngle crossng property and ordered response models Andreas C. Drchouts Agrculural Unversty of Athens Panagots Lazards Agrculural Unversty of Athens Rodolfo M. Nayga, Jr. Texas AMUnversty

More information

UNR Joint Economics Working Paper Series Working Paper No Further Analysis of the Zipf Law: Does the Rank-Size Rule Really Exist?

UNR Joint Economics Working Paper Series Working Paper No Further Analysis of the Zipf Law: Does the Rank-Size Rule Really Exist? UNR Jont Economcs Workng Paper Seres Workng Paper No. 08-005 Further Analyss of the Zpf Law: Does the Rank-Sze Rule Really Exst? Fungsa Nota and Shunfeng Song Department of Economcs /030 Unversty of Nevada,

More information

PROPERTIES I. INTRODUCTION. Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace

PROPERTIES I. INTRODUCTION. Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace FINITE ELEMENT MODEL UPDATING USING BAYESIAN FRAMEWORK AND MODAL PROPERTIES Tshldz Marwala 1 and Sbusso Sbs I. INTRODUCTION Fnte element (FE) models are wdely used to predct the dynamc characterstcs of

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal Markov chans M. Veeraraghavan; March 17, 2004 [Tp: Study the MC, QT, and Lttle s law lectures together: CTMC (MC lecture), M/M/1 queue (QT lecture), Lttle s law lecture (when dervng the mean response tme

More information

Experience with Automatic Generation Control (AGC) Dynamic Simulation in PSS E

Experience with Automatic Generation Control (AGC) Dynamic Simulation in PSS E Semens Industry, Inc. Power Technology Issue 113 Experence wth Automatc Generaton Control (AGC) Dynamc Smulaton n PSS E Lu Wang, Ph.D. Staff Software Engneer lu_wang@semens.com Dngguo Chen, Ph.D. Staff

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Scheduling problem with uncertain parameters

Scheduling problem with uncertain parameters Bożejo W., Rajba P., Wodec M. Schedung probem wth uncertan parameters Schedung probem wth uncertan parameters by Wojcech Bożejo 1,3, Paweł Rajba 2, Meczysław Wodec 2,3 1 Wrocław Unversty of Technoogy,

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space

More information

Trees and Order Conditions

Trees and Order Conditions Trees and Order Condtons Constructon of Runge-Kutta order condtons usng Butcher trees and seres. Paul Tranqull 1 1 Computatonal Scence Laboratory CSL) Department of Computer Scence Vrgna Tech. Trees and

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

Digital PI Controller Equations

Digital PI Controller Equations Ver. 4, 9 th March 7 Dgtal PI Controller Equatons Probably the most common tye of controller n ndustral ower electroncs s the PI (Proortonal - Integral) controller. In feld orented motor control, PI controllers

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications

Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications Sensors 2008, 8, 8086-8103; DOI: 10.3390/s8128086 OPEN ACCESS sensors ISSN 1424-8220 www.mdp.com/journa/sensors Artce Gobay Optma Mutsensor Dstrbuted Random Parameter Matrces Kaman Fterng Fuson wth Appcatons

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Assignment 4. Adsorption Isotherms

Assignment 4. Adsorption Isotherms Insttute of Process Engneerng Assgnment 4. Adsorpton Isotherms Part A: Compettve adsorpton of methane and ethane In large scale adsorpton processes, more than one compound from a mxture of gases get adsorbed,

More information

Δ x. u(x,t) Fig. Schematic view of elastic bar undergoing axial motions

Δ x. u(x,t) Fig. Schematic view of elastic bar undergoing axial motions ME67 - Handout 4 Vbratons of Contnuous Systems Axal vbratons of elastc bars The fgure shows a unform elastc bar of length and cross secton A. The bar materal propertes are ts densty ρ and elastc modulus

More information

Achieving Optimal Throughput Utility and Low Delay with CSMA-like Algorithms: A Virtual Multi-Channel Approach

Achieving Optimal Throughput Utility and Low Delay with CSMA-like Algorithms: A Virtual Multi-Channel Approach Achevng Optma Throughput Utty and Low Deay wth SMA-ke Agorthms: A Vrtua Mut-hanne Approach Po-Ka Huang, Student Member, IEEE, and Xaojun Ln, Senor Member, IEEE Abstract SMA agorthms have recenty receved

More information

Determine the Optimal Order Quantity in Multi-items&s EOQ Model with Backorder

Determine the Optimal Order Quantity in Multi-items&s EOQ Model with Backorder Australan Journal of Basc and Appled Scences, 5(7): 863-873, 0 ISSN 99-878 Determne the Optmal Order Quantty n Mult-tems&s EOQ Model wth Backorder Babak Khabr, Had Nasser, 3 Ehsan Ehsan and Nma Kazem Department

More information

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods.

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods. CANONICAL RUNGE-KUTTA-NYSTRÖM METHODS OF ORDERS 5 AND 6 DANIEL I. OKUNBOR AND ROBERT D. SKEEL DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 304 W. SPRINGFIELD AVE. URBANA, ILLINOIS

More information

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have

More information