# Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 1 Harmonic Oscillator Figure 1.1 illustrates the prototypical harmonic oscillator, the mass-spring system. A mass is attached to one end of a spring. The other end of the spring is attached to something rigid such as a wall. The spring exerts a restoring force F = x on the mass when it is stretched by an amount x, i. e., it acts to return the mass to its initial position. This is called Hooe s law and is called the spring constant. 1.1 Energy Analysis The potential energy of the mass-spring system is U(x) = x 2 /2 (1.1) F = x x Figure 1.1: Illustration of a mass-spring system. 1

2 CHAPTER 1. HARONIC OSCILLATOR 2 U(x) turning points K E U x Figure 1.2: Potential, inetic, and total energy of a harmonic oscillator plotted as a function of spring displacement x. which may be verified by noting that the Hooe s law force is derived from this potential energy: F = d(x 2 /2)/dx = x. This is shown in figure 1.2. Since a potential energy exists, the total energy E = K+U is conserved, i. e., is constant in time. If the total energy is nown, this provides a useful tool for determining how the inetic energy varies with the position x of the mass : K(x) = E U(x). Since the inetic energy is expressed (nonrelativistically) in terms of the velocity u as K = u 2 /2, the velocity at any point on the graph in figure 1.2 is u = ± ( ) 1/2 2(E U). (1.2) Given all this, it is fairly evident how the mass moves. From Hooe s law, the mass is always accelerating toward the equilibrium position, x = 0. However, at any point the velocity can be either to the left or the right. At the points where U(x) = E, the inetic energy is zero. This occurs at the turning points ( ) 2E 1/2 x TP = ±. (1.3) If the mass is moving to the left, it slows down as it approaches the left turning point. It stops when it reaches this point and begins to move to the right. It accelerates until it passes the equilibrium position and then begins to decelerate, stopping at the right turning point, accelerating toward

3 CHAPTER 1. HARONIC OSCILLATOR 3 the left, etc. The mass thus oscillates between the left and right turning points. (Note that equations (1.2) and (1.3) are only true for the harmonic oscillator.) How does the period of the oscillation depend on the total energy of the system? Notice that from equation (1.2) the maximum speed of the mass (i. e., the speed at x = 0) is equal to u max = (2E/) 1/2. The average speed must be some fraction of this maximum value. Let us guess here that it is half the maximum speed: u average u max 2 = ( ) E 1/2 (approximate). (1.4) 2 However, the distance d the mass has to travel for one full oscillation is twice the distance between turning points, or d = 4(2E/) 1/2. Therefore, the period of oscillation must be approximately T = d u average 4( 2E ) 1/2 ( 2 E ) 1/2 ( = 8 ) 1/2 (approximate). (1.5) 1.2 Analysis Using Newton s Laws The acceleration of the mass at any time is given by Newton s second law: a = d2 x dt 2 = F = x. (1.6) An equation of this type is nown as a differential equation since it involves a derivative of the dependent variable x. Equations of this type are generally more difficult to solve than algebraic equations, as there are no universal techniques for solving all forms of such equations. In fact, it is fair to say that the solutions of most differential equations were originally obtained by guessing! We already have the basis on which to mae an intelligent guess for the solution to equation (1.6) since we now that the mass oscillates bac and forth with a period that is independent of the amplitude of the oscillation. A function which might fill the bill is the cosine function. Let us try substituting x = cos(ωt), where ω is a constant, into this equation. The second derivative of x with respect to t is ω 2 cos(ωt), so performing this substitution results in ω 2 cos(ωt) = cos(ωt). (1.7)

4 CHAPTER 1. HARONIC OSCILLATOR 4 Notice that the cosine function cancels out, leaving us with ω 2 = /. The guess thus wors if we set ω = ( ) 1/2. (1.8) The constant ω is the angular oscillation frequency for the oscillator, from which we infer the period of oscillation to be T = 2π(/) 1/2. This agrees with the earlier approximate result of equation (1.5), except that the approximation has a numerical factor of 8 rather than 2π 6. Thus, the earlier guess is only off by about 30%! It is easy to show that x = Bcos(ωt) is also a solution of equation (1.6), whereb isanyconstantandω = (/) 1/2. Thisconfirmsthattheoscillation frequency and period are independent of amplitude. Furthermore, the sine function is equally valid as a solution: x = Asin(ωt), where A is another constant. In fact, the most general possible solution is just a combination of these two, i. e., x = Asin(ωt)+Bcos(ωt) = Ccos(ωt φ). (1.9) The values of A and B depend on the position and velocity of the mass at time t = 0. The right side of equation (1.9) shows an alternate way of writing the general harmonic oscillator solution that uses a cosine function with a phase factor φ. 1.3 Forced Oscillator If we wiggle the left end of the spring by the amount d = d 0 cos(ω F t), as in figure 1.3, rather than rigidly fixing it as in figure 1.1, we have a forced harmonicoscillator. Theconstantd 0 istheamplitudeoftheimposedwiggling motion. The forcing frequency ω F is not necessarily equal to the natural or resonant frequency ω = (/) 1/2 of the mass-spring system. Very different behavior occurs depending on whether ω F is less than, equal to, or greater than ω. Given the above wiggling, the force of the spring on the mass becomes F = (x d) = [x d 0 cos(ω F t)] since the length of the spring is the difference between the positions of the left and right ends. Proceeding as for

5 CHAPTER 1. HARONIC OSCILLATOR 5 d = d sin ω 0 F t F = (x d) x Figure 1.3: Illustration of a forced mass-spring oscillator. The left end of the spring is wiggled bac and forth with an angular frequency ω F and a maximum amplitude d 0. the unforced mass-spring system, we arrive at the differential equation d 2 x dt + x 2 = d 0 cos(ω Ft). (1.10) The solution to this equation turns out to be the sum of a forced part in which x is proportional to cos(ω F t) and a free part which is the same as the solution to the unforced equation (1.9). We are primarily interested in the forced part of the solution, so let us set x = x 0 cos(ω F t) and substitute this into equation (1.10): ω 2 F x 0cos(ω F t)+ x 0 cos(ω Ft) = d 0 cos(ω Ft). (1.11) Again the cosine factor cancels and we are left with an algebraic equation for x 0, the amplitude of the oscillatory motion of the mass. Solving for the ratio of the oscillation amplitude of the mass to the amplitude of the wiggling motion, x 0 /d 0, we find x 0 d 0 = 1 (1.12) 1 ωf 2 /ω2, where we have recognized that / = ω 2, the square of the frequency of the free oscillation. This function is plotted in figure 1.4. Notice that if ω F < ω, the motion of the mass is in phase with the wiggling motion and the amplitude of the mass oscillation is greater than the amplitude of the wiggling. As the forcing frequency approaches the natural frequency of the oscillator, the response of the mass grows in amplitude.

6 CHAPTER 1. HARONIC OSCILLATOR x 0 /d ω F /ω 1 2 Figure 1.4: Plot of the ratio of response to forcing vs. the ratio of forced to free oscillator frequency for the mass-spring system. When the forcing is at the resonant frequency, the response is technically infinite, though practical limits on the amplitude of the oscillation will intervene in this case for instance, the spring cannot stretch or shrin an infinite amount. In many cases friction will act to limit the response of the mass to forcing near the resonant frequency. When the forcing frequency is greater than the natural frequency, the mass actually moves in the opposite direction of the wiggling motion i. e., the response is out of phase with the forcing. The amplitude of the response decreases as the forcing frequency increases above the resonant frequency. Forced and free harmonic oscillators form an important part of many physical systems. For instance, any elastic material body such as a bridge or an airplane wing has harmonic oscillatory modes. A common engineering problem is to ensure that such modes are damped by friction or some other physical mechanism when there is a possibility of exitation of these modes by naturally occurring processes. A number of disasters can be traced to a failure to properly account for oscillatory forcing in engineered structures.

7 CHAPTER 1. HARONIC OSCILLATOR Complex Exponential Solutions Complex exponential functions of the form x = exp(±iωt) also constitute solutions to the free harmonic oscillator governed by equation (1.6). This maes sense, as the complex exponential is the sum of sines and cosines. However, for the frictionless harmonic oscillator, the exponential solutions provide no particular advantage over sines and cosines. Furthermore, oscillator displacements are real, not complex quantities. The superposition principle solves the problem of complex versus real solutions. For an equation lie (1.6) which has real coefficients, if exp(iωt) is a solution, then so is exp( iωt), so the superposition of these two solutions is also a solution. Furthermore exp(iωt) + exp( iωt) = 2 cos(ωt) = 2real[exp(iωt)]. (1.13) This shows a shortcut for getting the physical part of a complex exponential solution to equations lie the harmonic oscillator equation; simply tae the real part. Complex exponential solutions come into their own for more complicated equations. For instance, suppose the force on the mass in the mass-spring system taes the form F = x b dx dt. (1.14) The term containing b represents a frictional damping effect on the harmonic oscillator and the governing differential equation becomes d 2 x dt + b dx 2 dt + x = 0. (1.15) Trying the exponential function exp(σt) in this equation results in σ = 1 2 where we have set b ( b 2 ± 4 ) 1/2 = β ±i(ω β2 ) 1/2 (1.16) β = b 2 ω 0 = ( ) 1/2. (1.17) The quantity ω (ω 2 0 β2 ) 1/2 is the actual frequency of oscillation of the damped oscillator, which one can see is less than the oscillation frequency

8 CHAPTER 1. HARONIC OSCILLATOR 8 ω 0 that occurs with the damping turned off. The physical solution to the damped oscillator is thus x(t) = real[exp(σt)] = real[exp(iωt) exp( βt)] = cos(ωt) exp( βt) (1.18) as long as ω 2 0 > β 2. Notice that this solution is in the form of an oscillation cos(ωt) multiplied by a decaying exponential exp( βt). This confirms that the b term decreases the amplitude of the oscillation with time. 1.5 Quantum echanical Harmonic Oscillator The quantum mechanical harmonic oscillator shares the characteristic of other quantum mechanical bound state problems in that the total energy can tae on only discrete values. Calculation of these values is too difficult for this boo, but the problem is sufficiently important to warrant reporting the results here. The energies accessible to a quantum mechanical mass-spring system are given by the formula E n = (n+1/2) h(/) 1/2, n = 0,1,2,... (1.19) In other words, the energy difference between successive quantum mechanical energy levels in this case is constant and equals the classical resonant frequency for the oscillator, ω = (/) 1/2, times h. 1.6 Problems 1. An oscillator (non-harmonic) has the potential energy function U(x) = Cx 4, where C is a constant. How does the oscillation frequency depend on energy? Explain your reasoning. 2. Show that Ccos(ωt φ) is an alternate way of writing Asin(ωt) + Bcos(ωt) by finding the values of A and B in terms of the constants C and φ. Hint: Expand cos(ωt φ) by using the trigonometric identity for the cosine of the sum of two angles. 3. If a mass-spring harmonic oscillator has displacement x = 0 and velocity dx/dt = V at time t = 0, determine the values of A and B as well as those of C and φ in equation (1.9).

9 CHAPTER 1. HARONIC OSCILLATOR 9 L θ x Figure 1.5: The pendulum as a harmonic oscillator. 4. A mass is suspended against gravity by a spring of spring constant. The unstretched length of the spring is x 0 and under the influence of gravity the spring is stretched to a resting length x 1 > x 0. (a) Compute the length of the spring x 1 in the steady, resting case. (b) Set up the equation of motion for the mass moving under the influence of the two forces, gravity and spring. Solve the equation for the frequency of the oscillation and the position of the spring as a function of time x(t). Does the oscillation frequency change from the case without gravity? 5. Determine the two real solutions to the damped harmonic oscillator problem in the case in which ω 2 0 < β2. 6. Consider the pendulum in figure 1.5. The mass moves along an arc with x denoting the distance along the arc from the equilibrium point. (a) Find the component of the gravitational force tangent to the arc (and thus in the direction of motion of the mass) as a function of the angle θ. Use the small angle approximation on sin(θ) to simplify this answer. (b) Get the force in terms of x rather than θ. (Recall that θ = x/l.)

10 CHAPTER 1. HARONIC OSCILLATOR 10 (c) Use Newton s second law for motion in the x direction (i. e., along the arc followed by the mass) to get the equation of motion for the mass. (d) Solve the equation of motion using the solution to the mass-spring problem as a guide. 7. Forced damped oscillator: (a) Add a damping term to the forced harmonic oscillator equation (1.10) and solve for the forced part of the solution using complex exponential methods. Hint: Change the cosine on the right side of this equation to exp(iω F t) to convert the equation to complex form and then try the solution x = x 0 exp(iω F t) where x 0 will depend on ω F. Also, write the equation in terms of β = b/(2) and ω 2 = /. (b) Find the physical part of this solution by taing the real part of x(t). Hint: While taing the real part of x, it may be helpful to recall that the inverse of any complex number can be written 1/(a+ib) = (a ib)/(a 2 +b 2 ). (c) Determine how x 0 differs from that in the undamped case when ω F is near the resonant frequency of the unforced oscillator. In particular, show how the phase and amplitude of the oscillation change as the forcing frequency changes from less than to greater than the resonant frequency. 8. A massless particle is confined to a box of length a. (Thin of a photon between two mirrors.) Treating the particle classically, compute the period of one round trip from one end of the box to the other and bac again. From this compute an angular frequency for the oscillation of this particle in the box. Does this frequency depend on the particle s energy? 9. Compute the ground state energy E ground of a massless particle in a box of length a using quantum mechanics. Compare E ground / h with the angular frequency computed in the previous problem.

### Oscillations. Oscillations and Simple Harmonic Motion

Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

### Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

### Chapter 15. Oscillatory Motion

Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

### Oscillatory Motion SHM

Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

### Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion

Chapter 4 Oscillatory Motion 4.1 The Important Stuff 4.1.1 Simple Harmonic Motion In this chapter we consider systems which have a motion which repeats itself in time, that is, it is periodic. In particular

### 9.6 - Energy and the Simple Harmonic Oscillator *

OpenStax-CNX module: m6040 9.6 - Energy and the Simple Harmonic Oscillator * Albert Hall Based on Energy and the Simple Harmonic Oscillator by OpenStax his wor is produced by OpenStax-CNX and licensed

### Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

### Chapter 14: Periodic motion

Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

### Energy and the Simple Harmonic Oscillator

OpenStax-CNX module: m42244 Energy and the Simple Harmonic Oscillator OpenStax College his wor is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Determine

### Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Lecture 1 Notes: 06 / 27 The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). These systems are very common in nature - a system displaced from equilibrium

### Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

### Mass on a Horizontal Spring

Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

### !T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

### Mechanics IV: Oscillations

Mechanics IV: Oscillations Chapter 4 of Morin covers oscillations, including damped and driven oscillators in detail. Also see chapter 10 of Kleppner and Kolenkow. For more on normal modes, see any book

### Simple Harmonic Motion

Simple Harmonic Motion (FIZ 101E - Summer 2018) July 29, 2018 Contents 1 Introduction 2 2 The Spring-Mass System 2 3 The Energy in SHM 5 4 The Simple Pendulum 6 5 The Physical Pendulum 8 6 The Damped Oscillations

### Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

### Periodic Motion is everywhere

Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

### Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

### Chapter 14 Oscillations

Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

### Lab 11. Spring-Mass Oscillations

Lab 11. Spring-Mass Oscillations Goals To determine experimentally whether the supplied spring obeys Hooke s law, and if so, to calculate its spring constant. To find a solution to the differential equation

### Harmonic oscillator. U(x) = 1 2 bx2

Harmonic oscillator The harmonic oscillator is a familiar problem from classical mechanics. The situation is described by a force which depends linearly on distance as happens with the restoring force

### The Harmonic Oscillator

The Harmonic Oscillator Math 4: Ordinary Differential Equations Chris Meyer May 3, 008 Introduction The harmonic oscillator is a common model used in physics because of the wide range of problems it can

### Chapter 14 Oscillations

Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

### PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

### Chapter 14 Periodic Motion

Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

### Chapter One Introduction to Oscillations

Chapter One Introduction to Oscillations This chapter discusses simple oscillations. This chapter also discusses simple functions to model oscillations like the sine and cosine functions. Part One Sine

### Physics Mechanics. Lecture 32 Oscillations II

Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

### CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

### 3.4 Application-Spring Mass Systems (Unforced and frictionless systems)

3.4. APPLICATION-SPRING MASS SYSTEMS (UNFORCED AND FRICTIONLESS SYSTEMS)73 3.4 Application-Spring Mass Systems (Unforced and frictionless systems) Second order differential equations arise naturally when

### Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

### Lab 1: Damped, Driven Harmonic Oscillator

1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

### Lab 1: Damped, Driven Harmonic Oscillator

1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

### PHY217: Vibrations and Waves

Assessed Problem set 1 Issued: 5 November 01 PHY17: Vibrations and Waves Deadline for submission: 5 pm Thursday 15th November, to the V&W pigeon hole in the Physics reception on the 1st floor of the GO

### Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

### Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

### Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

### Unforced Oscillations

Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion Phase-Amplitude Conversion The Simple Pendulum and The Linearized

### Vibrations and Waves Physics Year 1. Handout 1: Course Details

Vibrations and Waves Jan-Feb 2011 Handout 1: Course Details Office Hours Vibrations and Waves Physics Year 1 Handout 1: Course Details Dr Carl Paterson (Blackett 621, carl.paterson@imperial.ac.uk Office

### 1 Simple Harmonic Oscillator

Physics 1a Waves Lecture 3 Caltech, 10/09/18 1 Simple Harmonic Oscillator 1.4 General properties of Simple Harmonic Oscillator 1.4.4 Superposition of two independent SHO Suppose we have two SHOs described

### Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

### M A : Ordinary Differential Equations

M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics D 19 * 2018-2019 Sections D07 D11 & D14 1 1. INTRODUCTION CLASS 1 ODE: Course s Overarching Functions An introduction to the

### Chapter 15 Oscillations

Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = -kx x SHM in vertical

### General Physics I Spring Oscillations

General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

### AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion

AP Physics 1 2016-07-20 www.njctl.org Table of Contents Click on the topic to go to that section Period and Frequency SHM and UCM Spring Pendulum Simple Pendulum Sinusoidal Nature of SHM Period and Frequency

### Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

### 4. Complex Oscillations

4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

### The object of this experiment is to study systems undergoing simple harmonic motion.

Chapter 9 Simple Harmonic Motion 9.1 Purpose The object of this experiment is to study systems undergoing simple harmonic motion. 9.2 Introduction This experiment will develop your ability to perform calculations

### Faculty of Computers and Information. Basic Science Department

18--018 FCI 1 Faculty of Computers and Information Basic Science Department 017-018 Prof. Nabila.M.Hassan 18--018 FCI Aims of Course: The graduates have to know the nature of vibration wave motions with

### Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

### Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109, Class Period 13 Experiment Number 11 in the Physics 121 Lab Manual (page 65) Outline Simple harmonic motion The vertical mass-spring

### Unforced Mechanical Vibrations

Unforced Mechanical Vibrations Today we begin to consider applications of second order ordinary differential equations. 1. Spring-Mass Systems 2. Unforced Systems: Damped Motion 1 Spring-Mass Systems We

### 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

### Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

### Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

### Physics 1C. Lecture 12B

Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

### Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

### AP Physics C Mechanics

1 AP Physics C Mechanics Simple Harmonic Motion 2015 12 05 www.njctl.org 2 Table of Contents Click on the topic to go to that section Spring and a Block Energy of SHM SHM and UCM Simple and Physical Pendulums

### Mechanical Energy and Simple Harmonic Oscillator

Mechanical Energy and Simple Harmonic Oscillator Simple Harmonic Motion Hooke s Law Define system, choose coordinate system. Draw free-body diagram. Hooke s Law! F spring =!kx ˆi! kx = d x m dt Checkpoint

### CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

### Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

### TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

### Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

### Chap. 15: Simple Harmonic Motion

Chap. 15: Simple Harmonic Motion Announcements: CAPA is due next Tuesday and next Friday. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Examples of periodic motion vibrating guitar

### Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

### Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

### PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

### Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

### Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

### Lab 10: Harmonic Motion and the Pendulum

Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

### Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Chapter 14 Oscillations Oscillations Introductory Terminology Simple Harmonic Motion: Kinematics Energy Examples of Simple Harmonic Oscillators Damped and Forced Oscillations. Resonance. Periodic Motion

### Lab 12. Spring-Mass Oscillations

Lab 12. Spring-Mass Oscillations Goals To determine experimentally whether the supplied spring obeys Hooke s law, and if so, to calculate its spring constant. To determine the spring constant by another

### Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

### Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION

DAMPED SIMPLE HARMONIC MOTION PURPOSE To understand the relationships between force, acceleration, velocity, position, and period of a mass undergoing simple harmonic motion and to determine the effect

### Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

### CHAPTER 12 OSCILLATORY MOTION

CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

### Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

### Solutions 2: Simple Harmonic Oscillator and General Oscillations

Massachusetts Institute of Technology MITES 2017 Physics III Solutions 2: Simple Harmonic Oscillator and General Oscillations Due Wednesday June 21, at 9AM under Rene García s door Preface: This problem

### Math Assignment 5

Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

### 11. Some applications of second order differential

October 3, 2011 11-1 11. Some applications of second order differential equations The first application we consider is the motion of a mass on a spring. Consider an object of mass m on a spring suspended

### Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method

### Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

### Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for st year students by W.B. von Schlippe Spring Semester 7 Lecture : Oscillations simple harmonic oscillations; coupled oscillations; beats; damped oscillations;

### Chapter 7 Hooke s Force law and Simple Harmonic Oscillations

Chapter 7 Hooke s Force law and Simple Harmonic Oscillations Hooke s Law An empirically derived relationship that approximately works for many materials over a limited range. Exactly true for a massless,

### Vibrations and Waves MP205, Assignment 4 Solutions

Vibrations and Waves MP205, Assignment Solutions 1. Verify that x = Ae αt cos ωt is a possible solution of the equation and find α and ω in terms of γ and ω 0. [20] dt 2 + γ dx dt + ω2 0x = 0, Given x

### The... of a particle is defined as its change in position in some time interval.

Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

### CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

### Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1 Outline. Course information: Homework set # 3 Exam # 1 Quiz. Continuation of the

### Chapter 15. Oscillations

Chapter 15 Oscillations 15.1 Simple Harmonic Motion Oscillatory Motion: Motion which is periodic in time; motion that repeats itself in time. Examples: SHM: Power line oscillates when the wind blows past.

### C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

### KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

### Thursday, August 4, 2011

Chapter 16 Thursday, August 4, 2011 16.1 Springs in Motion: Hooke s Law and the Second-Order ODE We have seen alrealdy that differential equations are powerful tools for understanding mechanics and electro-magnetism.

### Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

### Chapter 13 Solutions

Chapter 3 Solutions 3. x = (4.00 m) cos (3.00πt + π) Compare this with x = A cos (ωt + φ) to find (a) ω = πf = 3.00π or f =.50 Hz T = f = 0.667 s A = 4.00 m (c) φ = π rad (d) x(t = 0.50 s) = (4.00 m) cos

### Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

### Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

11.11 LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS A Spring with Friction: Damped Oscillations The differential equation, which we used to describe the motion of a spring, disregards friction. But there