Séminaire INRA de Toulouse

Size: px
Start display at page:

Download "Séminaire INRA de Toulouse"

Transcription

1 Séminaire INRA de Toulouse Mélisande ALBERT Travaux de thèse, Université Nice Sophia Antipolis, LJAD Vendredi 17 mars Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 1 / 28

2 Table of contents 1 Introduction of the neuroscience motivation Biological context and state of the art Statistical framework 2 Bootstrap approach Description of the method Consistency of the method Bootstrap test of independence 3 Permutation approach Description of the method Permutation test of independence Simulation study 4 Synchronization detection Multiple testing Simulation study Real Data Centered Test Statistic Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 2 / 28

3 1 Introduction of the neuroscience motivation Biological context and state of the art Statistical framework 2 Bootstrap approach 3 Permutation approach 4 Synchronization detection Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 3 / 28

4 Introduction of the biological context Transmission of the neuronal information The neuronal information is transmitted by the spikes/action potentials. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 4 / 28

5 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

6 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

7 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

8 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

9 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

10 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

11 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

12 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

13 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

14 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

15 Introduction of the biological context Synaptic integration spike excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

16 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

17 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

18 Introduction of the biological context Synaptic integration excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

19 Introduction of the biological context Synaptic integration spike excitation threshold of the neuron resting potential of the neuron various dendrites input signals Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

20 Introduction of the biological context Synaptic integration spike excitation threshold of the neuron resting potential of the neuron various dendrites input signals [Grammont and Riehle (1999)]: neurons coordinate their activity at very precise moments. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 5 / 28

21 Introduction of the biological context Synchronization detection Observation Raster plot time in second Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 6 / 28

22 Introduction of the biological context Synchronization detection Observation Raster plot time in second Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 6 / 28

23 Introduction of the biological context Synchronization detection Observation Modelling Raster plot Point processes =randomsetsofpoints Complex dependences time in second Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 6 / 28

24 Introduction of the biological context Synchronization detection Observation Modelling Raster plot Point processes =randomsetsofpoints Complex dependences Synchronization time in second Tendency to co-activate Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 6 / 28

25 Introduction of the biological context Synchronization detection Observation Modelling Raster plot Point processes =randomsetsofpoints Complex dependences time in second Synchronization Coincidence Tendency to co-activate N 1 δ δ N 2 coïncidence coïncidence a b Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 6 / 28

26 Introduction of the biological context Synchronization detection Observation Modelling Raster plot Point processes =randomsetsofpoints Complex dependences time in second Synchronization Coincidence Tendency to co-activate = = N 1 δ δ N 2 coïncidence coïncidence a b Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 6 / 28

27 Introduction of the biological context Synchronization detection Observation Modelling Raster plot Point processes =randomsetsofpoints Complex dependences time in second Synchronization Coincidence Tendency to co-activate = = N 1 δ δ N 2 coïncidence coïncidence a b Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 6 / 28

28 Introduction of the biological context Global approach On each time window: Observed total number of coincidences VS Expected under independence total number of coincidences Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 7 / 28

29 Introduction of the biological context Global approach On each time window: Observed total number of coincidences = occurence of a synchronization. Expected under independence total number of coincidences Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 7 / 28

30 Introduction of the biological context Global approach On each time window: independence test. Observed total number of coincidences = occurence of a synchronization. Expected under independence total number of coincidences Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 7 / 28

31 Introduction of the biological context Global approach On each time window: independence test. Observed total number of coincidences = occurence of a synchronization. Simultaneous application on each tim window: multiple tests. Expected under independence total number of coincidences Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 7 / 28

32 Introduction of the biological context Global approach On each time window: independence test. Observed total number of coincidences = occurence of a synchronization. Simultaneous application on each tim window: multiple tests. Expected under independence total number of coincidences Parametric methods (eg: Poisson point processes) not realistic in neuroscience. State of the art in neurosciences Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 7 / 28

33 Introduction of the biological context Global approach On each time window: independence test. Observed total number of coincidences = occurence of a synchronization. Simultaneous application on each tim window: multiple tests. Expected under independence total number of coincidences State of the art in neurosciences Parametric methods (eg: Poisson point processes) not realistic in neuroscience. Non-parametric approaches (eg: trial shuffling) not theoretically justified. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 7 / 28

34 Statistical framework Observation: X n =(X 1,...,X n ), where X i =(X 1 i, X 2 i )i.i.d. Aim at testing (H 0): X 1 X 2 against (H 1): X 1 X 2. X 1 1 X 2 1 X 1 2 X 2 2 X 1 3 X X n:observedsample {X 1, X 2, X 3,...}i.i.d. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 8 / 28

35 Statistical framework Observation: X n =(X 1,...,X n ), where X i =(X 1 i, X 2 i )i.i.d. Aim at testing (H 0): X 1 X 2 against (H 1): X 1 X 2. Often, tests based on ϕ(x 1, x 2 ) ( dp(x 1, x 2 ) dp 1 (x 1 )dp 2 (x 2 ) ). Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 8 / 28

36 Statistical framework Observation: X n =(X 1,...,X n ), where X i =(X 1 i, X 2 i )i.i.d. Aim at testing (H 0): X 1 X 2 against (H 1): X 1 X 2. Often, tests based on ϕ(x 1, x 2 ) ( dp(x 1, x 2 ) dp 1 (x 1 )dp 2 (x 2 ) ). State of the art: with n 3/2 sup v 1 V 1,v 2 V 2 i i ( ϕ(v 1,v 2 ) ( ) ( )) X 1 i, Xi 2 ϕ(v 1,v 2 ) X 1 i, X 2 i, [Blum, Kiefer, and Rosenblatt (1961)], for V 1 = V 2 = R and ϕ (v 1,v 2 )(x 1, x 2 )=1 {],v 1 ]} (x 1 ) 1 {],v 2 ]} (x 2 ), [Romano (1989)], bootstrap and permutation for V 1 and V 2 countable V.-C. classes of subsets, and ϕ (v 1,v 2 )(x 1, x 2 )=1 {v1 } (x 1 ) 1 {v2 } (x 2 ), [Van der Vaart and Wellner (1996)], bootstrap for V 1 and V 2 classes of real-valued functions, and ϕ (v 1,v 2 )(x 1, x 2 )=v 1 (x 1 ) v 2 (x 2 ). Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 8 / 28

37 Statistical framework Observation: X n =(X 1,...,X n ), where X i =(X 1 i, X 2 i )i.i.d. Aim at testing (H 0): X 1 X 2 against (H 1): X 1 X 2. Notion of (delayed) coincidence [Tuleau-Malot et al. (2014)] ϕ coinc δ counts the number of coincidences between two point processes: ( ϕ coinc δ X 1, X 2) = 1 { T S δ}. T X 1 S X 2 X 1 X 2 δ coincidence δ coincidence 0 1 Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 8 / 28

38 Statistical framework Observation: X n =(X 1,...,X n ), where X i =(X 1 i, X 2 i )i.i.d. Aim at testing (H 0): X 1 X 2 against (H 1): X 1 X 2. Often, tests based on ϕ(x 1, x 2 ) ( dp(x 1, x 2 ) dp 1 (x 1 )dp 2 (x 2 ) ). Unbiased estimator: 1 ( ( ) ( )) ϕ X 1 n(n 1) i, Xi 2 ϕ X 1 i, X 2 i. i i Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 8 / 28

39 Statistical framework Observation: X n =(X 1,...,X n ), where X i =(X 1 i, X 2 i )i.i.d. Aim at testing (H 0): X 1 X 2 against (H 1): X 1 X 2. Often, tests based on ϕ(x 1, x 2 ) ( dp(x 1, x 2 ) dp 1 (x 1 )dp 2 (x 2 ) ). Unbiased estimator: 1 ( ( ) ( )) ϕ X 1 n(n 1) i, Xi 2 ϕ X 1 i, X 2 i. i i Let h ϕ ( (x 1, x 2 ), (y 1, y 2 ) ) = 1 2 ( ϕ(x 1, x 2 )+ϕ(y 1, y 2 ) ϕ(x 1, y 2 ) ϕ(y 1, x 2 ) ), x 1 x 2 x 1 y 2 y 1 y 2 y 1 x ϕ(x 1, x 2 )+ϕ(y 1, y 2 ) 0 1 ϕ(x 1, y 2 ) ϕ(y 1, x 2 ) Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 8 / 28

40 Statistical framework Observation: X n =(X 1,...,X n ), where X i =(X 1 i, X 2 i )i.i.d. Aim at testing (H 0): X 1 X 2 against (H 1): X 1 X 2. Often, tests based on ϕ(x 1, x 2 ) ( dp(x 1, x 2 ) dp 1 (x 1 )dp 2 (x 2 ) ). Unbiased estimator: 1 ( ( ) ( )) ϕ X 1 n(n 1) i, Xi 2 ϕ X 1 i, X 2 i. i i Let h ϕ ( (x 1, x 2 ), (y 1, y 2 ) ) = 1 2 the previous estimator becomes ( ϕ(x 1, x 2 )+ϕ(y 1, y 2 ) ϕ(x 1, y 2 ) ϕ(y 1, x 2 ) ), 1 n(n 1) h ϕ (X i, X j). i j Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 8 / 28

41 Independence test Generalized test statistic Test statistic nun,h (X n)= n n(n 1) h (X i, X j), for h :(X X) 2 R well chosen such that { (A Cent for any X and X,i.i.d. withdistributionp 1 P 2 on X 2, ) E[h (X, X )] = 0, and that U n,h is non-degenerate. i j Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 9 / 28

42 Independence test Generalized test statistic Test statistic nun,h (X n)= n n(n 1) h (X i, X j), for h :(X X) 2 R well chosen such that { (A Cent for any X and X,i.i.d. withdistributionp 1 P 2 on X 2, ) E[h (X, X )] = 0, and that U n,h is non-degenerate. i j TCL for our test statistic under independence If U n,h is non-degenerate, then L ( nu n,h ; P 1 P 2) = N ( ) 0,σ 2. n + L ( nun,h ; Q ) denotes the distribution of nu n,h (Z n)forz n =(Z 1,...,Z n) sample of i.i.d. random variables with distribution Q. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 9 / 28

43 1 Introduction of the neuroscience motivation 2 Bootstrap approach Description of the method Consistency of the method Bootstrap test of independence 3 Permutation approach 4 Synchronization detection Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 10 / 28

44 Bootstrap approach Description Bootstrap approach inspired by Romano (1988) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. X 1 1 X 2 1 X 1 2 X 2 2 X 1 3 X nun,h (X n): on original data Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 11 / 28

45 Bootstrap approach Description Bootstrap approach inspired by Romano (1988) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. The bootstrap sample is X n = ( ( ) Xn,1,...,Xn,n) i.i.d. P 1 n Pn 2 1 = δ n X 1 i 1 i n ( 1 n 1 j n δ X 2 j ). X 1 1 X 2 1 X 1 2 X 2 2 X 1 3 X nun,h (X n): on original data Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 11 / 28

46 Bootstrap approach Description Bootstrap approach inspired by Romano (1988) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. The bootstrap sample is X n = ( ( ) Xn,1,...,Xn,n) i.i.d. P 1 n Pn 2 1 = δ n X 1 i 1 i n ( 1 n 1 j n δ X 2 j ). X 1 1 X 1 1 X 2 1 X 1 2 X 1 3 X 2 2 X 1 3 X 1 2 X nun,h (X n): on original data 0 1 Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 11 / 28

47 Bootstrap approach Description Bootstrap approach inspired by Romano (1988) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. The bootstrap sample is X n = ( ( ) Xn,1,...,Xn,n) i.i.d. P 1 n Pn 2 1 = δ n X 1 i 1 i n ( 1 n 1 j n δ X 2 j ). X 1 1 X 2 1 X 1 1 X 2 2 X 1 2 X 2 2 X 1 3 X 2 3 X 1 3 X 2 3 X 1 2 X nun,h (X n): on original data 0 nun,h (X n ): on bootstrapped data 1 Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 11 / 28

48 Bootstrap approach Consistency of the method Theorem 1 Let h :(X X) 2 R such that (A Cent ), (A Cent (A Cent Emp ) Emp ) x 1 =(x1 1, x1 2 ),...,x n =(xn 1, xn 2 ) X 2, n h (( ) ( )) xi 1, x 2 i, x 1 j, x 2 j =0. i,i,j,j =1 Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 12 / 28

49 Bootstrap approach Consistency of the method Theorem 1 Let h :(X X) 2 R such that (A Cent ), (A Cent Emp ), (A Mmt brk ) for any X 1, X 2, X 3, X 4,i.i.d.withdistributionP on X 2, (A Mmt brk ) a, b, c, d {1, 2, 3, 4}, E [ h (( ( 2 Xa 1, Xb) 2, X 1 c, Xd))] 2 < +. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 12 / 28

50 Bootstrap approach Consistency of the method Theorem 1 Let h :(X X) 2 R such that (A Cent ), (A Cent Emp ), (A Mmt brk )and(a Cont ) There exists C subset of X 2 X 2,suchthat (A Cont (i) the kernel h is continuous in every (x, y) C ) for the topology induced by the Skorohod metric, (ii) (P 1 P 2 ) 2 (C) =1. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 12 / 28

51 Bootstrap approach Consistency of the method Theorem 1 Let h :(X X) 2 R such that (A Cent ), (A Cent Emp ), (A Mmt brk )and(a Cont ) hold, then P-a.s. in (X n) n. ( ( ) ( d W2 L nun,h ; Pn 1 Pn X 2 n, L nun,h ; P 1 P 2)) 0 n + Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 12 / 28

52 Bootstrap approach Consistency of the method Theorem 1 Let h :(X X) 2 R such that (A Cent ), (A Cent Emp ), (A Mmt brk )and(a Cont ) hold, then P-a.s. in (X n) n. ( ( ) ( d W2 L nun,h ; Pn 1 Pn X 2 n, L nun,h ; P 1 P 2)) 0 n + cumulative distribution function on data under (H0) on bootstrapped data time Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 12 / 28

53 Bootstrap approach Consistency of the method Theorem 1 Let h :(X X) 2 R such that (A Cent ), (A Cent Emp ), (A Mmt brk )and(a Cont ) hold, then P-a.s. in (X n) n. ( ( ) ( d W2 L nun,h ; Pn 1 Pn X 2 n, L nun,h ; P 1 P 2)) 0 n + Main arguments: By Varadarajan [1958], Separability = P-a.s, Pn 1 Pn 2 = P 1 P 2. n + Skorohod s representation theorem. Continuity of h and LLN for U-statistics. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 12 / 28

54 Bootstrap approach Bootstrap independence test Bootstrap test of independence Φ + h,α = 1 { nun,h (X n)>q h,1 α (Xn) }, where q h,1 α(x n) is the (1-α)-quantile of L ( nun,h ; P 1 n P 2 n X n ). Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 13 / 28

55 Bootstrap approach Bootstrap independence test Bootstrap test of independence Φ + h,α = 1 { nun,h (X n)>q h,1 α (Xn) }, where q h,1 α(x n) is the (1-α)-quantile of L ( nun,h ; P 1 n P 2 n X n ). Theorem 2 Under similar assumptions as in theorem 1, Asymptotic size: Under (H 0), P ( Φ + h,α =1 ) α. n + Asymptotic power: For any alternative P such that E[h (X i, X i )] > 0, P ( Φ + h,α =1 ) n + 1. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 13 / 28

56 1 Introduction of the neuroscience motivation 2 Bootstrap approach 3 Permutation approach Description of the method Permutation test of independence Simulation study 4 Synchronization detection Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 14 / 28

57 Permutation approach Idea of permutation Permutation approach inspired by Hoeffding (1952) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. X 1 1 X 2 1 X 1 2 X 2 2 X 1 3 X nun,h (X n): on original data Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 15 / 28

58 Permutation approach Idea of permutation Permutation approach inspired by Hoeffding (1952) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. The permuted sample is, for Π n U (S n)independentofx n X Πn n = ( ) X Πn 1,...,Xn Πn, with X Π n i = ( Xi 1, X 2 Π n(i)). X 1 1 X 2 1 X 1 2 X 2 2 X 1 3 X nun,h (X n): on original data Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 15 / 28

59 Permutation approach Idea of permutation Permutation approach inspired by Hoeffding (1952) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. The permuted sample is, for Π n U (S n)independentofx n X Πn n = ( ) X Πn 1,...,Xn Πn, with X Π n i = ( Xi 1, X 2 Π n(i)). X 1 1 X 1 1 X 2 1 X 1 2 X 1 2 X 2 2 X 1 3 X 1 3 X nun,h (X n): on original data 0 1 Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 15 / 28

60 Permutation approach Idea of permutation Permutation approach inspired by Hoeffding (1952) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. The permuted sample is, for Π n U (S n)independentofx n X Πn n = ( ) X Πn 1,...,Xn Πn, with X Π n i = ( Xi 1, X 2 Π n(i)). X 1 1 X 2 1 X 1 1 X 2 2 X 1 2 X 2 2 X 1 2 X 2 3 X 1 3 X 2 3 X 1 3 X nun,h (X n): on original data 0 1 nun,h ( X Π n n ) : on permuted data Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 15 / 28

61 Permutation approach Idea of permutation Permutation approach inspired by Hoeffding (1952) Given X n =(X i) 1 i n,wherex i = ( ) Xi 1, Xi 2 i.i.d. P in X X. The permuted sample is, for Π n U (S n)independentofx n X Πn n = ( ) X Πn 1,...,Xn Πn, with X Π n i = ( Xi 1, X 2 Π n(i)). Proposition Let Π n U(S n) X n. Under (H 0), X Πn n,andx n have the same distribution. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 15 / 28

62 Permutation approach Consistency of the method Theorem 1 Let h = h ϕ with ϕ : X 2 R satisfying (A Mmt ϕ ). { for any X with distribution P or P (A Mmt 1 P 2 on X 2, ϕ ) E [ ϕ 4 (X 1, X 2 ) ] < +. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 16 / 28

63 Permutation approach Consistency of the method Theorem 1 Let h = h ϕ with ϕ : X 2 R satisfying (A Mmt ϕ ). Then, if U n,h is non-degenerate, d W2 ( L ( nun,hϕ ( X Π n n ) Xn ), N ( 0,σ 2 )) P n + 0. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 16 / 28

64 Permutation approach Consistency of the method Theorem 1 Let h = h ϕ with ϕ : X 2 R satisfying (A Mmt ϕ ). Then, if U n,h is non-degenerate, d W2 ( L ( nun,hϕ ( X Π n n ) Xn ), N ( 0,σ 2 )) P n + 0. cumulative distribution function gaussian distribution on permuted data time Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 16 / 28

65 Permutation approach Consistency of the method Theorem 1 Let h = h ϕ with ϕ : X 2 R satisfying (A Mmt ϕ ). Then, if U n,h is non-degenerate, d W2 ( L ( nun,hϕ ( X Π n n ) Xn ), N ( 0,σ 2 )) P n + 0. Main arguments: Martingale difference array CLT ( weak convergence). Second order moments convergence. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 16 / 28

66 Permutation approach Permutation independence test Permutation test of independence Ψ + h,α = 1 { nun,h (X n)>q π h,1 α (Xn) }, where qh,1 α(x π n) is the (1-α)-quantile of L ( ( ) ) nun,h X Π n n Xn. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 17 / 28

67 Permutation approach Permutation independence test Permutation test of independence Ψ + h,α = 1 { nun,h (X n)>q π h,1 α (Xn) }, where qh,1 α(x π n) is the (1-α)-quantile of L ( ( ) ) nun,h X Π n n Xn. Theorem 2 Under similar assumptions as in Theorem 1, Non-asymptotic level / Asymptotic size: Under (H 0), P ( Ψ + h,α =1 ) α. P ( Ψ + h ϕ,α =1 ) α. n + Asymptotic power: Under any alternative P such that E[h ϕ (X i, X i )] > 0, P ( Ψ + h ϕ,α =1 ) 1. n + Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 17 / 28

68 Simulation study Monte Carlo approach Monte Carlo approximation In the previous tests, replacing the exact quantiles qh,1 α(x n) and qh,1 α(x π n) by the corresponding empirical quantiles obtained from B(n) i.i.d. bootstrapped/permuted samples from X n,withb(n) + leads to the same theoretical results. n + Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 18 / 28

69 Simulation study Monte Carlo approach Monte Carlo approximation In the previous tests, replacing the exact quantiles qh,1 α(x n) and qh,1 α(x π n) by the corresponding empirical quantiles obtained from B(n) i.i.d. bootstrapped/permuted samples from X n,withb(n) + leads to the same theoretical results. n + Study on simulated and real data Implementation (R and C++) fast computation. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 18 / 28

70 Simulation study Parameters Simulated data Study of the level: homogeneous Poisson processes on [0.1, 0.2] with intensity λ = 60, inhomogeneous Poisson processes with intensity f λ (t) =t λt, λ =60. Study of the power: injection model X j = X j ind Xcom, for j =1, 2 with X 1 ind X 2 ind as above with parameter λ ind =54,andX com a common homogeneous Poisson process with intensity λ com =6. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 19 / 28

71 Simulation study Parameters Simulated data Study of the level: homogeneous Poisson processes on [0.1, 0.2] with intensity λ = 60, inhomogeneous Poisson processes with intensity f λ (t) =t λt, λ =60. Study of the power: injection model X j = X j ind Xcom, for j =1, 2 with X 1 ind X 2 ind as above with parameter λ ind =54,andX com a common homogeneous Poisson process with intensity λ com =6. n varies in {10, 20, 50, 100}, δ =0.01, B = step in the Monte Carlo approximation of the quantiles, Ntest = 5000 for the estimations of the size, and the power. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 19 / 28

72 Simulation study Results n=10 n=20 n=50 n= n=10 n=20 n=50 n=100 CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 20 / 28

73 Simulation study Results n=10 n=20 n=50 n= n=10 n=20 n=50 n=100 CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS n=10 n=20 n=50 n=100 n=10 n=20 n=50 n= CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 20 / 28

74 1 Introduction of the neuroscience motivation 2 Bootstrap approach 3 Permutation approach 4 Synchronization detection Multiple testing Simulation study Real Data Centered Test Statistic Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 21 / 28

75 Multiple testing Initial motivation Detect the synchronizations. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 22 / 28

76 Multiple testing Initial motivation Detect the synchronizations. Idea: simultaneously test independence on sliding time windows [a k, b k ], 0 a b 2 (H 0,k ):X 1 X 2 on [a k, b k ] against (H 1,k ):X 1 X 2 on [a k, b k ]. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 22 / 28

77 Multiple testing Initial motivation Detect the synchronizations. Idea: simultaneously test independence on sliding time windows [a k, b k ], 0 a b 2 (H 0,k ):X 1 X 2 on [a k, b k ] against (H 1,k ):X 1 X 2 on [a k, b k ]. Aim: Control the m tests at a global level α. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 22 / 28

78 Multiple testing Initial motivation Detect the synchronizations. Idea: simultaneously test independence on sliding time windows [a k, b k ], 0 a b 2 (H 0,k ):X 1 X 2 on [a k, b k ] against (H 1,k ):X 1 X 2 on [a k, b k ]. Aim: Control the m tests at a global level α. The errors accumulate! Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 22 / 28

79 Multiple testing Initial motivation Detect the synchronizations. Idea: simultaneously test independence on sliding time windows [a k, b k ], 0 a b 2 (H 0,k ):X 1 X 2 on [a k, b k ] against (H 1,k ):X 1 X 2 on [a k, b k ]. Aim: Control the m tests at a global level α. The errors accumulate! Benjamini and Hochberg multiple testing procedure to control the False Discovery Rate (1995). Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 22 / 28

80 Multiple testing procedure Benjamini-Hochberg procedure Sort the p-values where p i corresponds to the test (H 0,i), p (1) p (m), Reject all null hypotheses { H (i) }1 i k where k = max {i ; p (i) i } m q. p (k+1) p (m) x α m x p (3) p (k) 3 p (1) 1 2 k k +1 m p (2) REJECT Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 23 / 28

81 Simulation study Parameters Independent Dependent spont=60 h = i->i [0,0.001] h =0 i->j h =30.1 i->j [0,0.005] h =0 i->j h =-30.1 h =6.1 i->j [0,0.005] i->j [0,0.005] Injection Injection Poisson Hawkes A: Description of Experiment 1 Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 24 / 28

82 Simulation study Parameters Independent Dependent spont=60 h = i->i [0,0.001] h =0 i->j h =30.1 i->j [0,0.005] h =0 i->j h =-30.1 h =6.1 i->j [0,0.005] i->j [0,0.005] Injection Injection Poisson Hawkes A: Description of Experiment 1 n =50, δ varies in {0.001, 0.002,...,0.04}, B = steps in the Monte Carlo approximation of the quantiles, m = simultaneous tests. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 24 / 28

83 Simulation study Results MTGAUE Trial Shuffling delta delta time Permutation time Bootstrap delta delta time time Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 25 / 28

84 Simulation study Results MTGAUE Trial Shuffling delta delta time Permutation time Bootstrap delta delta time time Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 25 / 28

85 Simulation study Results MTGAUE Trial Shuffling delta delta time Permutation time Bootstrap delta delta time time Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 25 / 28

86 Simulation study Results MTGAUE Trial Shuffling delta delta time Permutation time Bootstrap delta delta time time Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 25 / 28

87 Simulation study Results MTGAUE Trial Shuffling delta delta time Permutation time Bootstrap delta delta time time Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 25 / 28

88 Real Data Experiment Start Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 26 / 28

89 Real Data Experiment 500 ms Start Preparatory signal Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 26 / 28

90 Real Data Experiment 500 ms delay Start Preparatory signal Response signal with random delay = { 600 ms with probability ms otherwise Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 26 / 28

91 Real Data Experiment 500 ms delay Start Preparatory signal Response signal { 600 ms with probability 0.3 with random delay = 1200 ms otherwise Keep only trials with a response signal at 1700 ms. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 26 / 28

92 Real Data Results time in second M A BERT time in second m NRA T V m

93 Work still in progress and perspectives Conclusions and perspectives Asymptotic performances of the bootstrap approach. Asymptotic/non-asymptotic performances of the permutation approach. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 28 / 28

94 Work still in progress and perspectives Conclusions and perspectives Asymptotic performances of the bootstrap approach. Asymptotic/non-asymptotic performances of the permutation approach. Choice of δ for the notion of coincidences? delta=0.001 delta=0.005 delta=0.01 delta= CLT B P GA TS CLT B P GA TS CLT B P GA TS CLT B P GA TS Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 28 / 28

95 Work still in progress and perspectives Conclusions and perspectives Asymptotic performances of the bootstrap approach. Asymptotic/non-asymptotic performances of the permutation approach. Choice of δ for the notion of coincidences? Theoretical justification of the multiple testing? Merci! Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 28 / 28

96 Centering issue for resampling approaches Resampling approach Test statistic based on the total number of coincidences with delay: C obs = C(X n)= n i=1 ϕ coinc δ ( ) X 1 i, Xi 2. General idea Reject independence when there are too many (resp. too few) coincidences compared to what is expected under independence. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 29 / 28

97 Centering issue for resampling approaches Resampling approach Test statistic based on the total number of coincidences with delay: C obs = C(X n)= n i=1 ϕ coinc δ ( ) X 1 i, Xi 2. General idea Reject independence when there are too many (resp. too few) coincidences compared to what is expected under independence. How to recreate the distribution under independence? Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 29 / 28

98 Centering issue for resampling approaches Resampling approach Test statistic based on the total number of coincidences with delay: C obs = C(X n)= n i=1 ϕ coinc δ ( ) X 1 i, Xi 2. General idea Reject independence when there are too many (resp. too few) coincidences compared to what is expected under independence. How to recreate the distribution under independence? Construct a new sample X n from the original one, i.e. X n,suchthat L ( C ( ) ) X Xn n L ( C ( )) X n, whether X n satisfies independence or not. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 29 / 28

99 The different resampling approaches Trial Shuffling, Full Bootstrap and Permutation Original data set Nature Randomness Computer randomness Surrogate data set built as either n=3 trials Permutation Trial-shuffling Pick n= 3 couples (i,j) with replacement in (1,2) (1,3) (2,1) (2,3) (3,1) (3,2) Full Bootstrap Pick n= 3 couples (i,j) with replacement in (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Pick only 1 permutation given by in Unconditional distribution: all possible choices of both Nature and Computer randomness Conditional distribution: 1 fixed original data set (Nature randomness), all possible choices of Computer randomness Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 30 / 28

100 Conditional distributions of the number of coincidences How do they perform? L ( C ( X n ) Xn ) L ( C ( X n ))? Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 31 / 28

101 Conditional distributions of the number of coincidences How do they perform? L ( C ( X n ) Xn ) L ( C ( X n ))? Centering issue!!! Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 31 / 28

102 Centering trick In view of the statistical literature, it is not possible to estimate L ( C ( )) X n directly, BUT, L ( C ( X n ) E [ C ( X n ) Xn ] Xn ) L ( C ( ) [ ( )]) X n E C X n. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 32 / 28

103 Centering trick In view of the statistical literature, it is not possible to estimate L ( C ( )) X n directly, BUT, L ( C ( X n ) E [ C ( X n ) Xn ] Xn ) YET, E [ C ( )] X n is unknown... L ( C ( ) [ ( )]) X n E C X n. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 32 / 28

104 Centering trick In view of the statistical literature, it is not possible to estimate L ( C ( )) X n directly, BUT, L ( C ( X n ) E [ C ( X n ) Xn ] Xn ) YET, E [ C ( )] X n is unknown... Centering trick Let Ĉ 0(X n)= 1 n 1 and let i j ϕ coinc δ (X 1 i, X 2 j ), L ( C ( ) [ ( )]) X n E C X n. s.t. E [ Ĉ 0(X n) ] = E [ C ( X n )], U(X n)=c(x n) Ĉ 0(X n). Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 32 / 28

105 Centering trick In view of the statistical literature, it is not possible to estimate L ( C ( )) X n directly, BUT, L ( C ( X n ) E [ C ( X n ) Xn ] Xn ) YET, E [ C ( )] X n is unknown... Centering trick Let Ĉ 0(X n)= 1 n 1 and let i j ϕ coinc δ (X 1 i, X 2 j ), L ( C ( ) [ ( )]) X n E C X n. s.t. E [ Ĉ 0(X n) ] = E [ C ( X n )], U(X n)=c(x n) Ĉ 0(X n). Then L ( U ( X n ) E [ U ( X n ) Xn ] Xn ) L ( U ( X n )). Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 32 / 28

106 Centering trick In view of the statistical literature, it is not possible to estimate L ( C ( )) X n directly, BUT, L ( C ( X n ) E [ C ( X n ) Xn ] Xn ) YET, E [ C ( )] X n is unknown... Centering trick Let Ĉ 0(X n)= 1 n 1 and let i j ϕ coinc δ (X 1 i, X 2 j ), L ( C ( ) [ ( )]) X n E C X n. s.t. E [ Ĉ 0(X n) ] = E [ C ( X n )], U(X n)=c(x n) Ĉ 0(X n). Then L ( U ( X n ) E [ U ( X n ) Xn ] Xn ) L ( U ( X n )). with E [ U ( X TS n ) ] Xn U(X n) =, and n { E[U(X n ) X n]=0, E[U(X n ) X n]=0. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 32 / 28

107 Conditional distributions of the centered number of coincidences How do they perform? L ( U ( X n ) E [ U ( X n ) Xn ] Xn ) L ( U ( X n ))? Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 33 / 28

108 Conditional distributions of the centered number of coincidences How do they perform? L ( U ( X n ) E [ U ( X n ) Xn ] Xn ) L ( U ( X n ))? Critical value: (1 α)-quantile of L ( U ( X n ) E [ U ( X n ) Xn ] Xn ), Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 33 / 28

109 Conditional distributions of the centered number of coincidences How do they perform? L ( U ( X n ) E [ U ( X n ) Xn ] Xn ) L ( U ( X n ))? Critical value: (1 α)-quantile of L ( U ( X n ) E [ U ( X n ) Xn ] Xn ), with Monte Carlo approximation. Mélisande ALBERT Séminaire INRA Toulouse Vendredi 17 mars 33 / 28

arxiv: v1 [stat.me] 24 May 2017

arxiv: v1 [stat.me] 24 May 2017 Continuous testing for Poisson process intensities : A new perspective on scanning statistics arxiv:1705.08800v1 [stat.me] 24 May 2017 Franck Picard Univ Lyon, Université Lyon 1, CNRS, LBBE UMR5558, F-69622

More information

Optional Stopping Theorem Let X be a martingale and T be a stopping time such

Optional Stopping Theorem Let X be a martingale and T be a stopping time such Plan Counting, Renewal, and Point Processes 0. Finish FDR Example 1. The Basic Renewal Process 2. The Poisson Process Revisited 3. Variants and Extensions 4. Point Processes Reading: G&S: 7.1 7.3, 7.10

More information

Stochastic Convergence, Delta Method & Moment Estimators

Stochastic Convergence, Delta Method & Moment Estimators Stochastic Convergence, Delta Method & Moment Estimators Seminar on Asymptotic Statistics Daniel Hoffmann University of Kaiserslautern Department of Mathematics February 13, 2015 Daniel Hoffmann (TU KL)

More information

large number of i.i.d. observations from P. For concreteness, suppose

large number of i.i.d. observations from P. For concreteness, suppose 1 Subsampling Suppose X i, i = 1,..., n is an i.i.d. sequence of random variables with distribution P. Let θ(p ) be some real-valued parameter of interest, and let ˆθ n = ˆθ n (X 1,..., X n ) be some estimate

More information

Negative Association, Ordering and Convergence of Resampling Methods

Negative Association, Ordering and Convergence of Resampling Methods Negative Association, Ordering and Convergence of Resampling Methods Nicolas Chopin ENSAE, Paristech (Joint work with Mathieu Gerber and Nick Whiteley, University of Bristol) Resampling schemes: Informal

More information

Hunting for significance with multiple testing

Hunting for significance with multiple testing Hunting for significance with multiple testing Etienne Roquain 1 1 Laboratory LPMA, Université Pierre et Marie Curie (Paris 6), France Séminaire MODAL X, 19 mai 216 Etienne Roquain Hunting for significance

More information

Advanced Statistics II: Non Parametric Tests

Advanced Statistics II: Non Parametric Tests Advanced Statistics II: Non Parametric Tests Aurélien Garivier ParisTech February 27, 2011 Outline Fitting a distribution Rank Tests for the comparison of two samples Two unrelated samples: Mann-Whitney

More information

Control of Generalized Error Rates in Multiple Testing

Control of Generalized Error Rates in Multiple Testing Institute for Empirical Research in Economics University of Zurich Working Paper Series ISSN 1424-0459 Working Paper No. 245 Control of Generalized Error Rates in Multiple Testing Joseph P. Romano and

More information

Chapter 2: Resampling Maarten Jansen

Chapter 2: Resampling Maarten Jansen Chapter 2: Resampling Maarten Jansen Randomization tests Randomized experiment random assignment of sample subjects to groups Example: medical experiment with control group n 1 subjects for true medicine,

More information

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf Lecture 13: 2011 Bootstrap ) R n x n, θ P)) = τ n ˆθn θ P) Example: ˆθn = X n, τ n = n, θ = EX = µ P) ˆθ = min X n, τ n = n, θ P) = sup{x : F x) 0} ) Define: J n P), the distribution of τ n ˆθ n θ P) under

More information

Bootstrap confidence levels for phylogenetic trees B. Efron, E. Halloran, and S. Holmes, 1996

Bootstrap confidence levels for phylogenetic trees B. Efron, E. Halloran, and S. Holmes, 1996 Bootstrap confidence levels for phylogenetic trees B. Efron, E. Halloran, and S. Holmes, 1996 Following Confidence limits on phylogenies: an approach using the bootstrap, J. Felsenstein, 1985 1 I. Short

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

Bickel Rosenblatt test

Bickel Rosenblatt test University of Latvia 28.05.2011. A classical Let X 1,..., X n be i.i.d. random variables with a continuous probability density function f. Consider a simple hypothesis H 0 : f = f 0 with a significance

More information

Plan Martingales cont d. 0. Questions for Exam 2. More Examples 3. Overview of Results. Reading: study Next Time: first exam

Plan Martingales cont d. 0. Questions for Exam 2. More Examples 3. Overview of Results. Reading: study Next Time: first exam Plan Martingales cont d 0. Questions for Exam 2. More Examples 3. Overview of Results Reading: study Next Time: first exam Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 and

More information

On the Uniform Asymptotic Validity of Subsampling and the Bootstrap

On the Uniform Asymptotic Validity of Subsampling and the Bootstrap On the Uniform Asymptotic Validity of Subsampling and the Bootstrap Joseph P. Romano Departments of Economics and Statistics Stanford University romano@stanford.edu Azeem M. Shaikh Department of Economics

More information

CHAPTER 3: LARGE SAMPLE THEORY

CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 1 CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 2 Introduction CHAPTER 3 LARGE SAMPLE THEORY 3 Why large sample theory studying small sample property is usually

More information

Limit theorems for Hawkes processes

Limit theorems for Hawkes processes Limit theorems for nearly unstable and Mathieu Rosenbaum Séminaire des doctorants du CMAP Vendredi 18 Octobre 213 Limit theorems for 1 Denition and basic properties Cluster representation of Correlation

More information

SOME CONVERSE LIMIT THEOREMS FOR EXCHANGEABLE BOOTSTRAPS

SOME CONVERSE LIMIT THEOREMS FOR EXCHANGEABLE BOOTSTRAPS SOME CONVERSE LIMIT THEOREMS OR EXCHANGEABLE BOOTSTRAPS Jon A. Wellner University of Washington The bootstrap Glivenko-Cantelli and bootstrap Donsker theorems of Giné and Zinn (990) contain both necessary

More information

University of California San Diego and Stanford University and

University of California San Diego and Stanford University and First International Workshop on Functional and Operatorial Statistics. Toulouse, June 19-21, 2008 K-sample Subsampling Dimitris N. olitis andjoseph.romano University of California San Diego and Stanford

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information

Lecture 21: October 19

Lecture 21: October 19 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 21: October 19 21.1 Likelihood Ratio Test (LRT) To test composite versus composite hypotheses the general method is to use

More information

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University Multiple Testing Hoang Tran Department of Statistics, Florida State University Large-Scale Testing Examples: Microarray data: testing differences in gene expression between two traits/conditions Microbiome

More information

A GENERAL DECISION THEORETIC FORMULATION OF PROCEDURES CONTROLLING FDR AND FNR FROM A BAYESIAN PERSPECTIVE

A GENERAL DECISION THEORETIC FORMULATION OF PROCEDURES CONTROLLING FDR AND FNR FROM A BAYESIAN PERSPECTIVE A GENERAL DECISION THEORETIC FORMULATION OF PROCEDURES CONTROLLING FDR AND FNR FROM A BAYESIAN PERSPECTIVE Sanat K. Sarkar 1, Tianhui Zhou and Debashis Ghosh Temple University, Wyeth Pharmaceuticals and

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

One-Sample Numerical Data

One-Sample Numerical Data One-Sample Numerical Data quantiles, boxplot, histogram, bootstrap confidence intervals, goodness-of-fit tests University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Christopher R. Genovese Department of Statistics Carnegie Mellon University joint work with Larry Wasserman

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

ON THE UNIFORM ASYMPTOTIC VALIDITY OF SUBSAMPLING AND THE BOOTSTRAP. Joseph P. Romano Azeem M. Shaikh

ON THE UNIFORM ASYMPTOTIC VALIDITY OF SUBSAMPLING AND THE BOOTSTRAP. Joseph P. Romano Azeem M. Shaikh ON THE UNIFORM ASYMPTOTIC VALIDITY OF SUBSAMPLING AND THE BOOTSTRAP By Joseph P. Romano Azeem M. Shaikh Technical Report No. 2010-03 April 2010 Department of Statistics STANFORD UNIVERSITY Stanford, California

More information

Cramér-Type Moderate Deviation Theorems for Two-Sample Studentized (Self-normalized) U-Statistics. Wen-Xin Zhou

Cramér-Type Moderate Deviation Theorems for Two-Sample Studentized (Self-normalized) U-Statistics. Wen-Xin Zhou Cramér-Type Moderate Deviation Theorems for Two-Sample Studentized (Self-normalized) U-Statistics Wen-Xin Zhou Department of Mathematics and Statistics University of Melbourne Joint work with Prof. Qi-Man

More information

ADJUSTED POWER ESTIMATES IN. Ji Zhang. Biostatistics and Research Data Systems. Merck Research Laboratories. Rahway, NJ

ADJUSTED POWER ESTIMATES IN. Ji Zhang. Biostatistics and Research Data Systems. Merck Research Laboratories. Rahway, NJ ADJUSTED POWER ESTIMATES IN MONTE CARLO EXPERIMENTS Ji Zhang Biostatistics and Research Data Systems Merck Research Laboratories Rahway, NJ 07065-0914 and Dennis D. Boos Department of Statistics, North

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

AN EFFICIENT ESTIMATOR FOR GIBBS RANDOM FIELDS

AN EFFICIENT ESTIMATOR FOR GIBBS RANDOM FIELDS K Y B E R N E T I K A V O L U M E 5 0 ( 2 0 1 4, N U M B E R 6, P A G E S 8 8 3 8 9 5 AN EFFICIENT ESTIMATOR FOR GIBBS RANDOM FIELDS Martin Janžura An efficient estimator for the expectation R f dp is

More information

Integral approximation by kernel smoothing

Integral approximation by kernel smoothing Integral approximation by kernel smoothing François Portier Université catholique de Louvain - ISBA August, 29 2014 In collaboration with Bernard Delyon Topic of the talk: Given ϕ : R d R, estimation of

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Non-specific filtering and control of false positives

Non-specific filtering and control of false positives Non-specific filtering and control of false positives Richard Bourgon 16 June 2009 bourgon@ebi.ac.uk EBI is an outstation of the European Molecular Biology Laboratory Outline Multiple testing I: overview

More information

Topic 16 Interval Estimation. The Bootstrap and the Bayesian Approach

Topic 16 Interval Estimation. The Bootstrap and the Bayesian Approach Topic 16 Interval Estimation and the Bayesian Approach 1 / 9 Outline 2 / 9 The confidence regions have been determined using aspects of the distribution of the data, by, for example, appealing to the central

More information

6 Single Sample Methods for a Location Parameter

6 Single Sample Methods for a Location Parameter 6 Single Sample Methods for a Location Parameter If there are serious departures from parametric test assumptions (e.g., normality or symmetry), nonparametric tests on a measure of central tendency (usually

More information

Forefront of the Two Sample Problem

Forefront of the Two Sample Problem Forefront of the Two Sample Problem From classical to state-of-the-art methods Yuchi Matsuoka What is the Two Sample Problem? X ",, X % ~ P i. i. d Y ",, Y - ~ Q i. i. d Two Sample Problem P = Q? Example:

More information

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

Statistics. Statistics

Statistics. Statistics The main aims of statistics 1 1 Choosing a model 2 Estimating its parameter(s) 1 point estimates 2 interval estimates 3 Testing hypotheses Distributions used in statistics: χ 2 n-distribution 2 Let X 1,

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

Estimation Lasso et interactions poissoniennes sur le cercle

Estimation Lasso et interactions poissoniennes sur le cercle Estimation Lasso et interactions poissoniennes sur le cercle Laure SANSONNET Université catholique de Louvain, Belgique J-3 : AgroParisTech en collaboration avec : Patricia Reynaud-Bouret (Université Nice

More information

interval forecasting

interval forecasting Interval Forecasting Based on Chapter 7 of the Time Series Forecasting by Chatfield Econometric Forecasting, January 2008 Outline 1 2 3 4 5 Terminology Interval Forecasts Density Forecast Fan Chart Most

More information

TESTING FOR EQUAL DISTRIBUTIONS IN HIGH DIMENSION

TESTING FOR EQUAL DISTRIBUTIONS IN HIGH DIMENSION TESTING FOR EQUAL DISTRIBUTIONS IN HIGH DIMENSION Gábor J. Székely Bowling Green State University Maria L. Rizzo Ohio University October 30, 2004 Abstract We propose a new nonparametric test for equality

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

TESTING REGRESSION MONOTONICITY IN ECONOMETRIC MODELS

TESTING REGRESSION MONOTONICITY IN ECONOMETRIC MODELS TESTING REGRESSION MONOTONICITY IN ECONOMETRIC MODELS DENIS CHETVERIKOV Abstract. Monotonicity is a key qualitative prediction of a wide array of economic models derived via robust comparative statics.

More information

Hypothesis testing (cont d)

Hypothesis testing (cont d) Hypothesis testing (cont d) Ulrich Heintz Brown University 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 1 Hypothesis testing Is our hypothesis about the fundamental physics correct? We will not be able

More information

Are Declustered Earthquake Catalogs Poisson?

Are Declustered Earthquake Catalogs Poisson? Are Declustered Earthquake Catalogs Poisson? Philip B. Stark Department of Statistics, UC Berkeley Brad Luen Department of Mathematics, Reed College 14 October 2010 Department of Statistics, Penn State

More information

STAT 830 Non-parametric Inference Basics

STAT 830 Non-parametric Inference Basics STAT 830 Non-parametric Inference Basics Richard Lockhart Simon Fraser University STAT 801=830 Fall 2012 Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics STAT 801=830

More information

Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches

Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches Arthur Gretton 1 and László Györfi 2 1. Gatsby Computational Neuroscience Unit London, UK 2. Budapest University of Technology

More information

The Bootstrap: Theory and Applications. Biing-Shen Kuo National Chengchi University

The Bootstrap: Theory and Applications. Biing-Shen Kuo National Chengchi University The Bootstrap: Theory and Applications Biing-Shen Kuo National Chengchi University Motivation: Poor Asymptotic Approximation Most of statistical inference relies on asymptotic theory. Motivation: Poor

More information

Introduction to Self-normalized Limit Theory

Introduction to Self-normalized Limit Theory Introduction to Self-normalized Limit Theory Qi-Man Shao The Chinese University of Hong Kong E-mail: qmshao@cuhk.edu.hk Outline What is the self-normalization? Why? Classical limit theorems Self-normalized

More information

The International Journal of Biostatistics

The International Journal of Biostatistics The International Journal of Biostatistics Volume 7, Issue 1 2011 Article 12 Consonance and the Closure Method in Multiple Testing Joseph P. Romano, Stanford University Azeem Shaikh, University of Chicago

More information

On oscillating systems of interacting neurons

On oscillating systems of interacting neurons Susanne Ditlevsen Eva Löcherbach Nice, September 2016 Oscillations Most biological systems are characterized by an intrinsic periodicity : 24h for the day-night rhythm of most animals, etc... In other

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1 2004 Article 14 Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate Mark J. van der Laan

More information

Resampling-Based Control of the FDR

Resampling-Based Control of the FDR Resampling-Based Control of the FDR Joseph P. Romano 1 Azeem S. Shaikh 2 and Michael Wolf 3 1 Departments of Economics and Statistics Stanford University 2 Department of Economics University of Chicago

More information

Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009 there were participants

Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009 there were participants 18.650 Statistics for Applications Chapter 5: Parametric hypothesis testing 1/37 Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009

More information

Practical Statistics

Practical Statistics Practical Statistics Lecture 1 (Nov. 9): - Correlation - Hypothesis Testing Lecture 2 (Nov. 16): - Error Estimation - Bayesian Analysis - Rejecting Outliers Lecture 3 (Nov. 18) - Monte Carlo Modeling -

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Consistency of Modularity Clustering on Random Geometric Graphs

Consistency of Modularity Clustering on Random Geometric Graphs Consistency of Modularity Clustering on Random Geometric Graphs Erik Davis The University of Arizona May 10, 2016 Outline Introduction to Modularity Clustering Pointwise Convergence Convergence of Optimal

More information

Exact and Approximate Stepdown Methods For Multiple Hypothesis Testing

Exact and Approximate Stepdown Methods For Multiple Hypothesis Testing Exact and Approximate Stepdown Methods For Multiple Hypothesis Testing Joseph P. Romano Department of Statistics Stanford University Michael Wolf Department of Economics and Business Universitat Pompeu

More information

Inference For High Dimensional M-estimates. Fixed Design Results

Inference For High Dimensional M-estimates. Fixed Design Results : Fixed Design Results Lihua Lei Advisors: Peter J. Bickel, Michael I. Jordan joint work with Peter J. Bickel and Noureddine El Karoui Dec. 8, 2016 1/57 Table of Contents 1 Background 2 Main Results and

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 1 The General Bootstrap This is a computer-intensive resampling algorithm for estimating the empirical

More information

Multiple Sample Categorical Data

Multiple Sample Categorical Data Multiple Sample Categorical Data paired and unpaired data, goodness-of-fit testing, testing for independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

The Bootstrap is Inconsistent with Probability Theory

The Bootstrap is Inconsistent with Probability Theory The Bootstrap is Inconsistent with Probability Theory David H. Wolpert SFI WORKING PAPER: 1995-10-091 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information

Multiple Testing of One-Sided Hypotheses: Combining Bonferroni and the Bootstrap

Multiple Testing of One-Sided Hypotheses: Combining Bonferroni and the Bootstrap University of Zurich Department of Economics Working Paper Series ISSN 1664-7041 (print) ISSN 1664-705X (online) Working Paper No. 254 Multiple Testing of One-Sided Hypotheses: Combining Bonferroni and

More information

Large sample distribution for fully functional periodicity tests

Large sample distribution for fully functional periodicity tests Large sample distribution for fully functional periodicity tests Siegfried Hörmann Institute for Statistics Graz University of Technology Based on joint work with Piotr Kokoszka (Colorado State) and Gilles

More information

EXACT AND ASYMPTOTICALLY ROBUST PERMUTATION TESTS. Eun Yi Chung Joseph P. Romano

EXACT AND ASYMPTOTICALLY ROBUST PERMUTATION TESTS. Eun Yi Chung Joseph P. Romano EXACT AND ASYMPTOTICALLY ROBUST PERMUTATION TESTS By Eun Yi Chung Joseph P. Romano Technical Report No. 20-05 May 20 Department of Statistics STANFORD UNIVERSITY Stanford, California 94305-4065 EXACT AND

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Bivariate Paired Numerical Data

Bivariate Paired Numerical Data Bivariate Paired Numerical Data Pearson s correlation, Spearman s ρ and Kendall s τ, tests of independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Asymptotic Tests and Likelihood Ratio Tests

Asymptotic Tests and Likelihood Ratio Tests Asymptotic Tests and Likelihood Ratio Tests Dennis D. Cox Department of Statistics Rice University P. O. Box 1892 Houston, Texas 77251 Email: dcox@stat.rice.edu November 21, 2004 0 1 Chapter 6, Section

More information

Séminaire de statistique IRMA Strasbourg

Séminaire de statistique IRMA Strasbourg Test non paramétrique de détection de rupture dans la copule d observations multivariées avec changement dans les lois marginales -Illustration des méthodes et simulations de Monte Carlo- Séminaire de

More information

A Simple, Graphical Procedure for Comparing Multiple Treatment Effects

A Simple, Graphical Procedure for Comparing Multiple Treatment Effects A Simple, Graphical Procedure for Comparing Multiple Treatment Effects Brennan S. Thompson and Matthew D. Webb May 15, 2015 > Abstract In this paper, we utilize a new graphical

More information

Chapter 10. U-statistics Statistical Functionals and V-Statistics

Chapter 10. U-statistics Statistical Functionals and V-Statistics Chapter 10 U-statistics When one is willing to assume the existence of a simple random sample X 1,..., X n, U- statistics generalize common notions of unbiased estimation such as the sample mean and the

More information

Asymptotic statistics using the Functional Delta Method

Asymptotic statistics using the Functional Delta Method Quantiles, Order Statistics and L-Statsitics TU Kaiserslautern 15. Februar 2015 Motivation Functional The delta method introduced in chapter 3 is an useful technique to turn the weak convergence of random

More information

Basic Definitions: Indexed Collections and Random Functions

Basic Definitions: Indexed Collections and Random Functions Chapter 1 Basic Definitions: Indexed Collections and Random Functions Section 1.1 introduces stochastic processes as indexed collections of random variables. Section 1.2 builds the necessary machinery

More information

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data Ståle Nygård Trial Lecture Dec 19, 2008 1 / 35 Lecture outline Motivation for not using

More information

Probabilistic Inference for Multiple Testing

Probabilistic Inference for Multiple Testing This is the title page! This is the title page! Probabilistic Inference for Multiple Testing Chuanhai Liu and Jun Xie Department of Statistics, Purdue University, West Lafayette, IN 47907. E-mail: chuanhai,

More information

Inference on distributions and quantiles using a finite-sample Dirichlet process

Inference on distributions and quantiles using a finite-sample Dirichlet process Dirichlet IDEAL Theory/methods Simulations Inference on distributions and quantiles using a finite-sample Dirichlet process David M. Kaplan University of Missouri Matt Goldman UC San Diego Midwest Econometrics

More information

The Bootstrap 1. STA442/2101 Fall Sampling distributions Bootstrap Distribution-free regression example

The Bootstrap 1. STA442/2101 Fall Sampling distributions Bootstrap Distribution-free regression example The Bootstrap 1 STA442/2101 Fall 2013 1 See last slide for copyright information. 1 / 18 Background Reading Davison s Statistical models has almost nothing. The best we can do for now is the Wikipedia

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Adaptive Multilevel Splitting Algorithm

A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Adaptive Multilevel Splitting Algorithm A Central Limit Theorem for Fleming-Viot Particle Systems Application to the Algorithm F. Cérou 1,2 B. Delyon 2 A. Guyader 3 M. Rousset 1,2 1 Inria Rennes Bretagne Atlantique 2 IRMAR, Université de Rennes

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD Kernel-based density estimation Nuno Vasconcelos ECE Department, UCSD Announcement last week of classes we will have Cheetah Day (exact day TBA) what: 4 teams of 6 people each team will write a report

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2005 Paper 198 Quantile-Function Based Null Distribution in Resampling Based Multiple Testing Mark J.

More information

Quelques éléments pour l expérimentation en informatique. Mescal

Quelques éléments pour l expérimentation en informatique. Mescal Quelques éléments pour l expérimentation en informatique Jean-Marc.Vincent@imag.fr Mescal 1 / 53 Plan de l exposé 1 Introduction 2 Experimentation 3 Analysis of Experiments 4 Synthesis 2 / 53 Plan de l

More information

LARGE SAMPLE BEHAVIOR OF SOME WELL-KNOWN ROBUST ESTIMATORS UNDER LONG-RANGE DEPENDENCE

LARGE SAMPLE BEHAVIOR OF SOME WELL-KNOWN ROBUST ESTIMATORS UNDER LONG-RANGE DEPENDENCE LARGE SAMPLE BEHAVIOR OF SOME WELL-KNOWN ROBUST ESTIMATORS UNDER LONG-RANGE DEPENDENCE C. LÉVY-LEDUC, H. BOISTARD, E. MOULINES, M. S. TAQQU, AND V. A. REISEN Abstract. The paper concerns robust location

More information

Bootstrap metody II Kernelové Odhady Hustot

Bootstrap metody II Kernelové Odhady Hustot Bootstrap metody II Kernelové Odhady Hustot Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České

More information

Gaussian Random Field: simulation and quantification of the error

Gaussian Random Field: simulation and quantification of the error Gaussian Random Field: simulation and quantification of the error EMSE Workshop 6 November 2017 3 2 1 0-1 -2-3 80 60 40 1 Continuity Separability Proving continuity without separability 2 The stationary

More information

Monte Carlo Integration

Monte Carlo Integration Monte Carlo Integration SCX5005 Simulação de Sistemas Complexos II Marcelo S. Lauretto www.each.usp.br/lauretto Reference: Robert CP, Casella G. Introducing Monte Carlo Methods with R. Springer, 2010.

More information

Alpha-Investing. Sequential Control of Expected False Discoveries

Alpha-Investing. Sequential Control of Expected False Discoveries Alpha-Investing Sequential Control of Expected False Discoveries Dean Foster Bob Stine Department of Statistics Wharton School of the University of Pennsylvania www-stat.wharton.upenn.edu/ stine Joint

More information

Economics 241B Review of Limit Theorems for Sequences of Random Variables

Economics 241B Review of Limit Theorems for Sequences of Random Variables Economics 241B Review of Limit Theorems for Sequences of Random Variables Convergence in Distribution The previous de nitions of convergence focus on the outcome sequences of a random variable. Convergence

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Confidence Intervals and Hypothesis Tests

Confidence Intervals and Hypothesis Tests Confidence Intervals and Hypothesis Tests STA 281 Fall 2011 1 Background The central limit theorem provides a very powerful tool for determining the distribution of sample means for large sample sizes.

More information

(Re)introduction to Statistics Dan Lizotte

(Re)introduction to Statistics Dan Lizotte (Re)introduction to Statistics Dan Lizotte 2017-01-17 Statistics The systematic collection and arrangement of numerical facts or data of any kind; (also) the branch of science or mathematics concerned

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

Program Evaluation with High-Dimensional Data

Program Evaluation with High-Dimensional Data Program Evaluation with High-Dimensional Data Alexandre Belloni Duke Victor Chernozhukov MIT Iván Fernández-Val BU Christian Hansen Booth ESWC 215 August 17, 215 Introduction Goal is to perform inference

More information