MATH Non-Euclidean Geometry Exercise Set #8 Solutions

Size: px
Start display at page:

Download "MATH Non-Euclidean Geometry Exercise Set #8 Solutions"

Transcription

1 MATH 68-9 Non-Euliean Geometry Exerise Set #8 Let ( ab, :, ) Show that ( ab, :, ) an ( a b) to fin ( a, : b,, ) ( a, : b,, ) an ( a, : b, ) Sine ( ab, :, ) while Likewise,, we have ( a, : b, ) ( ab, :, ) b b ( )( b ) ( )( b ) ( ab, :, ) b b ( b)( ) ( )( b) ( )( b ) ( )( b ) b b ( )( b ) ( )( b ) ( )( b ) ( )( b ) ( )( b ) ab a b + ab + a + b ( )( b ) a b + a + b a a + b b ( )( b ) ( )( b) ( b)( ) ( )( b) ( a, : b, ), :, Use this information 4 by Davi C Royster Page Spring 4

2 Thus, we have ( ab, :, ) () ( ab, :, ) () ( a, : b, ) (3) So using Equations 3 an ( a, : b, ) (4) From Equations (4) an (3) ( a, : b, ) (5) Then from Equations (4) an (5) ( a, : b, ) (6) Suppose ( ab, :, ) ( a, : b, ) What is? From Equation (4) above we have: ( ab, :, ) ( a, : b, ) ( ) + ± i 3 3 Fin the isometry γ of H in GL (R) whih sens i to 4 + 3i an to 5 Does this isometry have any fixe points in H? We will ompose the two isometries that we always use: (, z a: b,) sens a to, b to an to Thus, we nee to know where a thir point is sent Sine i goes to 4 + 3i an goes to 5, then the Poinaré line through an i must go to the Poinaré line through 4+ 3i an 5 The line through an i is the irle entere at the origin of raius, so it goes through the ieal point Now, the istane of 4+ 3i from the origin is 5 so the line through 4+ 3i an 5 is the irle entere at the origin of raius 5 Hene, the isometry must sen i to 4+ 3i, to 5, an to 5 Now we are in the position to use our stanar isometry We will use τ represente by the z, i:, followe by the inverse of σ, whih is frational linear transformation ( ) represente by the frational linear transformation ( w,4 3 i: 5,5) τ σ i 4+ 3i by Davi C Royster Page Spring 4

3 This means that we nee to solve ( z, i:, ) ( w,4 3 i: 5,5) ( w,4+ 3 i: 5,5 ) ( z, i:, ) + for w ( w+ 5)(4+ 3i 5) ( z )(+ i) ( w 5)(4 + 3i+ 5) ( z+ )( + i) 5z w z Thus, we an represent γ by 5 γ z z To see if γ has any fixe points, we solve γ z z 5z z z + z 7z 7 i 7 + i z, 4 4 Sine the first solution has a negative imaginary part it is not in H, thus the fixe point is (7 + i ) 4 4 Fin an isometry γ of H in GL (R) whih sens i to 3i an to As in the previous problem, we nee to see where a thir point is sent uner γ We know that sine γ sens i to 3i an to, it must sen the line through i an to the line through 3i an The other enpoint of the line through i an is The Poinaré line through an 3i is the irle entere on the x-axis that passes through these points We nee to fin the enter of that irle so that we an fin the raius Fin the mipoint of the segment 3 between (,) an (,3), The slope of this line is 3 Thus, the perpeniular bisetor has slope /3 an passes through the mipoint Using this information we fin the equation of this line to be 3 y x+ 3 6y 9 x This line intersets the x-axis at x 4 Thus, the raius is 5 an so we now know that sine γ sens to, it must also sen to 9 Thus, γ is most easily foun by solving for w in the following ( ) z, i:, ( w,3 i:9, ) z ( w 9)(3i+ ) i ( w+ )(3i 9) 3z 8 w + 3z + 4 by Davi C Royster Page 3 Spring 4

4 3 8 Thus, γ is represente by the matrix γ z z 3 5 The map 5 γ 3 is a rotation of H What is the enter of this rotation? The enter of the rotation is the point fixe by the rotation So we nee to fin the point z so that z z γ z γ z z z 5 z z z+ 5 z i, + i At this point you might say, There are two fixe points, so it annot be a rotation But wait, one of these points is not in H The point i oes not lie in H Thus, the enter of the rotation is the point + i (,) 6 Fin an isometry γ GL (R) whih fixes i an sens to The isometry, γ, fixes i an hene is a rotation about i through some angle What is this angle? Again, we nee to see where a thir point will go We look at the line through i an Sine i is fixe an is sent to, γ must sen the line to the Poinaré line through i an But this is the irle of raius entere at the origin Thus, γ () So, what is the isometry? ( wi, :, ) ( zi, :,) ( w )( i+ ) z ( w+ )( i ) i z w z + γ z z Thus, from what we know about rotations in the Poinaré upper half-plane, we have that θ θ os sin γ z z θ θ sin os whih implies that os θ sin θ Thus, 4 by Davi C Royster Page 4 Spring 4

5 os θ θ sin θ tan θ 3π 5π, 4 4 Sine the sine is negative an the osine is positive, the angle must be 3π 7 Fin the refletion of + i through the line with enpoints an 5 Sine we have a refletion, we know that we an represent this refletion by f ( z) a γ ( z) ( z) Sine this is a refletion, we know that it sens the line to itself, so that f (5) 5 From f () we get ( ) a a+ b + a 4a+ b+ 4 f () From f (5) 5 we get a+ b+ 5 These two equations then give us that 6, or a 7 Substituting this into the first equation gives us that b So, 7 set an we get a7 an b Thus, the refletion is represente by γ 7 Note that e t 9 > Now, we nee to fin f ( + i) 7 f ( + i) + i 7 7( + i) i ( + i) ( ( )) 8 Fin a formula for the refletion through the line with enpoints an We will o this just as the above problem Represent the refletion by f ( z) a γ ( z) ( z) Thus, f () an f ( ) Start with f () an 4 by Davi C Royster Page 5 Spring 4

6 ( ) a a+ b + a b Sine f ( ) we get a+ b+ These two equations give us that a an b Thus, we an represent this by γ Thus, f( z) γ ( z) ( z) z 9 Fin a formula for the refletion through the line whih goes through 3i an + 4i Possibly the best way woul be to fin the enpoints ' of the line through these two points On the other han, sine the whole line is fixe, we know that the refletion will fix both of these points f (3 i) 3i: f ( + 4 i) + 4i: ( 3 i) 3i a 3ai + b 3i 3i + a 3ai + b 9 + 3ai b+ 9 ( (+ 4 i)) + 4i a a( + 4 i) + b + 4i ( + 4 i) + a a+ b Putting these two together gives us b 9 an a 4 Setting gives γ 4 Thus, 4 9 f ( z) γ ( z) ( z) 4 4z 9 z by Davi C Royster Page 6 Spring 4

7 Fin the Poinaré istane between P + 3i an Q 8+ 4i Write your answer in the form ln( ab ) where a an b are positive integers We nee to fin the points M an N where the Poinaré line intersets the x-axis We know the tehnique, so applying that we fin that the enter of the irle is x5 an it has raius 5 Thus, the enpoints are at an Thus, the Poinaré istane is ( P, Q) log( Q, P: M, N) log(8 + 4 i,+ 3 i:,) (8 + 4i )( + 3i ) log (8 4 i )( 3 i ) log 6 + i 3 Fin the Poinaré istane PQ (, ) between P i an Q Note that both P an Q lie on the unit irle, so that M an N Thus, PQ (, ) log( QPMN, :, ) + i 3 log, i :, log log by Davi C Royster Page 7 Spring 4

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the Pratie questions 6 1 a y i = 6 µ = = 1 i = 1 y i µ i = 1 ( ) = 95 = s n 95 555. x i f i 1 1+ + 5+ n + 5 5 + n µ = = = f 11+ n 11+ n i 7 + n = 5 + n = 6n n = a Time (minutes) 1.6.1.6.1.6.1.6 5.1 5.6 6.1

More information

Solutions to MATH 271 Test #3H

Solutions to MATH 271 Test #3H Solutions to MATH 71 Test #3H This is the :4 class s version of the test. See pages 4 7 for the 4:4 class s. (1) (5 points) Let a k = ( 1)k. Is a k increasing? Decreasing? Boune above? Boune k below? Convergant

More information

Math 1720 Final Exam Review 1

Math 1720 Final Exam Review 1 Math 70 Final Eam Review Remember that you are require to evaluate this class by going to evaluate.unt.eu an filling out the survey before minight May 8. It will only take between 5 an 0 minutes, epening

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Intercepts To find the y-intercept (b, fixed value or starting value), set x = 0 and solve for y. To find the x-intercept, set y = 0 and solve for x.

Intercepts To find the y-intercept (b, fixed value or starting value), set x = 0 and solve for y. To find the x-intercept, set y = 0 and solve for x. Units 4 an 5: Linear Relations partial variation iret variation Points on a Coorinate Gri (x-oorinate, y-oorinate) origin is (0, 0) "run, then jump" Interepts To fin the y-interept (, fixe value or starting

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus PART I CHAPTER P Preparation for Calulus Setion P. Graphs and Models...................... Setion P. Linear Models and Rates of Change............. 7 Setion P. Funtions and Their Graphs.................

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I MTH Test Spring 209 Name Calculus I Justify all answers by showing your work or by proviing a coherent eplanation. Please circle your answers.. 4 z z + 6 z 3 ez 2 = 4 z + 2 2 z2 2ez Rewrite as 4 z + 6

More information

Review Topic 4: Cubic polynomials

Review Topic 4: Cubic polynomials Review Topi : ui polynomials Short answer Fatorise Px ( ) = x + 5x + x- 9 into linear fators. The polynomial Px ( ) = x - ax + x- leaves a remainer of when it is ivie y ( x - ) an a remainer of - when

More information

(a) 82 (b) 164 (c) 81 (d) 162 (e) 624 (f) 625 None of these. (c) 12 (d) 15 (e)

(a) 82 (b) 164 (c) 81 (d) 162 (e) 624 (f) 625 None of these. (c) 12 (d) 15 (e) Math 2 (Calculus I) Final Eam Form A KEY Multiple Choice. Fill in the answer to each problem on your computer-score answer sheet. Make sure your name, section an instructor are on that sheet.. Approimate

More information

Implementing the Law of Sines to solve SAS triangles

Implementing the Law of Sines to solve SAS triangles Implementing the Law of Sines to solve SAS triangles June 8, 009 Konstantine Zelator Dept. of Math an Computer Siene Rhoe Islan College 600 Mount Pleasant Avenue Proviene, RI 0908 U.S.A. e-mail : kzelator@ri.eu

More information

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 1. CfE Edition

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 1. CfE Edition Higher Mathematics Contents 1 1 Representing a Circle A 1 Testing a Point A 3 The General Equation of a Circle A 4 Intersection of a Line an a Circle A 4 5 Tangents to A 5 6 Equations of Tangents to A

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

The numbers inside a matrix are called the elements or entries of the matrix.

The numbers inside a matrix are called the elements or entries of the matrix. Chapter Review of Matries. Definitions A matrix is a retangular array of numers of the form a a a 3 a n a a a 3 a n a 3 a 3 a 33 a 3n..... a m a m a m3 a mn We usually use apital letters (for example,

More information

1 - a 1 - b 1 - c a) 1 b) 2 c) -1 d) The projection of OP on a unit vector OQ equals thrice the area of parallelogram OPRQ.

1 - a 1 - b 1 - c a) 1 b) 2 c) -1 d) The projection of OP on a unit vector OQ equals thrice the area of parallelogram OPRQ. Regter Number MODEL EXAMINATION PART III - MATHEMATICS [ENGLISH VERSION] Time : Hrs. Ma. Marks : 00 SECTION - A 0 = 0 Note :- (i) All questions are ompulsory. (ii) Eah question arries one mark. (iii) Choose

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

GGSIPU Mathmatics 2004

GGSIPU Mathmatics 2004 GGSIPU Mathmatis 2004 1. If the angles between the pair of straight lines represente by the equation X 2 3xy + l y 2 +3x-5y + 2 = 0 is tan - 1. Where l is a non-negative real number,then l i s : a 2 b

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

Chapter 4. The angle bisectors. 4.1 The angle bisector theorem

Chapter 4. The angle bisectors. 4.1 The angle bisector theorem hapter 4 The angle bisetors 4.1 The angle bisetor theorem Theorem 4.1 (ngle bisetor theorem). The bisetors of an angle of a triangle divide its opposite side in the ratio of the remaining sides. If and

More information

MCH T 111 Handout Triangle Review Page 1 of 3

MCH T 111 Handout Triangle Review Page 1 of 3 Hnout Tringle Review Pge of 3 In the stuy of sttis, it is importnt tht you e le to solve lgeri equtions n tringle prolems using trigonometry. The following is review of trigonometry sis. Right Tringle:

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

l. For adjacent fringes, m dsin m

l. For adjacent fringes, m dsin m Test 3 Pratie Problems Ch 4 Wave Nature of Light ) Double Slit A parallel beam of light from a He-Ne laser, with a wavelength of 656 nm, falls on two very narrow slits that are 0.050 mm apart. How far

More information

Final Exam: Sat 12 Dec 2009, 09:00-12:00

Final Exam: Sat 12 Dec 2009, 09:00-12:00 MATH 1013 SECTIONS A: Professor Szeptycki APPLIED CALCULUS I, FALL 009 B: Professor Toms C: Professor Szeto NAME: STUDENT #: SECTION: No ai (e.g. calculator, written notes) is allowe. Final Exam: Sat 1

More information

Math 225B: Differential Geometry, Homework 6

Math 225B: Differential Geometry, Homework 6 ath 225B: Differential Geometry, Homework 6 Ian Coley February 13, 214 Problem 8.7. Let ω be a 1-form on a manifol. Suppose that ω = for every lose urve in. Show that ω is exat. We laim that this onition

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Some facts you should know that would be convenient when evaluating a limit:

Some facts you should know that would be convenient when evaluating a limit: Some fats you should know that would be onvenient when evaluating a it: When evaluating a it of fration of two funtions, f(x) x a g(x) If f and g are both ontinuous inside an open interval that ontains

More information

Math 2163, Practice Exam II, Solution

Math 2163, Practice Exam II, Solution Math 63, Practice Exam II, Solution. (a) f =< f s, f t >=< s e t, s e t >, an v v = , so D v f(, ) =< ()e, e > =< 4, 4 > = 4. (b) f =< xy 3, 3x y 4y 3 > an v =< cos π, sin π >=, so

More information

GLOBAL EDITION. Calculus. Briggs Cochran Gillett SECOND EDITION. William Briggs Lyle Cochran Bernard Gillett

GLOBAL EDITION. Calculus. Briggs Cochran Gillett SECOND EDITION. William Briggs Lyle Cochran Bernard Gillett GOBA EDITION Briggs Cohran Gillett Calulus SECOND EDITION William Briggs le Cohran Bernar Gillett ( (, ) (, ) (, Q ), Q ) (, ) ( Q, ) / 5 /4 5 5 /6 7 /6 ( Q, 5 5 /4 ) 4 4 / 7 / (, ) 9 / (, ) 6 / 5 / (Q,

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

SOLUTIONS TO TRIAL EXAMINATION 3

SOLUTIONS TO TRIAL EXAMINATION 3 Ã Ã n n, Á os sin Á f + Á 9 ± jn ² j ) sin Á jnjjj j+ 9j p p ++9 ++9 p p p 5 ) he anle eween he line an he plane Á 5:7 ±. X a i a X Hene j OX j jaj sin jaj ( os ) jaj jaj os jaj jaj jj os jj jaj (a ² )

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

MA Midterm Exam 1 Spring 2012

MA Midterm Exam 1 Spring 2012 MA Miterm Eam Spring Hoffman. (7 points) Differentiate g() = sin( ) ln(). Solution: We use the quotient rule: g () = ln() (sin( )) sin( ) (ln()) (ln()) = ln()(cos( ) ( )) sin( )( ()) (ln()) = ln() cos(

More information

Math 1 Lecture 20. Dartmouth College. Wednesday

Math 1 Lecture 20. Dartmouth College. Wednesday Math 1 Lecture 20 Dartmouth College Wenesay 10-26-16 Contents Reminers/Announcements Last Time Derivatives of Trigonometric Functions Reminers/Announcements WebWork ue Friay x-hour problem session rop

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS ACS MATHEMATICS GRADE 0 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS DO AS MANY OF THESE AS POSSIBLE BEFORE THE START OF YOUR FIRST YEAR IB HIGHER LEVEL MATH CLASS NEXT SEPTEMBER Write as a single

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH A Test #2. June 25, 2014 SOLUTIONS

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH A Test #2. June 25, 2014 SOLUTIONS YORK UNIVERSITY Faculty of Science Department of Mathematics an Statistics MATH 505 6.00 A Test # June 5, 04 SOLUTIONS Family Name (print): Given Name: Stuent No: Signature: INSTRUCTIONS:. Please write

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector Multivariable Calculus: Chapter 13: Topic Guie an Formulas (pgs 800 851) * line segment notation above a variable inicates vector The 3D Coorinate System: Distance Formula: (x 2 x ) 2 1 + ( y ) ) 2 y 2

More information

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010 PAL Session Stewart 3. & 3. Spring 00 3. Key Terms/Concepts: Derivative of a Constant Function Power Rule Constant Multiple Rule n Sum/Difference Rule ( ) Eercise #0 p. 8 Differentiate the function. f()

More information

Physics 2112 Unit 5: Electric Potential Energy

Physics 2112 Unit 5: Electric Potential Energy Physics 11 Unit 5: Electric Potential Energy Toay s Concept: Electric Potential Energy Unit 5, Slie 1 Stuff you aske about: I on't like this return to mechanics an the potential energy concept, but this

More information

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points Dr. Sarah Mitchell Autumn 2014 An important limit To calculate the limits of basic trigonometric functions

More information

MAC Calculus II Summer All you need to know on partial fractions and more

MAC Calculus II Summer All you need to know on partial fractions and more MC -75-Calulus II Summer 00 ll you need to know on partial frations and more What are partial frations? following forms:.... where, α are onstants. Partial frations are frations of one of the + α, ( +

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim.

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim. Math 7 Solutions for Spring 5 Final Exam ) We are gien an infinite sequence for which the general term is a n 3 + 5n n + n an are 3 + 5n aske to fin the limit of the sequence. This is equialent to ealuating

More information

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS UNIT NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 +

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 + FINAL EXAM 1 SOLUTIONS 2011 1. Below is the graph of a function f(x). From the graph, rea off the value (if any) of the following its: x 1 = 0 f(x) x 1 + = 1 f(x) x 0 = x 0 + = 0 x 1 = 1 1 2 FINAL EXAM

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx Math 6 Eam # Solutions. Evaluate the indefinite integral cos( d. Answer: The plan is to use integration by parts with u = and dv = cos( d: u = du = d dv = cos( d v = sin(. Then the above integral is equal

More information

SUCCEEDING IN THE VCE 2017 UNIT 3 SPECIALIST MATHEMATICS STUDENT SOLUTIONS

SUCCEEDING IN THE VCE 2017 UNIT 3 SPECIALIST MATHEMATICS STUDENT SOLUTIONS SUCCEEDING IN THE VCE 07 UNIT SPECIALIST MATHEMATICS STUDENT SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/VCE-UPDATES QUESTION (a) 0 0 0 9 (b) 7 0 0 0 0 0 i The School For Ecellence 07

More information

Math 2153, Exam III, Apr. 17, 2008

Math 2153, Exam III, Apr. 17, 2008 Math 53, Exam III, Apr. 7, 8 Name: Score: Each problem is worth 5 points. The total is 5 points. For series convergence or ivergence, please write own the name of the test you are using an etails of using

More information

HIGHER SECONDARY FIRST YEAR MATHEMATICS

HIGHER SECONDARY FIRST YEAR MATHEMATICS HIGHER SECONDARY FIRST YEAR MATHEMATICS ANALYTICAL GEOMETRY Creative Questions Time :.5 Hrs Marks : 45 Part - I Choose the orret answer 0 = 0. The angle between the straight lines 4y y 0 is a) 0 30 b)

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Derivative Methods: (csc(x)) = csc(x) cot(x)

Derivative Methods: (csc(x)) = csc(x) cot(x) EXAM 2 IS TUESDAY IN QUIZ SECTION Allowe:. A Ti-30x IIS Calculator 2. An 8.5 by inch sheet of hanwritten notes (front/back) 3. A pencil or black/blue pen Covers: 3.-3.6, 0.2, 3.9, 3.0, 4. Quick Review

More information

Calculus 4 Final Exam Review / Winter 2009

Calculus 4 Final Exam Review / Winter 2009 Calculus 4 Final Eam Review / Winter 9 (.) Set-up an iterate triple integral for the volume of the soli enclose between the surfaces: 4 an 4. DO NOT EVALUATE THE INTEGRAL! [Hint: The graphs of both surfaces

More information

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4 CHAPTER SEVEN 7. SOLUTIONS 6 Solutions for Section 7.. 5.. 4. 5 t t + t 5 5. 5. 6. t 8 8 + t4 4. 7. 6( 4 4 ) + 4 = 4 + 4. 5q 8.. 9. We break the antierivative into two terms. Since y is an antierivative

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

Chapter 1 Prerequisites for Calculus

Chapter 1 Prerequisites for Calculus Section. Chapter Prerequisites for Calculus Section. Lines (pp. 9) Quick Review.. ( ) (). ( ). m 5. m ( ) 5 ( ) 5. (a) () 5 Section. Eercises.. (). 8 () 5. 6 5. (a, c) 5 B A 5 6 5 Yes (b) () () 5 5 No

More information

Transition to College Math

Transition to College Math Transition to College Math Date: Unit 3: Trigonometr Lesson 2: Angles of Rotation Name Period Essential Question: What is the reference angle for an angle of 15? Standard: F-TF.2 Learning Target: Eplain

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #5 Completion Date: Frida Februar 5, 8 Department of Mathematical and Statistical Sciences Universit of Alberta Question. [Sec.., #

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

Electric Charge and Electrostatic Force

Electric Charge and Electrostatic Force PHY 049 Lecture Notes Chapter : Page 1 of 8 Electric Charge an Electrostatic Force Contemporary vision: all forces of nature can be viewe as interaction between "charges", specific funamental properties

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

Review Problems for Test 2

Review Problems for Test 2 Review Problems for Test Math 0 009 These problems are meant to help you study. The presence of a problem on this sheet does not imply that there will be a similar problem on the test. And the absence

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Solution of Math132 Exam1

Solution of Math132 Exam1 Solution of Math3 Exam. ( %) (a) A bacteria has population at time t = an its rate of growth is (t 3 + t + ) bacteria per hour after t hours. What is the population after 4 hours? Suppose p(t) is the bacteria

More information

Mathematical Sciences

Mathematical Sciences Mathematical Sciences Diagnostic Test 2014/15 User: The aim of this test is to assess your current knowlege base in certain areas of mathematics. The material is taken broaly from the Mathematics A -level

More information

MATH Non-Euclidean Geometry Exercise Set #9 Solutions

MATH Non-Euclidean Geometry Exercise Set #9 Solutions MATH 6118-090 Non-Euclidean Geometry Exercise Set #9 Solutions 1. Consider the doubly asymptotic triangle AMN in H where What is the image of AMN under the isometry γ 1? Use this to find the hyperbolic

More information

C6-1 Differentiation 2

C6-1 Differentiation 2 C6-1 Differentiation 2 the erivatives of sin, cos, a, e an ln Pre-requisites: M5-4 (Raians), C5-7 (General Calculus) Estimate time: 2 hours Summary Lea-In Learn Solve Revise Answers Summary The erivative

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -8-006 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

AP CALCULUS AB Summer Work. The following are guidelines for completing the summer work packet

AP CALCULUS AB Summer Work. The following are guidelines for completing the summer work packet Name: Perio: AP CALCULUS AB Summer Work For stuents to successfully complete the objectives of the AP Calculus curriculum, the stuent must emonstrate a high level of inepenence, capability, eication, an

More information

MATH 216T Homework 1 Solutions

MATH 216T Homework 1 Solutions MATH 216T Homew 1 Solutions 1. Find the greatest ommon divis of 5321 and 1235 and write it as a linear omination of 5321 and 1235. Solution : Using our implementation of the Eulidean Algithm, we easily

More information

Mathematics 116 HWK 25a Solutions 8.6 p610

Mathematics 116 HWK 25a Solutions 8.6 p610 Mathematics 6 HWK 5a Solutions 8.6 p6 Problem, 8.6, p6 Fin a power series representation for the function f() = etermine the interval of convergence. an Solution. Begin with the geometric series = + +

More information

1. Description of Finite Heat Release Function

1. Description of Finite Heat Release Function ME 40 Day 27 Desription of Finite Heat elease Funtion - SI Engines Differential Equations to Moel Cyle Software Implementation in EES Questions that an be answere. Desription of Finite Heat elease Funtion

More information

Math 110 Test # 1. The set of real numbers in both of the intervals [0, 2) and ( 1, 0] is equal to. Question 1. (F) [ 1, 2) (G) (2, ) (H) [ 1, 2]

Math 110 Test # 1. The set of real numbers in both of the intervals [0, 2) and ( 1, 0] is equal to. Question 1. (F) [ 1, 2) (G) (2, ) (H) [ 1, 2] Friday July 8, 00 Jacek Szmigielski Math 0 Test # Fill in the bubbles that correspond to the correct answers. No aids: no calculators, closed book. You are not permitted to consult with your fellow students

More information

Physics 2212 GJ Quiz #4 Solutions Fall 2015

Physics 2212 GJ Quiz #4 Solutions Fall 2015 Physics 2212 GJ Quiz #4 Solutions Fall 215 I. (17 points) The magnetic fiel at point P ue to a current through the wire is 5. µt into the page. The curve portion of the wire is a semicircle of raius 2.

More information

sec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5

sec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5 Curve on Clcultor eperience Fin n ownlo (or type in) progrm on your clcultor tht will fin the re uner curve using given number of rectngles. Mke sure tht the progrm fins LRAM, RRAM, n MRAM. (You nee to

More information

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary Name Chapter 6 Additional Topics in Trigonometry Section 6.1 Law of Sines Objective: In this lesson you learned how to use the Law of Sines to solve oblique triangles and how to find the areas of oblique

More information

4.2 First Differentiation Rules; Leibniz Notation

4.2 First Differentiation Rules; Leibniz Notation .. FIRST DIFFERENTIATION RULES; LEIBNIZ NOTATION 307. First Differentiation Rules; Leibniz Notation In this section we erive rules which let us quickly compute the erivative function f (x) for any polynomial

More information