Thermal State Investigations of Two-stage Thruster with Anode Layer

Size: px
Start display at page:

Download "Thermal State Investigations of Two-stage Thruster with Anode Layer"

Transcription

1 Thermal State Investgatons of Two-stage Thruster wth Anode Layer IEPC Presented at the 30 th Internatonal Electrc Propulson Conference, Florence, Italy Mtroshn A.S. *, Garkusha V.I., Semenkn A.V. and Solodukhn A.E. Central Research Insttute of Machne Buldng (TsNIIMASH), Ponerskaya 4, Korolev, Moscow regon, Russa , Phone: (8-495) , Fax: (8-495) Abstract: Thermal analyss s crtcally mportant for development of EP thruster and modern anode layer thrusters (TAL) n partcular. Absence and/or uncertanty of thermal boundary condtons s the one of the man prncple dffculty appearng durng heat calculatons of the thruster constructon. The purpose of the work was accurate defnton of thruster heat emssve characterstcs and verfcaton of exstng heat calculaton methods. Necessary heat boundary condtons were obtaned and verfed by usng of sememprcal method. Two approaches of temperature felds calculatons were used: analytcal and varaton one (Fnte Elements Method FEM). Comparson of these methods was carred out. Based on smulaton experment performed wth the help of ohmc heatng emssve characterstcs of outer TAL surfaces were obtaned. Temperature felds modelng by teratve method for dfferent thruster modes was carred out. Expermental data were compared wth calculated ones. It resulted n obtanng of heat generaton dstrbuton n the thruster. Emssve data table was composed for consdered type of thrusters. Thruster thermal balance was analyzed. ε σ T k Q A F I U W = emssvty factor = Stefan-Boltzmann constant = temperature = thermal-conductvty coeffcent = heat generaton = element area = vew factor = current strength = voltage = power Nomenclature * R&D Engneer, Electrc Propulson Laboratory, avs@tse.ru Head of Department, avs@tse.ru Head of Laboratory, Electrc Propulson Laboratory, avs@tse.ru Group Leader, Electrc Propulson Laboratory, asolodukhn@mtu-net.ru 1

2 I. Introducton Thermal analyss s crtcally mportant for development of EP thruster and modern anode layer thrusters (TAL) n partcular 1,2. TAL constructon thermal ntensty defnes and lmts appled constructonal materals as well as ther treatment. It s ncorrect to determne thruster operatng modes characterstcs wthout takng nto account thermal dstrbuton, snce the thruster effcency drectly depends on thermal ntensty. Thruster heat balance analyss allows to ncrease nput power range and to optmze thruster operaton n dfferent modes, ncludng transent modes. There are several thruster temperature feld smulatng approaches for now. All of them can be dvded to two man types: analytc and numercal. Analytc approaches are based on system heat balance equatons and classcal heat transfer equatons. The prncple of numercal methods (for example, fnte element method) les n the approxmaton of a sought temperature value varyng contnuously by volume of a body, by ts dscrete model. Advantage of numercal approach s precse descrpton of nvestgated model and operatng mode condtons. Snce modern computer equpment allows calculatng large equatons set-up (more than 1 mllon of equatons). To realze these two calculaton approaches heat transfer boundary condtons defnton s needed. Manly radant heat transfer takes place n TAL, so for thruster parts besdes standard materal propertes surface emssvty factor value (ε) s also needed to know. For the frst test run ε can be taken as nomnal value for part materal, but n case of contnuous operatng surface propertes wll change and t wll lead to heat fluxes redstrbuton. The second needed boundary condtons are the thruster parts heat generaton values (Q), whch s determned wth help of total thruster heat balance equaton. Hence boundary condtons data tabulaton s mportant task needed for new thruster constructon thermal ntensty quck estmaton under development stage. Task of boundary condtons defnton can be solved by sememprcal approach, combnng expermental data and numercal smulaton. II. Motvaton Two-stage TAL D-80-type wth average dameter of dscharge channel about 60 mm (see Fg.1) was chosen for thermal analyss. Thruster uses xenon as a propellant and t can be operated n modes wth nput power up to 2 kw. Thermal analyss data obtaned for ths sample can be appled for all two-stage xenon TAL. A. Bref TAL Desgn Descrpton The thruster conssts of two man parts (see Fg.2): Magnet system. Anode unt. Magnet system, n turns, conssts of followng man components: mountng flange (#6); nner col wth magnetc pole (#3); outer cols (#4); outer pole pece (#5). The anode unt s mounted on magnet mountng flange. It ncludes gas dstrbutng anode (#1), frst stage cathode (#2), guard rngs (#7), nsulators (#8), screen (#9). Anode unt components whch are under dfferent potental are solated from each other wth the help of Fgure 1. Photo of TAL wth thermocouples. nsulators (#8). Magnet system poles are protected from on sputterng by guard rngs (#7). Heat n the thruster constructon s generated by the frst and the second stages dscharge plasma and by magnet system cols. 2

3 B. Research stages The work was amed on creaton of boundary condtons data base of exstng thrusters. These data s needed for new thruster constructon thermal ntensty quck estmaton under development stage and thermal analyss. Man steps were the followng: Thruster constructon parts thermal ntensty prelmnary calculaton, wth help of reference and boundary condton emprcal data; For two thruster operatng modes temperature feld measurement; Obtaned results analyss and boundary condtons correcton; More accurate calculaton; Thruster heat balance analyss. Calculaton algorthm s gven n Fg. 3. Fgure 2. Two-stage TAL prncple desgn scheme. Calculaton Scheme Input boundary condton data: Q, ε Calclulate by THeat1 smulaton Changng of boundary condtons False Obtanng of Temperature feld T Comparson wth experment True Temperature feld Т, Heat generaton Q End of Calculaton Fgure 3. Calculaton algorthm. 3

4 III. Thruster Thermal State Smulaton Thruster temperature feld was calculated by both analytcal methods and fnte element method (FEM). THeat1 bundled software (developed n TsNIIMASH) was used for analytcal nvestgatons. The software was specally developed and optmzed for TAL temperature feld smulaton. A. Prerequstes Program algorthm contans classcal heat transmsson equatons, partcularly radant heat exchange one. Heat transfer between surfaces was descrbed by equaton 1 (see Fg.4). Q rad 4 4 = σ ε A F ( T T ) (1) where F vew factor between surfaces and ε - emssvty factor of surface A - area of radaton surface T, T - surfaces and temperatures accordngly Vew factor F has a man nfluence for two surface heat nteracton descrpton. It defnes heat quantty transferred from surface to surface takng nto account ther postonal relatonshp. For two elementary surfaces looks as follows: cos( θ ) cos( θ ) df = da 2 π R Where da and da vew factor θ, θ - drecton angles between perpendcular to surface and lne (2) In ntegral form vew factor looks as follows: 1 cos( θ ) cos( θ ) F = da da A 2 π R 1 (3) A1 A2 B. THeat1 smulaton THeat1 bundled software permts quck heat feld calculaton of both: thruster statonary state and no statonary one. Calculatng speed was the man advantage of ths program. It allows organzng teraton algorthm of boundary condtons selecton. Also t s necessary to mark that THeat1 s adapted ust for TAL radaton smulaton. Ths program models all necessary condtons of radaton heat transfer, whch are typcal for thruster operaton. Calculatng model s presented as axsymmetrc one. It can be explaned, that the most of TAL constructon parts have sold of revoluton shape, excludng outer magnet cols. However, these four cols have been equally dstrbuted around a crcle, that allows ntegrally 4 F Fgure 4. Calculaton algorthm Fgure 5. THeat1 smulaton model R, whch connected two surfaces.

5 consderng ones contrbuton n heat transfer by flat axsymmetrc examnaton. Nomnal value of Emssvty ε was gven for all thruster surfaces. Heat generaton Q was gven for thruster surfaces also. Vew factor was defned between all radant nteracton surfaces. THeat1 smulaton scheme was presented n Fg. 5. As a frst approach the calculaton was carred out once wthout teratons. The result of ths smulaton was taken as a reference pont for further calculatons and comparson wth expermental data. Fgure 6. THeat1 smulaton results (presented temperature has averaged by thruster parts) C. Verfcaton For verfcaton of the THeat1 code smlar task has been performed wth help of well known Fnte Elements Method. The used boundary condtons (ε and Q)and thruster model were the same as the one n the THeat1. Consdered fnte element model s shown n Fgure 7. The calculatons have been done by ANSYS software. The temperature dstrbuton obtaned by both methods - THeat1 and ANSYS are shown correspondngly on Fgures 6 and 7. As one can see from the Table 1 below, the dfference of the temperature values calculated by both methods do not exceed 5%. Ths result confrms that THeat1 s good enough for quck calculatons of the thruster part temperature mode. Fgure 7. ANSYS verfcaton smulaton results 5

6 Table 1. Two smulaton methods results Smulaton type THeat1 Ansys Frst stage cathode 403 C 421 C Anode 462 C 479 C Out guard rng 413 C 425 C Inner guard rng 430 C 449 C Outer pole 180 C 171 C Inner pole 301 C 312 C Thermal screen 298 C 304 C IV. Expermental thruster temperature measurements TAL temperature dstrbuton study was carred out n TsNIIMASH laboratory by thermocouples specally mbedded n the structure. Scheme of thermocouple locaton s presented n Fg. 8. Thermocouples status: Т1 nner pole; T2 thermal screen; T3 mountng flange ; T4 mountng frame; T5 cover; T6 out pole; Т7 out guard rng. Average temperature of magnetc cols was obtaned by measurements of col resstance durng thruster heatng/test and standard ohmc thermal dependence for col materal. Two phase TAL thermal feld measurng experment was carred out, when n use nvestgatons: Fgure 8. Scheme of thermocouple locaton Frst phase (preparatory) thermal feld measurng wth operaton (means ohmc heatng) of magnetc system only; Second phase (man) thermal feld measurng wth thruster frng at nomnal mode; Mode parameters presented n Table 2. Table 2. Thruster mode parameters Mode parameters Magnetc system operate Nomnal mode Inner col current, Inn, А Inner col voltage, Unn, V Out cols current, Iout, A Out cols voltage, Uout, V 7 2 Frst stage current, Id, А 2.75 Frst stage voltage, Ud, V Second stage current, Iа, А 2.5 Second stage voltage, Uа, V 553 Summary thruster power, W, W

7 In vew of falng dscharge by only magnetc system operaton maxmum convenent mbeddng thermocouple n thruster parts was possble. Magnetc system heat generaton Q was determned va measurements of magnet col currents and voltages. Man thermal feld measurng experment phase was carred out at nomnal thruster operaton mode (W=1800w). Expermental data was processed and used for surfaces emssvty and heat generaton accurate defnton. It took about 4 hour to reach thermal equlbrum. The temperature data versus tme s shown on Fgures 9,10. As a result of the two expermental phases temperature dstrbuton has been obtaned for two cases (see Table 3): Ohmc heatng by magnetc col currents Total thruster heatng at nomnal operaton regme Fgure 9. Thermocouple data for the thruster wth magnetc system operaton/heatng mode It s mportant to note, that for the frst case heat flux nto the thruster elements s known, thus obtaned preparatory results was used for smulaton scheme verfcaton. Fgure 10. Thermocouple data for nomnal operate mode Table 3. Thruster mode parameters Thruster parts temperature T, С Mode Magnetc system operate Nomnal mode Т1 nner pole 242 Т2 thermal screen Т3 mountng flange Т4 mountng frame Т5 cover Т6 out pole Т7 out guard rng 368 Tnn Inner col Tout Out cols

8 V. Gettng thermal boundary condtons database Obtaned expermental temperature dstrbuton and heat flux known for preparatory case allowed to determne and clarfy boundary condtons. The boundary condtons were determned va followng teratons: Prelmnary calculatons wth pre-selected boundary condtons; Comparson of the calculated and expermental data; Correcton of the boundary condtons n accordance wth result of comparson (see Fgure 12). The teratons were made untl the agreement between the calculatons and experment. The allowable dfference between the data were not than 5% (see Fgure 11). Temperature T, C nner col out col outpole out guard rng mountng flange thermal screen Measurement Smulaton Fgure 11. Fnal dfference between the data Fnally the calculated temperature dstrbuton was fully equvalent to the measured one. So that, one can conclude, that the boundary condtons selected for the fnal calculatons are correct and represents real parameters of the used hardware and can be for further analyss of smlar thrusters. The performed study allowed to get correct data about heat dsspaton n the thruster durng operaton. Heat flux from the dscharge and magnet col ohmc heatng dd not exceed 17% of total electrc power consumpton value of 1800 W. Values of emssvty factor for thruster surfaces (shown n the Table) has been determned as a result of performed analyss. Table 4. Boundary condtons Data base structure Element Value ε Value Q, W Out guard rng (nner sde) 0.95 Out guard rng (out sde) 0.88 Inner guard rng (nner sde) 0.91 Inner guard rng (out sde) 0.97 Anode (nner sde) 0.25 Anode (out sde) Frst stage cathode (nner sde) 0.20 Frst stage cathode (out sde) ect 8

9 VI. Concluson Dedcated study of two stage anode layer thruster thermal mode has been performed. By the comparson of expermental data and results of calculatons thermal boundary condtons and emssvty of the thruster surfaces have been determned and proven. Obtaned data base s the one necessary as well as for further thruster operaton mode and desgn mprovement as for development of a new thrusters mplementng two stage scheme. Fgure 12. THeat1 fnal smulaton results (presented temperature has averaged by thruster parts) operate mode 9

10 References 1 Solodukhn A.E., Semenkn A.V. "Study of dscharge channel eroson n mult mode anode layer thruster", IEPC , 28th Internatonal Electrc Propulson Conference, March 17-21, Toulouse, France. 2 Solodukhn A.E., Semenkn A.V. "Operaton of Two-stage Thruster wth Anode Layer n "Floatng Electrode" scheme", IEPC , 29th Internatonal Electrc Propulson Conference. 10

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

Over-Temperature protection for IGBT modules

Over-Temperature protection for IGBT modules Over-Temperature protecton for IGBT modules Ke Wang 1, Yongjun Lao 2, Gaosheng Song 1, Xanku Ma 1 1 Mtsubsh Electrc & Electroncs (Shangha) Co., Ltd., Chna Room2202, Tower 3, Kerry Plaza, No.1-1 Zhongxns

More information

Experiment 1 Mass, volume and density

Experiment 1 Mass, volume and density Experment 1 Mass, volume and densty Purpose 1. Famlarze wth basc measurement tools such as verner calper, mcrometer, and laboratory balance. 2. Learn how to use the concepts of sgnfcant fgures, expermental

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Numerical modelization by finite differences of a thermoelectric refrigeration device of double jump". Experimental validation.

Numerical modelization by finite differences of a thermoelectric refrigeration device of double jump. Experimental validation. Numercal modelzaton by fnte dfferences of a thermoelectrc refrgeraton devce of double jump". Expermental valdaton. A. Rodríguez, J.G. Ván, D. Astran, Dpto. Ingenería Mecánca, Energétca y de Materales.

More information

Three-dimensional eddy current analysis by the boundary element method using vector potential

Three-dimensional eddy current analysis by the boundary element method using vector potential Physcs Electrcty & Magnetsm felds Okayama Unversty Year 1990 Three-dmensonal eddy current analyss by the boundary element method usng vector potental H. Tsubo M. Tanaka Okayama Unversty Okayama Unversty

More information

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns Influence Of Operatng Condtons To The Effectveness Of Extractve Dstllaton Columns N.A. Vyazmna Moscov State Unversty Of Envrnmental Engneerng, Department Of Chemcal Engneerng Ul. Staraya Basmannaya 21/4,

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

B and H sensors for 3-D magnetic property testing

B and H sensors for 3-D magnetic property testing B and H sensors for 3-D magnetc property testng Zh We Ln, Jan Guo Zhu, You Guang Guo, Jn Jang Zhong, and Ha We Lu Faculty of Engneerng, Unversty of Technology, Sydney, PO Bo 123, Broadway, SW 2007, Australa

More information

Monte Carlo simulation study on magnetic hysteresis loop of Co nanowires

Monte Carlo simulation study on magnetic hysteresis loop of Co nanowires Monte Carlo smulaton study on magnetc hysteress loop of Co nanowres Ryang Se-Hun, O Pong-Sk, Sn Gum-Chol, Hwang Guk-Nam, Hong Yong-Son * Km Hyong Jk Normal Unversty, Pyongyang, D.P.R of Korea Abstract;

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Credit Card Pricing and Impact of Adverse Selection

Credit Card Pricing and Impact of Adverse Selection Credt Card Prcng and Impact of Adverse Selecton Bo Huang and Lyn C. Thomas Unversty of Southampton Contents Background Aucton model of credt card solctaton - Errors n probablty of beng Good - Errors n

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

THE CURRENT BALANCE Physics 258/259

THE CURRENT BALANCE Physics 258/259 DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

The Analysis of Convection Experiment

The Analysis of Convection Experiment Internatonal Conference on Appled Scence and Engneerng Innovaton (ASEI 5) The Analyss of Convecton Experment Zlong Zhang School of North Chna Electrc Power Unversty, Baodng 7, Chna 469567@qq.com Keywords:

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

DC Circuits. Crossing the emf in this direction +ΔV

DC Circuits. Crossing the emf in this direction +ΔV DC Crcuts Delverng a steady flow of electrc charge to a crcut requres an emf devce such as a battery, solar cell or electrc generator for example. mf stands for electromotve force, but an emf devce transforms

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

This column is a continuation of our previous column

This column is a continuation of our previous column Comparson of Goodness of Ft Statstcs for Lnear Regresson, Part II The authors contnue ther dscusson of the correlaton coeffcent n developng a calbraton for quanttatve analyss. Jerome Workman Jr. and Howard

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Magnetic saturation

Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Magnetic saturation Page 0114 World Electrc Vehcle Journal Vol. 3 - ISSN 2032-6653 - 2009 AVERE EVS24 Stavanger, Norway, May 13-16, 2009 Euvalent Crcut Analyss of Interor Permanent Magnet Synchronous Motor Consderng Magnetc

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

DETERMINATION OF UNCERTAINTY ASSOCIATED WITH QUANTIZATION ERRORS USING THE BAYESIAN APPROACH

DETERMINATION OF UNCERTAINTY ASSOCIATED WITH QUANTIZATION ERRORS USING THE BAYESIAN APPROACH Proceedngs, XVII IMEKO World Congress, June 7, 3, Dubrovn, Croata Proceedngs, XVII IMEKO World Congress, June 7, 3, Dubrovn, Croata TC XVII IMEKO World Congress Metrology n the 3rd Mllennum June 7, 3,

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

FUZZY FINITE ELEMENT METHOD

FUZZY FINITE ELEMENT METHOD FUZZY FINITE ELEMENT METHOD RELIABILITY TRUCTURE ANALYI UING PROBABILITY 3.. Maxmum Normal tress Internal force s the shear force, V has a magntude equal to the load P and bendng moment, M. Bendng moments

More information

Pressure Measurements Laboratory

Pressure Measurements Laboratory Lab # Pressure Measurements Laboratory Objectves:. To get hands-on experences on how to make pressure (surface pressure, statc pressure and total pressure nsde flow) measurements usng conventonal pressuremeasurng

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00 ONE IMENSIONAL TRIANGULAR FIN EXPERIMENT Techncal Advsor: r..c. Look, Jr. Verson: /3/ 7. GENERAL OJECTIVES a) To understand a one-dmensonal epermental appromaton. b) To understand the art of epermental

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES

STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES Abdelkader Benchou, PhD Canddate Nasreddne Benmoussa, PhD Kherreddne Ghaffour, PhD Unversty of Tlemcen/Unt of Materals

More information

International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

International Power, Electronics and Materials Engineering Conference (IPEMEC 2015) Internatonal Power, Electroncs and Materals Engneerng Conference (IPEMEC 2015) Dynamc Model of Wnd Speed Dstrbuton n Wnd Farm Consderng the Impact of Wnd Drecton and Interference Effects Zhe Dong 1, a,

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Noise Reduction Statistical Analysis in Microchip Lasers

Noise Reduction Statistical Analysis in Microchip Lasers Nose Reducton Statstcal Analyss n Mcrochp Lasers Marus Ghta Portland State Unversty, Electrcal and Computer Engneerng Department, Learnng From Data Course Abstract - Frequency doubled mcrochp laser output

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Fuzzy Boundaries of Sample Selection Model

Fuzzy Boundaries of Sample Selection Model Proceedngs of the 9th WSES Internatonal Conference on ppled Mathematcs, Istanbul, Turkey, May 7-9, 006 (pp309-34) Fuzzy Boundares of Sample Selecton Model L. MUHMD SFIIH, NTON BDULBSH KMIL, M. T. BU OSMN

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

Color Rendering Uncertainty

Color Rendering Uncertainty Australan Journal of Basc and Appled Scences 4(10): 4601-4608 010 ISSN 1991-8178 Color Renderng Uncertanty 1 A.el Bally M.M. El-Ganany 3 A. Al-amel 1 Physcs Department Photometry department- NIS Abstract:

More information

CHAPTER IV RESEARCH FINDING AND ANALYSIS

CHAPTER IV RESEARCH FINDING AND ANALYSIS CHAPTER IV REEARCH FINDING AND ANALYI A. Descrpton of Research Fndngs To fnd out the dfference between the students who were taught by usng Mme Game and the students who were not taught by usng Mme Game

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

PERFORMANCE OF HEAVY-DUTY PLANETARY GEARS

PERFORMANCE OF HEAVY-DUTY PLANETARY GEARS THE INTERNATIONAL CONFERENCE OF THE CARPATHIAN EURO-REGION SPECIALISTS IN INDUSTRIAL SYSTEMS 6 th edton PERFORMANCE OF HEAVY-DUTY PLANETARY GEARS Attla Csobán, Mhály Kozma 1, 1 Professor PhD., Eng. Budapest

More information

Constitutive Modelling of Superplastic AA-5083

Constitutive Modelling of Superplastic AA-5083 TECHNISCHE MECHANIK, 3, -5, (01, 1-6 submtted: September 19, 011 Consttutve Modellng of Superplastc AA-5083 G. Gulano In ths study a fast procedure for determnng the constants of superplastc 5083 Al alloy

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING N. Phanthuna 1,2, F. Cheevasuvt 2 and S. Chtwong 2 1 Department of Electrcal Engneerng, Faculty of Engneerng Rajamangala

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Deterministic and Monte Carlo Codes for Multiple Scattering Photon Transport

Deterministic and Monte Carlo Codes for Multiple Scattering Photon Transport Determnstc and Monte Carlo Codes for Multple Scatterng Photon Transport Jorge E. Fernández 1 1 Laboratory of Montecuccolno DIENCA Alma Mater Studorum Unversty of Bologna Italy Isttuto Nazonale d Fsca Nucleare

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Regulation No. 117 (Tyres rolling noise and wet grip adhesion) Proposal for amendments to ECE/TRANS/WP.29/GRB/2010/3

Regulation No. 117 (Tyres rolling noise and wet grip adhesion) Proposal for amendments to ECE/TRANS/WP.29/GRB/2010/3 Transmtted by the expert from France Informal Document No. GRB-51-14 (67 th GRB, 15 17 February 2010, agenda tem 7) Regulaton No. 117 (Tyres rollng nose and wet grp adheson) Proposal for amendments to

More information

Field computation with finite element method applied for diagnosis eccentricity fault in induction machine

Field computation with finite element method applied for diagnosis eccentricity fault in induction machine Proceedngs of the Internatonal Conference on Recent Advances n Electrcal Systems, Tunsa, 216 Feld computaton wth fnte element method appled for dagnoss eccentrcty fault n nducton machne Moufd Mohammed,

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Aging model for a 40 V Nch MOS, based on an innovative approach F. Alagi, R. Stella, E. Viganò

Aging model for a 40 V Nch MOS, based on an innovative approach F. Alagi, R. Stella, E. Viganò Agng model for a 4 V Nch MOS, based on an nnovatve approach F. Alag, R. Stella, E. Vganò ST Mcroelectroncs Cornaredo (Mlan) - Italy Agng modelng WHAT IS AGING MODELING: Agng modelng s a tool to smulate

More information

Lifetime prediction of EP and NBR rubber seal by thermos-viscoelastic model

Lifetime prediction of EP and NBR rubber seal by thermos-viscoelastic model ECCMR, Prague, Czech Republc; September 3 th, 2015 Lfetme predcton of EP and NBR rubber seal by thermos-vscoelastc model Kotaro KOBAYASHI, Takahro ISOZAKI, Akhro MATSUDA Unversty of Tsukuba, Japan Yoshnobu

More information

AGC Introduction

AGC Introduction . Introducton AGC 3 The prmary controller response to a load/generaton mbalance results n generaton adjustment so as to mantan load/generaton balance. However, due to droop, t also results n a non-zero

More information

A Fast Computer Aided Design Method for Filters

A Fast Computer Aided Design Method for Filters 2017 Asa-Pacfc Engneerng and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 A Fast Computer Aded Desgn Method for Flters Gang L ABSTRACT *Ths paper presents a fast computer aded desgn method

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE PROCEEDINGS, Thrty-Ffth Workshop on Geothermal Reservor Engneerng Stanford Unversty, Stanford, Calforna, February 1-3, 010 SGP-TR-188 GeoSteamNet:. STEAM FLOW SIMULATION IN A PIPELINE Mahendra P. Verma

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

CHAPTER IV RESEARCH FINDING AND DISCUSSIONS

CHAPTER IV RESEARCH FINDING AND DISCUSSIONS CHAPTER IV RESEARCH FINDING AND DISCUSSIONS A. Descrpton of Research Fndng. The Implementaton of Learnng Havng ganed the whole needed data, the researcher then dd analyss whch refers to the statstcal data

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Reprint (R34) Accurate Transmission Measurements Of Translucent Materials. January 2008

Reprint (R34) Accurate Transmission Measurements Of Translucent Materials. January 2008 Reprnt (R34) Accurate ransmsson Measurements Of ranslucent Materals January 2008 Gooch & Housego 4632 36 th Street, Orlando, FL 32811 el: 1 407 422 3171 Fax: 1 407 648 5412 Emal: sales@goochandhousego.com

More information

ELE B7 Power Systems Engineering. Power Flow- Introduction

ELE B7 Power Systems Engineering. Power Flow- Introduction ELE B7 Power Systems Engneerng Power Flow- Introducton Introducton to Load Flow Analyss The power flow s the backbone of the power system operaton, analyss and desgn. It s necessary for plannng, operaton,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numercal models for unsteady flow n ppe dvdng systems R. Klasnc," H. Knoblauch," R. Mader* ^ Department of Hydraulc Structures and Water Resources Management, Graz Unversty of Technology, A-8010, Graz,

More information

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl RECURSIVE SPLINE INTERPOLATION METHOD FOR REAL TIME ENGINE CONTROL APPLICATIONS A. Stotsky Volvo Car Corporaton Engne Desgn and Development Dept. 97542, HA1N, SE- 405 31 Gothenburg Sweden. Emal: astotsky@volvocars.com

More information