Lecture 11: Safra s Determinization Construction

Size: px
Start display at page:

Download "Lecture 11: Safra s Determinization Construction"

Transcription

1 Lece 11: Sf Deeminizion Concion In hi lece we hll ee concion de o S. Sf h n nondeeminiic Büchi omon of ize n ino n eivlen deeminiic Rin omon of ize 2 O(nlogn). A n immedie coolly we ee h we cn comlemen nondeeminiic Büchi omon ino deeminiic See omon of ize 2 O(nlogn). Sf concion i one of he meiece of hi e. Thee e nme of icle h y o demyify nd exlin he concion [2, 4]. They y nd exlin why imle ide do no wok nd led yo o Sf concion. A he ik of ofcing me I hll no ke hi oe nd ined y o ive Sf concion fom n nlyi of he n-ee of nondeeminiic Büchi om. The em hee i o exlin he ecil ce of he e ce conced omehing h ie nlly fom he ce of cceing n (he hn comliced ce oined y eence of efinemen of imle ide h do no wok). A nondeeminiic omon h mny n on n in wod. The deeminiic omon m imle ll hoe n (o ll he elevn one) in ingle one. The e of ll n of NBA A on wod w wold e n infinie ee in which ech h i n of A on w. (Thi i imil o he n of nivel lening omon, i.e. one in which ll he e e e. Of coe, he ccence cieion i diffeen. We only demnd h le one h hogh hi ee i cceing.) Hee i NBA A f nd i n on he wod...,,, We cold deeminiiclly imle hi omon level y level. Th i ey mch ll h we cn do in deeminiic imlion. B he nme of node in level i no onded. So, we need oxime nd minin ome onded mon of infomion. In he o clled owe-e concion, we oxime level y he e of e h lel ome veex he level. Th, we hve n omon of ize 2 n. Nex, we need o decide on he ccence condiion. Demnding h h infiniely mny level conin finl e i oo geneo. In he ove n, he cceing e F e in evey level in he n ee, howeve hee i no h in hi ee h vii F infiniely ofen (nd hence... i no cceed y he ove omon). Th he owee omon A = (2 Q, Σ,δ, {}, {X X F }) wih δ (X,) = { X. δ(,)} 1

2 cce moe wod hn A. The owe-e omon conced fom A f cce... hogh A doe no. Hee i n cceing n: Fo ny wo e X,Y of e fom Q nd wod, le wie X g Y if fo ech Y hee i X ch h hee i n fom o on h vii ome e in F. Fo exmle, in he omon A f, {,,} g {,}. We now decie diffeen ccence cieion fo he owee omon. Le S 1 0 S e he n of he owee omon on We cce ovided we cn x decomoe hi n S Si1 Si2... ch h fo ech S ik+1, hee i S ik ch h x k+1 g. We clim h ccence nde hi cieion gnee h A cce w. We cn ee hi follow: Conc DAG whoe node level k e he e in S ik. An edge i dwn fom node level i o node level i + 1 if nd only if x i+1 g. Lel hi edge y ch good n fom o. Thi finiely nching DAG h infiniely mny node echle fom he veice level 1. Th, hee m e n infinie h hogh hi DAG. The lel long he edge of hi h give n cceing n fo A on w. Cn we nle hi ccence condiion Büchi ccence condiion (y lowing he e ce if necey?) The ide i imil o he one ed o nle ABA ino NBA. Le A m = (Q m, Σ,δ m, ({}, ), {(X,X) X Q} whee Q m = {(X,Y ) Y X Q} δ m ((X,Y ),) = (δ (X,),δ (Y,) δ(x,) F) δ m ((X,X),) = (δ (X,),δ (X,) F) if X Y We imle he owee omon one level. In he ohe level, we kee ck of he e of e h hve een eched vi h h viied F. When hee wo e e he me, we ee he econd e nd oceed. Th we hve deeminiic omon A m wih L(A m ) L(A). In [2], he omon A m i clled he mked owee omon. Qie clely, L(A m ) will no in genel e he me L(A). Fo innce, he mked owee omon conced fom A f doe no cce... which i cceed y A f. 2

3 In genel, if hee i ded e d( noncceing e wih elf-loo on ll lee which i fhe no echle fom ny cceing e) i echle vi ome efix of w hen A m will no cce w. Thi i ece he e d e in evey level of he nee eyond finie efix on evey wod nd hee i NO h in he omon o ech d vi n cceing e. How do we ge ond hi? The nive ide wold e omehow modify he concion of A m o do ome elemen of Q fom he cen e (o h ny ded-e e doed.) B h i wh nondeeminiic omon doe! I imly do ll he e exce he one h e on he cceing h. So we need ee ide. I n o h wh we need o do i o he omon L(A m ) no igh he eginning, ined i fe ome iniil efix h een ed. In ome ene, we wi fo ll he ele h o nch off nd n he A m on coe of he nee. Of coe, we hve o do ll hi deeminiiclly. Conide he following fige. I decie nee of n NBA A on wod w = which i cceed y A. In he fige, we hve mked one cceing h in hi nee, nd indiced he e of F h e long hi h y dkened cicle. S 3 S S 0 S 2 y x 0 y 0 x 1 y 1 x 2 y 2 x 3 Hee 0, 1,... e he e fom F eched long he mked cceing n. We hve lced lice S 0,S 1,... on he -nee ooed 0, 1,... S 0 i he e of node eched 3

4 fom 0 on eding he egmen x 0, S 1 i he e of node eched fom 1 on eding he egmen x 1 nd o on. w = yx 0 y 0 x 1 y 1... (The egmen y i i he ffix oined when we do x i fom he wod h ke i o i+1.) y i x i+1 Noice h S i g S i+1. Thi migh led o elieve h we imly hve o he omon A m 0. Unfonely, S 1 need no e e of e viied y he omon A ed e 0 (on x 0 y 0 x 1 ), i.e. δ ( 0,x 0 y 0 x 1 ) cold e ic ee of S 1 = δ ( 1,x 1 ). A indiced in he fige elow, he e my e in δ ( 0,x 0 y 0 x 1 ) no in S 1. S 1 0 S 0 1 B hen i δ ( 1,x 1 y 1 x 2 ) he me δ ( 2,x 2 ) (i.e. cn we he A m omon 2?) Well, once gin δ ( 1,x 1 y 1 x 2 ) cold e ic ee of δ( 2,x 2 ). Noe h if δ ( i,x i y i ) = δ ( i+1,) fo ome hen δ ( i,x i y i v) = δ ( i+1,v) fo ll exenion v. i i+1 Now, le y h i nd i+1 mege if hee i n ch h δ ( i,x i y i ) = δ ( i+1,). We cn eily exend hi noion of meging o i nd j fo ny i of occnce of cceing e (long he cceing h nde conideion.) If i mege wih i+1 nd i+1 mege wih i+2 hen clely i nd i+2 lo mege. I i ey o check h mege i n eivlence elion h divide 0, 1... ino egmen ( 0,... i ), ( i+1... j ),... Alo noe h if i nd i+1 do no mege, hen fo ny exenion of x i y i, δ ( i,x i y i ) i ic ee of δ ( i+1,). B he e δ( i,) i e of Q nd hence finie. Th, mege i n eivlence elion of finie index. Th hee i n eivlence cl of mege coniing of { j j N 0 } fo ome N i N 0 w Soe, h w = w whee N0, hen we clim h he mked e omon ed e F lelling N0 cce he wod w. Th i, he omon A m = 4

5 (2 Q 2 Q, Σ,δ m, ({}, ), {(X,X) X Q} whee δ m i efoe, cce he wod w. Le (X 1,X 2 ) e he e eched fe ome efix v of w. Hence hee i ome j n h gone j no j+1. The e N0 nd j+1 m mege ome efix w 1 of w. A h oin he e of A m wold e (Y,Y ) fo ome Y. Th, he omon A m vii he cceing e infiniely ofen on w. Th, o deeminiic omon m (deeminiiclly!) ge h in he nee nd F lelled oiion in hi h (coeonding o P N0 ) nd n he mked e omon (which i deeminiic omon) A m fom hee on. Th, in mnne ie eminicen of he oof of McNghon heoem, we hve hown h nondeeminim i needed only in finie efix of he n. The eion i how o ge id of he iniil nondeeminim. A in he oof of McNghon heoem, he ide wold e o n ll oile coie ined of geing which coy o n nd mege coie wheneve oile. Th i, ech oin in he n if he wod ed o f led o ome finl e we fok off coy of A m hi oin. We lo mege coie h e he me e. Le exmine he coeondence wih he concion in Lece 8 cloely: 1. The imle owee omon A will ly he ole of A U. I ole i o idenify he efixe which coie of he deeminiic Büchi om e o e foked off. 2. The ole of he deeminiic Büchi omon A V will e lyed y collecion of deeminiic Büchi om {A m F }. Afe eding finie wod w, if he omon A h eched he e X hen, fo ech X F coy of A m i o e foked off. 3. Oeve h if hen A m nd A m diffe only in he e. Th i, he e ce of ll he A m i h of A m. Th he oeion of meging diffeen coie ill mke ene. In icl, if wo diffeen coie e he me e we mege hem ogehe. 4. The nme of e in A m i 2 2n. A ech e, we cold fok o F coie (deending on which e in F e in he cen e). To ene h if coy lo j mege (wih lowe nmeed coy) down hen lo j i emy (i.e. i cie he e ) in he nex e, i ffice o kee 2 2n + F lo. Thi ene h ny lo h ecome vcn (ece i h meged wih ome ohe coy) y vcn le fo one move. 5. A n i cceing eciely when hee i ome lo j which i only finiely ofen (o h he coy j imle ome A m on ome ffix of w) nd omon lo j vii he finl e infiniely ofen (i.e. he e in he jh lo i of he fom (X,X) infiniely ofen). Thi led o he following concion of he (dole exonenil ized) deeminiic 5

6 omon A d cceing L(A). Le K = 2 2n + F. Q d d = 2 Q (2 Q 2 Q { }) K = ({},,,... ) Le (S,W 1,W 2,...W K ) e e. To come δ d ((S,W 1,W 2...,W K ),), fi come he le V = (δ (S,),δ m (W 1,),δ m (W 2,)...δ m (W K,)) wih he ndending h δ m (,) =. Soe { 1, 2,..., l } = δ(s,) F. We need o fok coy of A i m fo ech i. Pick he l lowe nmeed lo in V h e occied y nd elce hem y ({ 1 }, ), ({ 2 }, )...({ l }, ) eecively. Now, if wo o moe lo e occied y he me e of A m, hen elce ll he lowe nmeed ch lo y. Thi V i δ d ((S,W 1,W 2,...W K ),). Finlly, he ccence condiion i Rin ccence condiion coniing of K i (F i,i i ). F i conin ll he le whee he ih coodine i. I i conin ll he le whee he ih coodine i n cceing e of A m, h i i i of he fom (X,X) fo ome X. I i ie ey o check, ing he me ide in he oof in Lece 8, h hi omon cce wod eciely when i i cceed y L(A). How o nfom hi dole exonenil ized omon o ingle exonenil ized omon i he oic of he nex ecion. 1 Sf Concion Sf concion incooe he ce of he nee ino he e ce of he deeminiic omon. We hll ille hi ing he following comlex omon which cce he e of ll wod wih infiniely mny :,,,, v, Hee i efix of he nee of hi omon on he in... 6

7 v v Thee e even occnce of cceing e in he n on he wod. A n when hee e e enconeed coie of A m i foked o. The e eched y hee even coie i mked nex o hee e. Moeove he e eched y comlee owee omon i mked nex o he oo. {,,v,,} ({},{}) ({,},{,}) ({,,v},{,}) ({},{}) ({},{}) v ({},{}) ({},{}) v In he mon A d hi wold hve een eeened y le ({,,v,,}, ({,}, {,}), ({}, ), ({,,v}, {,}), ({}, ), ({}, )) (wih lge nme of ineeed which we hve omied o void cle). Sf concion oe moe infomion. I ecod elionhi eween hee vio coie. Fo exmle, he hee coie coeonding o he level 2, nd he 7

8 level 3 nd 4 e woking on indeenden ee. Thee e wo coie woking in he ee coeonding o he coy ed w... he level 3 nd o on. I wold ecod hee deendencie nd oe he e ee. ({,,v,,},{,,v,}) ({,},{,}) ({,,v},{,}) ({},{}) ({},{}) ({},{}) ({},{}) ({},{}) I lo e coy of A m ined of A fo he omon h fok o deeminiic om. Thi llow fo nifom emen of ll he node in he ee. (We hve no elimined dlice coie hee. We will ge down o h oon.) In A d we minined he e le nd o he index i llow o efe o icl coy of A m. To do hi hee, we me h hee i n infinie odeed e of node n 1 < n 2... nd ech ime we dd node in he ee, we ick he nex node fom hi eence nd e i. Fo exmle, wih hi he ove ee wold look like: n 1 ({,,v,,},{,,v,}) ({,},{,}) n 3 ({,,v},{,}) n 4 n 2 ({},{}) ({},{}) n 5 n 7 n 6 n 8 ({},{}) ({},{}) ({},{}) Noice h he node e nmeed in he ode in which he node wee inodced ino he ee (We me ome fixed odeing on Q o when mlile childen e dded o node in ingle e, he ode i deemined y he odeing on Q). To ndend he ehvio of hi omon le ee wh hen o hi e when he nex in lee, y i ed: 1. Fi, we imle hi move in ech of he coie of A m (one e node in he ee). 2. Then, we need o inodce new coie of A m fo ech e in f F h i eched hi e. Whee do we inodce hee coie? Noice h ech ch f e long ome e of h ing he oo (ince he e of e lelling en of node i lwy ee of h lelling child). Fo ech ch h, find he highe level ch node on h h nd dd child lelled ({f}, ). In hi exmle, i n o h ll hee highe level node e leve nd o we dd childen o hee leve. B hi need no lwy e he ce. Fo he ove omon hi give: 8

9 n 1 ({,,v,,},{,,v,}) ({,,v},{,,v}) n 3 ({,,v},{,,v}) n 4 n 2 ({},{}) ({,v},{}) n 5 n 7 n 6 n 8 ({,,v},{}) ({,},{}) ({,,v},{}) ({},{}) n 9 n 10 n 11 n 12 ({},{}) ({},{}) ({},{}) 3. If he e lelling node nd i child e of he fom (X,Y 1 ) nd (X,Y 2 ) hi indice h he coie of A m ed he node nd i child hve meged nd o we imly delee he child nd nfe ll i childen o he en. In he ove exmle, doing hi we ge: n 1 ({,,v,,},{,,v,}) ({,,v},{,,v}) n 3 ({,,v},{,,v}) n 4 n 2 ({},{}) ({,v},{}) n 5 n 7 n 6 n 8 ({,,v},{}) ({,},{}) ({,,v},{}) ({},{}) n 9 n 10 n 11 n 12 ({},{}) ({},{}) ({},{}) Th, nlike in A d we do no cively mege ny i of coie h hve eched he me e only en-child i h hve eched he me e. Noice h hi ene h long ny h in he ee he nme of e in he fi comonen of he node lel decee icly. Th ny h in ch ee i of lengh onded y Q. On he ohe hnd, hee i no ond on he nme of childen of given node. (Oevion 1: Noe h wheneve child of n mege wih n, n m e lelled y e of he fom (X,X), i.e. n cceing e of A m. Thi i ece if node lelled (X,Y ) h childen wih lel (X 1,Y 1 )...(X k,y k ) hen Y = X 1 X 2...X k.) The iniil e of he omon i he ee wih ingle node n 1 wih he e ({}, ). The niion elion decied ove gnee h in ny echle e, if he node n i i he en of n j nd he lel of n i nd n j e (X i,y i ) nd (X j,y j ) eecively, hen 9

10 X j i ic e of X i. We ke o e of e o e ee ove n 1,n 2... lelled y e of A m h fhe ify hi oey. Th he ee coniing e hve deh onded y Q. Howeve, ince we hve n infinie e of lel he omon we hve conced h infiniely mny e. Finlly, we hve o define he ccence condiion. I cce wod w, if hee i node n i ch h long he nie infinie n on w n i e in ll he e in ome infinie ffix nd moeove n i i lelled y n cceing e of A m infiniely ofen. The coecne of hi concion i ie ovio: I imly minin he e of A d in moe comliced fom (nd wih ome edndncy) nd o i coecne follow fom he coecne of A d. So i eem like we hve ken e in he wong diecion: Fom imle dole exonenil omon o comlex infinie e omon. B one illin oevion of Sf ke ll he wy o 2 O(nlogn) concion. Hi oevion i he following: If Q e in he e lelling mlile h in he ee (i.e. e of he Sf omon), hen we cn do i fom ll one! (By hi we men h if node n i i no long he choen h fo nd i lel i (X,Y ) hen we my elce hi lel y (X \ {},Y \ {})). Thi choice of which h i o kee ck of h o e mde ceflly. Childen of ny node e odeed fom lef o igh in he ode in which hey wee ineed ino he ee. Given wo h ing he oo, he one h move lef he oin of hei nching i id o e o he lef of he ohe. Sf ide i o kee he e in he lef mo h fom he oo (long which e). Wih hi ide, he ove e ecome: n 1 ({,,v,,},{,,v,}) n 2 ({},{}) ({,,v},{,,v}) n 3 ({},{}) n 4 ({,v},{}) n 5 n 10 n 6 ({},{}) n 12 ({},{}) ({},{}) ({},{}) n 9 n 11 ({},{}) We cn delee node lelled ({}, {}) ince hey ly no fhe ole in he n. Th he e eched on wold clly look like: n 1 ({,,v,,},{,,v,}) n 2 ({},{}) ({,,v},{,,v}) ({,v},{}) n 5 n 3 ({},{}) n 9 The modified omon A, h i e of e ee ove he e node n 1,n 2... lelled y e of A m in ch wy fo ny Q, hee i he mo one h (ing 10

11 he oo) whoe lel conin. The niion elion i comed ove wih he following ddiionl e: 4. If e long lel long mlile h ing he oo, delee i fom ll he lef-mo h. The ccence cieion conine o e he me. Why doe hi modified omon A cce he me lngge A (nd A d )? Evey wod cceed y A i cceed y A. Thi i ece, doing ome e fom he e lelling he ee coeond o nning coie of A m in ch wy h occionlly we do ome e fom he e. Thi doe no incee he fmily of wod cceed hown y he following execie. Execie: Le A m e he omon defined follow: A m = (Q m, Σ,δ m, ({}, ), {(X,X) X Q} whee Q m = {(X,Y ) Y X Q} δ m((x,y ),) = {(δ (X,) \ Z,δ (Y,) δ(x,) F \ Z) Z Q} δ m((x,x),) = {(δ (X,) \ Z,δ (X,) F \ Z Z Q}) if X Y Show h L(A m) L(A m ). Hin: Simly how h if (X,X F) (Z,Z) in hi omon hen fo ech z Z hee i ome x X ch h x g z. So we e lef wih howing h ny wod cceed y A i lo cceed y he modified omon A. Le ρ = e n cceing n. Le T T1... e he coeonding n in A. We ocie eence of node N 1,N 2..., N i T i wih he e i of ρ. In T i, e N i o e he node he highe level nme conining i (Thi node need no e lef.) Noice h ech e one of he following hing my hen: 1. N i+1 i child of N i. Thi hen if i+1 F nd he h fom oo N i+1 i he lef-mo h wih i N i+1 i n nceo of N i. Thi hen of N i nd evel of i nceo hve he me lel N i+1 nd hey ll ge meged wih N i N i+1 i eched vi lef jm. Oevion 2: If he ocied node eche node n fom i decenden (y hi we men N i+1 = n nd i i eched ing ce 2 ove) hen n m e lelled y n cceing e of A m. Thi follow fom Oevion 1 nd he condiion fo meging e. Oevion 3: By Oevion 1, we do no need o kee he econd comonen of he 11

12 lel of he ee hi cn e comed fom he fi comonen of he childen. (Sf concion e hi oimizion.) Fi we oeve h if n 0 e N i fo infiniely mny i hen he node n 0 i lelled y n cceing e of A m infiniely ofen. Thi i ece, ech ime he h vii n j F, he node N j wold move o child of n 0. B i en o n 0 in he fe. B hi hen only when ome child of n 0 mege wih i. B, y Oevion 2, n 0 m e lelled y n cceing e wheneve hi hen. Ohewie, hee i oin j ch h N i n 0 fo ll i j. A he l oin, y N i, when he ocied node moved fom n 0 i m hve moved o child of n 0. Moeove hee e only finiely mny childen of he oo nd in icl only finiely mny o he lef of N i. So wheneve he ocied node en o level 2 (i.e. he level of childen of he oo) hee e only finiely mny choice (i cnno eve ech child of he oo h e o he igh of N i wiho viiing he oo, we hve ledy moved eyond he l vii o he oo). Th, he only wy o ge o ny of hee i eihe y mege fom elow o y lef jm. B lef jm o node level 2 cn hen only finie nme of ime (ince hee e only finiely mny of hee veice h lie o he lef of N i hi level). Th, hee i oin eyond which no veex level 2 i eched y lef jm. Beyond hi oin eihe ome veex level 2 i viied infiniely ofen vi mege fom elow, which (y Oevion 2) gnee h hi node i lelled y cceing e of A m infiniely ofen o ele hee i oin eyond which he n neve en o level 2. We my hen ee hi gmen wih veice level 3 nd o on. B ince he deh of he ee i onded y N i follow h ome node i eched infiniely ofen y mege fom elow which gnee h hi node i lelled y cceing e of A m infiniely ofen. Th he n i n cceing n of he omon A. Now we n hi ino finie e omon. Fi of ll oeve h he fi comonen of he lel of ny child of n i e of he fi comonen of he lel of n. Fhe he fi comonen of he childen e ll dijoin. Th if we foc j on he fi comonen, we he oo nd we go down, we kee ioning he e ino fine nd fine. Th, he ol nme of node in he ee i onded y 2 n whee Q = n. A ech e, we will dd he mo F n new node. Th, if we hve e of 3n + 1 node (following he ide in Lece 8 o he concion of A d ove) we e gneed h ny node h i doed doe no e in he following e. Wih hi we ge finie e omon, wih Rin cceing condiion wih 3n + 1 i. In he ih i (F i,i i ), F i coni of ll he ee whee n i doe no e nd I i coni of ll he ee whee n i i lelled y n cceing e of A m. Wh i he ize of hi omon? How mny ee of he kind decied ove cn e fomed of ize 2 n fom e of 3n + 1 diinc node. By Cyley heoem he nme of ee ove O(n) node i of he ode of 2 O(nlogn). We hve odeed ee (i.e. diffeen odeing of he childen of ny node yield diffene ee). Fom ech nodeed ee we my genee o n! diffeen lelled ee. Th he ol nme of odeed ee conine o e of he ode of 2 O(nlogn). Given ch ee how mny diffeen wy cn we lel he node wih e of Q ifying he ioning oey? Noe h ech Q e (if 12

13 ll) long one nie h. Th, if we deemine he il (i.e. he highe nmeed node) fo ech Q, he lelling of he ee i niely deemined. The nme of fncion fom Q o he e of node i n 3n+1. Th he ol nme of Sf ee i O(2 (O(nlogin) ). O eenion of Sf ee i omewh diffeen fom he one ed y Sf in hi e. Thi i ece of o em o ive fom n nlyi of he n-ee. We hll oline he oiginl concion iefly he eginning of he nex lece. Refeence [1] Chiof Löding: Oiml Bond fo Tnfomion of ω-om, Poceeding of he Inenionl Confeence on Fondion of Sofwe Techonology nd Theoeicl Come Science (FSTTCS) 1999, Singe Lece Noe in Come Science 1738, [2] Mdhvn Mknd: Finie Aom on Infinie Wod, Inenl Reo, SPIC Science Fondion, TCS-96-2, Aville h:// mdhvn/e//c gz [3] S. Sf: On he comlexiy of ω-om, Poceeding of he 29h FOCS, [4] Wolfgng Thom: Lngge, om, nd logic In he Hndook of Foml Lngge, volme III, ge Singe, New Yok,

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

Primal and Weakly Primal Sub Semi Modules

Primal and Weakly Primal Sub Semi Modules Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Pil nd Wekly Pil ub ei odule lik Bineh ub l hei Depen Jodn Univeiy of iene nd Tehnology Ibid 220 Jodn Ab Le be ouive eiing wih ideniy nd n -ei odule

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

EE Control Systems LECTURE 8

EE Control Systems LECTURE 8 Coyright F.L. Lewi 999 All right reerved Udted: Sundy, Ferury, 999 EE 44 - Control Sytem LECTURE 8 REALIZATION AND CANONICAL FORMS A liner time-invrint (LTI) ytem cn e rereented in mny wy, including: differentil

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf Objecie F s w Tnsfome Moionl To be ble o fin nsfome. moionl nsfome n moionl. 331 1 331 Mwell s quion: ic Fiel D: Guss lw :KV : Guss lw H: Ampee s w Poin Fom Inegl Fom D D Q sufce loop H sufce H I enclose

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

ISSUES RELATED WITH ARMA (P,Q) PROCESS. Salah H. Abid AL-Mustansirya University - College Of Education Department of Mathematics (IRAQ / BAGHDAD)

ISSUES RELATED WITH ARMA (P,Q) PROCESS. Salah H. Abid AL-Mustansirya University - College Of Education Department of Mathematics (IRAQ / BAGHDAD) Eoen Jonl of Sisics n Poiliy Vol. No..9- Mc Plise y Eoen Cene fo Resec Tinin n Develoen UK www.e-onls.o ISSUES RELATED WITH ARMA PQ PROCESS Sl H. Ai AL-Msnsiy Univesiy - Collee Of Ecion Deen of Meics IRAQ

More information

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott 085850 SATB div cppell US $25 So Goes Wods nd Vusic by By Joel Anged by Bob Chilco he king's singes L he colou of song A H EXCLUSVELY DSTRBUTED BY LEONARD (Fom The King's Singes 25h Annivesy Jubilee) So

More information

Dividing Algebraic Fractions

Dividing Algebraic Fractions Leig Eheme Tem Model Awe: Mlilig d Diidig Algei Fio Mlilig d Diidig Algei Fio d gide ) Yo e he me mehod o mlil lgei io o wold o mlil meil io. To id he meo o he we o mlil he meo o he io i he eio. Simill

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Language Processors F29LP2, Lecture 5

Language Processors F29LP2, Lecture 5 Lnguge Pocessos F29LP2, Lectue 5 Jmie Gy Feuy 2, 2014 1 / 1 Nondeteministic Finite Automt (NFA) NFA genelise deteministic finite utomt (DFA). They llow sevel (0, 1, o moe thn 1) outgoing tnsitions with

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

A study Of Salt-Finger Convection In a Nonlinear Magneto-Fluid Overlying a Porous Layer Affected By Rotation

A study Of Salt-Finger Convection In a Nonlinear Magneto-Fluid Overlying a Porous Layer Affected By Rotation Innion on o Mchnic & Mchonic Engining IMME-IEN Vo: No: A O -ing Concion In Nonin Mgno-i Oing oo Ac Roion M..A-hi Ac hi o in -ing concion in o o nonin gno-i oing oo c oion. o in h i i gon Ni-o qion n in

More information

Physics 15 Second Hour Exam

Physics 15 Second Hour Exam hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ------------------------------- ol / I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7.

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis   2/3/2007 Physics 253 Science Adeisemen Inegoenmenl Pnel on Clime Chnge: The Phsicl Science Bsis hp://www.ipcc.ch/spmfeb7.pdf /3/7 Phsics 53 hp://www.fonews.com/pojecs/pdf/spmfeb7.pdf /3/7 Phsics 53 3 Sus: Uni, Chpe 3 Vecos

More information

Laplace Examples, Inverse, Rational Form

Laplace Examples, Inverse, Rational Form Lecure 3 Ouline: Lplce Exple, Invere, Rionl For Announceen: Rein: 6: Lplce Trnfor pp. 3-33, 55.5-56.5, 7 HW 8 poe, ue nex We. Free -y exenion OcenOne Roo Tour will e fer cl y 7 (:3-:) Lunch provie ferwr.

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Bounding the Locality of Distributed Routing Algorithms

Bounding the Locality of Distributed Routing Algorithms Bonding he Loliy of Diied Roing Algoihm [Exended A] Poenji Boe Shool of Compe Siene Cleon Univeiy Ow, Cnd ji@.leon. Pz Cmi Dep. of Compe Siene Ben-Gion Univ. of he Negev Bee-Shev, Iel mip@.g..il Sephne

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

International Journal of Mathematical Archive-5(6), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(6), 2014, Available online through   ISSN Inenaional Jonal o Mahemaical Achive-6, 0, 09-8 Availale online hogh www.ijma.ino ISSN 9 06 EXISENCE OF NONOSCILLAORY SOLUIONS OF A CLASS OF NONLINEAR NEURAL DELAY DIFFERENIAL EQUAIONS OF HIRD ORDER K

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(10): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(10): Research Article vilble online www.jse.com Jounl of Scienific n Engineeing Resech, 8, 5():5-58 Resech icle ISSN: 94-6 CODEN(US): JSERBR Soluion of he Poblem of Sess-Sin Se of Physiclly Non-Line Heeiily Plsic Infinie Ple

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2 156 Thee ae 9 books sacked on a shelf. The hickness of each book is eihe 1 inch o 2 F inches. The heigh of he sack of 9 books is 14 inches. Which sysem of equaions can be used o deemine x, he numbe of

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion.

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion. Chpe Kinemic in One Dimenin Kinemic del wih he cncep h e needed decibe min. Dynmic del wih he effec h fce he n min. Tgehe, kinemic nd dynmic fm he bnch f phyic knwn Mechnic.. Diplcemen. Diplcemen.0 m 5.0

More information

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues?

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues? CS514: Inmi Co in Oing Sm Poo Kn imn K Ooki: T liion o h i O h h k h o Goi oool Dii monioing, h, n noiiion gmn oool, h 2PC n 3PC Unling hm: om hing n ong om o onin, om n mng ih k oi To, l look n liion

More information

D zone schemes

D zone schemes Ch. 5. Enegy Bnds in Cysls 5.. -D zone schemes Fee elecons E k m h Fee elecons in cysl sinα P + cosα cosk α cos α cos k cos( k + π n α k + πn mv ob P 0 h cos α cos k n α k + π m h k E Enegy is peiodic

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

A Structural Approach to the Enforcement of Language and Disjunctive Constraints

A Structural Approach to the Enforcement of Language and Disjunctive Constraints A Srucurl Aroch o he Enforcemen of Lnguge nd Disjuncive Consrins Mrin V. Iordche School of Engineering nd Eng. Tech. LeTourneu Universiy Longview, TX 7607-700 Pnos J. Ansklis Dermen of Elecricl Engineering

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

Some algorthim for solving system of linear volterra integral equation of second kind by using MATLAB 7 ALAN JALAL ABD ALKADER

Some algorthim for solving system of linear volterra integral equation of second kind by using MATLAB 7 ALAN JALAL ABD ALKADER . Soe lgoi o solving syse o line vole inegl eqion o second ind by sing MATLAB 7 ALAN JALAL ABD ALKADER College o Edcion / Al- Msnsiiy Univesiy Depen o Meics تقديم البحث :-//7 قبول النشر:- //. Absc ( /

More information

Exponential Sawtooth

Exponential Sawtooth ECPE 36 HOMEWORK 3: PROPERTIES OF THE FOURIER TRANSFORM SOLUTION. Exponenial Sawooh: The eaie way o do hi problem i o look a he Fourier ranform of a ingle exponenial funcion, () = exp( )u(). From he able

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T. Che 5. Dieeil Geome o Sces 5. Sce i meic om I 3D sce c be eeseed b. Elici om z =. Imlici om z = 3. Veco om = o moe geel =z deedig o wo mees. Emle. he shee o dis hs he geoghicl om =coscoscossisi Emle. he

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

On Fractional Operational Calculus pertaining to the product of H- functions

On Fractional Operational Calculus pertaining to the product of H- functions nenonl eh ounl of Enneen n ehnolo RE e-ssn: 2395-56 Volume: 2 ue: 3 une-25 wwwene -SSN: 2395-72 On Fonl Oeonl Clulu enn o he ou of - funon D VBL Chu, C A 2 Demen of hem, Unve of Rhn, u-3255, n E-ml : vl@hooom

More information

Motion on a Curve and Curvature

Motion on a Curve and Curvature Moion on Cue nd Cuue his uni is bsed on Secions 9. & 9.3, Chpe 9. All ssigned edings nd execises e fom he exbook Objecies: Mke cein h you cn define, nd use in conex, he ems, conceps nd fomuls lised below:

More information

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f C H A P T E R I G E N E S I S A N D GROWTH OF G U IL D S C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f i n a v a r i e t y o f f o r m s - s o c i a l, r e l i g i

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006 Homewok 5 fo BST 63: Sisicl Theoy I Soluions, 9//6 Due Time: 5:PM Thusy, on 9/8/6. Polem ( oins). Book olem.8. Soluion: E = x f ( x) = ( x) f ( x) + ( x ) f ( x) = xf ( x) + xf ( x) + f ( x) f ( x) Accoing

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

ARC 202L. Not e s : I n s t r u c t o r s : D e J a r n e t t, L i n, O r t e n b e r g, P a n g, P r i t c h a r d - S c h m i t z b e r g e r

ARC 202L. Not e s : I n s t r u c t o r s : D e J a r n e t t, L i n, O r t e n b e r g, P a n g, P r i t c h a r d - S c h m i t z b e r g e r ARC 202L C A L I F O R N I A S T A T E P O L Y T E C H N I C U N I V E R S I T Y D E P A R T M E N T O F A R C H I T E C T U R E A R C 2 0 2 L - A R C H I T E C T U R A L S T U D I O W I N T E R Q U A

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes omewok # P7-3 ecngul loop of widh w nd heigh h is siued ne ve long wie cing cuen i s in Fig 7- ssume i o e ecngul pulse s shown in Fig 7- Find he induced cuen i in he ecngul loop whose self-inducnce is

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Technical Vibration - text 2 - forced vibration, rotational vibration

Technical Vibration - text 2 - forced vibration, rotational vibration Technicl Viion - e - foced viion, oionl viion 4. oced viion, viion unde he consn eenl foce The viion unde he eenl foce. eenl The quesion is if he eenl foce e is consn o vying. If vying, wh is he foce funcion.

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Ch.4 Motion in 2D. Ch.4 Motion in 2D Moion in plne, such s in he sceen, is clled 2-dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci

More information

CONTRIBUTIONS TO THE THEORETICAL STUDY OF THE PRECISION SOWING MACHINES DYNAMICS

CONTRIBUTIONS TO THE THEORETICAL STUDY OF THE PRECISION SOWING MACHINES DYNAMICS COTIBUTIOS TO THE THEOETICAL STUDY O THE PECISIO SOWI MACHIES DYAMICS S. O. Oi nd S. Poecu Atct: In the e e eoted the equivent dynmic mode nd min mthemtic mode of the eede unit of eciion owing mchine ccoding

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Finie Diffeence Mehod fo Odinay Diffeenial Eqaions Afe eading his chape, yo shold be able o. Undesand wha he finie diffeence mehod is and how o se i o solve poblems. Wha is he finie diffeence

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1 Week : DTMC Alictions Rnking Web ges & Slotted ALOHA etwok efonce - Outline Aly the theoy of discete tie Mkov chins: Google s nking of web-ges Wht ge is the use ost likely seching fo? Foulte web-gh s Mkov

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Price Discrimination

Price Discrimination My 0 Price Dicriminion. Direc rice dicriminion. Direc Price Dicriminion uing wo r ricing 3. Indirec Price Dicriminion wih wo r ricing 4. Oiml indirec rice dicriminion 5. Key Inigh ge . Direc Price Dicriminion

More information

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM PHYS 0 Suen Nme: Suen Numbe: FAUTY OF SIENE Viul Miem EXAMINATION PHYSIS 0 Ino PHYSIS-EETROMAGNETISM Emines: D. Yoichi Miyh INSTRUTIONS: Aemp ll 4 quesions. All quesions hve equl weighs 0 poins ech. Answes

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force Insucos: ield/mche PHYSICS DEPARTMENT PHY 48 Em Sepeme 6, 4 Nme pin, ls fis: Signue: On m hono, I he neihe gien no eceied unuhoied id on his eminion. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP O

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.)

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.) i ell orie o go ih he picure. L, up ng i gro ve el ur Pren, ho phoo picure; u oher ell ee hey (T l. chi u b o on hi pge y ur ki kn pl. (We ee Hi i H b o b o kn e hem orie.) Compre h o ho creion; He ell

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information