Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion.

Size: px
Start display at page:

Download "Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion."

Transcription

1 5. Cicula otion By Liew Sau oh Content 5.1 Angula diplaceent and angula elocity 5. Centipetal acceleation 5.3 Centipetal foce Objectie a) expe angula diplaceent in adian b) define angula elocity and peiod c) deie and ue the foula = d) explain that unifo cicula otion ha an acceleation due to the change in diection of elocity e) deie and ue the foulae fo centipetal acceleation a = / and a = Objectie f) explain that unifo cicula otion i due to the action of a eultant foce that i alway diected to the cente of the cicle g) ue the foulae fo centipetal foce F = / and F = h) ole poble inoling unifo hoizontal cicula otion fo a point a i) ole poble inoling etical cicula otion fo a point a (knowledge of tangential acceleation i not equied). 5.1 Angula diplaceent and angula elocity Unifo cicula otion Suppoe that an object execute a cicula obit of adiu with unifo tangential peed. Unifo cicula otion he intantaneou poition of the object i ot coneniently pecified in te of an angle. Unifo cicula otion Fo intance, we could decide that = 0 coepond to the object' location at, in which cae we would wite = t, whee i the angula elocity of the object.

2 Unifo cicula otion Fo a unifoly otating object, the angula elocity i iply the angle though which the object tun in one econd. Angula diplaceent Conide the otion of the object in the tie inteal between and. Hee, the object otate though an angle, and tace out a cicula ac of length. Angula diplaceent It i faily obiou that the ac length i diectly popotional to the angle, an angle of 360 coepond to an ac length of. Hence, an angle ut coepond to an ac length of 360 Angula diplaceent At thi tage, it i conenient to define a new angula unit known a a adian (ybol ad). Angula diplaceent An angle eaued in adian i elated to an angle eaued in degee ia the following iple foula: Angula diplaceent hu, 360 ad, 180 ad, 90 ½ ad, and ad. ad 360 Angula diplaceent When i eaued in adian, 360 Angula elocity Conide the otion of the object in the hot inteal between tie t and t + t. In thi inteal, the object tun though a all angle and tace out a hot ac of length, whee =. iplifie geatly to gie =.

3 Angula elocity Now / t (i.e., ditance oed pe unit tie) i iply the tangential elocity, wheea / t (i.e., angle tuned though pe unit tie) i iply the angula elocity w. hu, diiding = by t, we obtain = w. Angula elocity Note, howee, that thi foula i only alid if the angula elocity w i eaued in adian pe econd. Fo now on, in thi coue, all angula elocitie ae eaued in adian pe econd by default. Angula elocity An object that otate with unifo angula elocity w tun though w adian in 1 econd. Hence, the object tun though adian (i.e., it execute a coplete cicle) in = / w econd. Angula elocity Hee, i the epetition peiod of the cicula otion. If the object execute a coplete cycle (i.e., tun though 360 ) in econd, then the nube of cycle executed pe econd i f = 1/ = w /. In othe wod, w = /. Angula elocity Hee, the epetition fequency, f, of the otion i eaued in cycle pe econd--othewie known a hetz (ybol Hz). Angula elocity A an exaple, uppoe that an object execute unifo cicula otion, adiu = 1., at a fequency of f = 50Hz (i.e., the object execute a coplete otation 50 tie a econd). he epetition peiod of thi otion i iply = 1/f = 0.0. Angula elocity Futheoe, the angula fequency of the otion i gien by w = f = ad/ Finally, the tangential elocity of the object i = w = = /. 5.3 Centipetal acceleation

4 Cicula otion Cicula otion he tenion in the ting! he peed tay contant, but the diection change R Bat wing the tenni ball aound hi head in a cicle. he ball i acceleating, what foce ake it acceleate? he acceleation in thi cae i called centipetal acceleation Centipetal acceleation, a C Centipetal acceleation R a C he acceleation point towad the cente of the cicle towad the cente of the cicle Centipetal acceleation An object executing a cicula obit of adiu with unifo tangential peed poee a elocity ecto whoe agnitude i contant, but whoe diection i continuouly changing. Centipetal acceleation It follow that the object ut be acceleating, ince acceleation (ecto) i the ate of change of elocity (ecto), and the elocity (ecto) i indeed aying in tie. Centipetal acceleation Suppoe that the object oe fo point to point between tie t and t + t, a hown in the figue aboe. Suppoe, futhe, that the object otate though adian in thi tie inteal. Centipetal acceleation he ecto, hown in the diaga, i identical to the ecto. Moeoe, the angle ubtended between ecto and i iply.

5 Centipetal acceleation he ecto epeent the change in ecto elocity,, between tie t and t + t. Centipetal acceleation It can be een that thi ecto i diected towad the cente of the cicle. Fo tandad tigonoety, the length of ecto i = in( /). Centipetal acceleation Howee, fo all angle in, poided that i eaued in adian. Hence,, It follow that a = / t = / t =, whee = / t i the angula elocity of the object, eaued in adian pe econd. Centipetal acceleation In uay, an object executing a cicula obit, adiu, with unifo tangential elocity, and unifo angula elocity w = /, poee an acceleation diected towad the cente of the cicle:- i.e., a centipetal acceleation:- of agnitude a = w = / = w. 5.3 Centipetal foce Centipetal acceleation centipetal acceleation a foce i needed to poduce thi centipetal acceleation CENRIEAL FORCE whee doe thi foce coe fo? a C = R Centipetal foce Suppoe that a weight, of a, i attached to the end of a cable, of length, and whiled aound uch that the weight execute a hoizontal cicle, adiu, with unifo tangential elocity. Centipetal foce A we hae jut leaned, the weight i ubject to a centipetal acceleation of agnitude /. Hence, the weight expeience a centipetal foce f = /.

6 Centipetal foce What poide thi foce? Well, in the peent exaple, the foce i poided by the tenion in the cable. Hence, = /. Centipetal foce Suppoe that the cable i uch that it nap whenee the tenion in it exceed a cetain citical alue ax. Centipetal foce It follow that thee i a axiu elocity with which the weight can be whiled aound: naely, ax ax Centipetal foce If exceed ax then the cable will beak. A oon a the cable nap, the weight will ceae to be ubject to a centipetal foce. Centipetal foce So it will fly off; with elocity ax along the taight-line which i tangential to the cicula obit it wa peiouly executing. uetion 1 A.0 kg a winging at the end of a 0.50 ting i taeling 3.0 /. What i the a. centipetal acceleation of the a? b. centipetal foce on the a? Anwe 1 a) a c = / a c = (3.0 /) /(0.5 ) a c = 18 / b) F c = a c = 36 J uetion A tudent wing a ball in a cicle of adiu 70 c in the etical plane. he angula elocity of the ball i 10 ad 1. a) What i the elocity of the ball? b) How long doe the ball take to coplete one eolution?

7 Anwe a) = = (10)(0.70) = b) (0.70) uetion (continue) A tudent wing a ball in a cicle of adiu 70 c in the etical plane. he angula elocity of the ball i 10 ad 1. he tudent eleae the ball when it i at A, which i 130 c aboe the gound, and the ball tael etically upwad. Calculate a) the axiu height, aboe the gound, the ball will each; b) the tie taken fo the ball to hit the gound afte it eleae fo A. a) = u + a 0 = (7) + (-9.8) => =.50 => ax. height = = 3.8 b) Oeall: A => ax. height => gound: = ut + ½ at = 7t ½ (9.8)t tie, t = 1.59 Ball on a ting op iew he tenion in the ting poide the neceay centipetal foce to keep the ball going in a cicle. ath of ball if the ting beak Exaple What i the tenion in a ting ued to twil a 0.3 kg ball at a peed of -1 in a hoizontal cicle of 1 ete adiu? Anwe: Foce = a x acceleation [ a c ] Acceleation, a c = / R = () / 1 = 4 - Foce, F = a c = = 1. N Exaple If the ting i not tong enough to handle thi tenion (1. N) it will beak and the ball goe off in a taight line. Vetical Cicula Motion If a pail i whiled in a etical cicle, the peed of the pail aie along it cicula otion g O Vetical Cicula Motion he cetipetal acceleation, a = / towad O. Uing F = a, g co = / enion, = / + g co g O

8 Vetical Cicula Motion Vetical Cicula Motion = / + g co At lowet point, = 0 = / + g At highet point, = = / g When = / o 3 / = /; (co = 0) g O = / + g co At highet point, = = / g he pail well not dop if / g > 0 / > g > (g) 1/ g O Conical endulu An object i oing in a hoizontal cicle (foing a conical pendulu) Fo hoizontal cicula otion, a = / (towad cente) g Conical endulu Fo etical coponent, l co = g co = g / l = co-1(g/l ) y g l l x Conical endulu Fo hoizontal cicula otion, a = / (towad cente) F = a = / Fo hoizontal coponent, in = / = = (l in ) = l y g y = co l x, x = in Negotiating a flat (leel) tun he centipetal foce i poided by the fiction foce between the oad and tie. thi foce i educed if the oad i wet o icy y = co, x = in Banked un Banked tun Velodoe 31 degee bank Since the oad i banked (not hoizontal) the foce of the oad on the box i not etical. at of the foce on the box fo the oad point towad the cente of the cicle. hi poide the centipetal foce. No fiction i neceay to keep the box in the cicle. N F CEN R

9 he ed object will ake the tun only if thee i enough fiction on it 0 it goe taight the appaent outwad foce i called the centifugal foce it i NO A REAL foce! an object will not oe in a cicle until oething ake it! object on the dahboad taight line object natually follow Centifugal foce: Definition Foce epeent the effect of inetia that aie in connection with otation and which ae expeienced a an outwad foce away fo the cente of otation Silly Silo (Roto) wall puhing in on Bat Fiction between Bat and wall Suay: Cicula otion Angula Diplaceent & Angula Velocity Centipetal Acceleation = / t = a = / a = a = weight he inwad wall foce keep Bat in the cicle. Fiction keep hi fo falling down. Centipetal Foce F = / = = Motion in hoizontal cicle Motion in etical cicle

AP Physics Centripetal Acceleration

AP Physics Centripetal Acceleration AP Phyic Centipetal Acceleation All of ou motion tudie thu fa hae dealt with taight-line tuff. We haen t dealt with thing changing diection duing thei tael. Thi type of motion i called angula motion. A

More information

Example 1. Centripetal Acceleration. Example 1 - Step 2 (Sum of Vector Components) Example 1 Step 1 (Free Body Diagram) Example

Example 1. Centripetal Acceleration. Example 1 - Step 2 (Sum of Vector Components) Example 1 Step 1 (Free Body Diagram) Example 014-11-18 Centipetal Aeleation 13 Exaple with full olution Exaple 1 A 1500 kg a i oing on a flat oad and negotiate a ue whoe adiu i 35. If the oeffiient of tati fition between the tie and the oad i 0.5,

More information

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box SPH3UW/SPH4U Unit 3. Foce in Cetipetal Motion Page 1 o 6 Note Phyic Tool Box Net Foce: acting on an object in uniom cicula motion act towad the cente o the cicle. Magnitude o Net Foce: combine Newton Second

More information

) 1.5"10 11 m. ( )( 1.99 "10 30 kg)

) 1.510 11 m. ( )( 1.99 10 30 kg) Exaple 1: a.) What i the foce of gaity between a gazelle with a a of 100 kg and a lion with a a that i 50 kg if the lion i lying in wait 100 ete fo the gazelle? b.) What would happen to the foce of gaity

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path.

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path. PROJECTILE MOTION A pojectile is any object that has been thown though the ai. A foce must necessaily set the object in motion initially but, while it is moing though the ai, no foce othe than gaity acts

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION Phyic 1 1 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal plane. At the point indicated, the ting beak. Looking down

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION 103 PHYS 1 1 L:\103 Phy LECTURES SLIDES\103Phy_Slide_T1Y3839\CH6Flah 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal

More information

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7 SOLUIONS O CONCEPS CHAPE 7 cicula otion;;. Distance between Eath & Moon.85 0 5 k.85 0 8 7. days 4 600 (7.) sec.6 0 6 sec.4.85 0 v 6.6 0 8 05.4/sec v (05.4) a 0.007/sec.7 0 /sec 8.85 0. Diaete of eath 800k

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

Motion in a Plane Uniform Circular Motion

Motion in a Plane Uniform Circular Motion Lectue 11 Chapte 8 Physics I Motion in a Plane Unifom Cicula Motion Couse website: http://faculty.uml.edu/andiy_danylo/teaching/physicsi PHYS.1410 Lectue 11 Danylo Depatment of Physics and Applied Physics

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position Announcement In the lectue link Look o tet 1 beakdown liting the topic o the quetion. Look o m umma o topic o the eam. We ll ue it on the eiew net Tueda. Look o a lit o baic phic act eleant o thi eam.

More information

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg Cicula Motion PHY 207 - cicula-motion - J. Hedbeg - 2017 x-y coodinate systems Fo many situations, an x-y coodinate system is a geat idea. Hee is a map on Manhattan. The steets ae laid out in a ectangula

More information

1131 T Question 1

1131 T Question 1 1131 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, taelling on the sae path in the sae diection as you, at a constant speed

More information

3.3 Centripetal Force

3.3 Centripetal Force 3.3 Centipetal Foce Think of a time when ou wee a passenge in a ca going aound a shap cue at high speed (Figue 1). If the ca wee going fast enough, ou might feel the side of the ca doo pushing on ou side.

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

Physics 231 Lecture 17

Physics 231 Lecture 17 Physics 31 Lectue 17 Main points of today s lectue: Centipetal acceleation: a c = a c t Rotational motion definitions: Δω Δω α =, α = limδ t 0 Δt Δt Δ s= Δ θ;t = ω;at = α Rotational kinematics equations:

More information

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ Section. Cuilinea Motion he study of the motion of a body along a geneal cue. We define u ˆ û the unit ecto at the body, tangential to the cue the unit ecto nomal to the cue Clealy, these unit ectos change

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

Class 6 - Circular Motion and Gravitation

Class 6 - Circular Motion and Gravitation Class 6 - Cicula Motion and Gavitation pdf vesion [http://www.ic.sunysb.edu/class/phy141d/phy131pdfs/phy131class6.pdf] Fequency and peiod Fequency (evolutions pe second) [ o ] Peiod (tie fo one evolution)

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

Shree Datta Coaching Classes, Contact No Circular Motion

Shree Datta Coaching Classes, Contact No Circular Motion Shee Datta Coaching Classes, Contact No. 93698036 Pof. Deepak Jawale Cicula Motion Definition : The motion of the paticle along the cicumfeence of a cicle is called as cicula motion. Eg. i) Motion of eath

More information

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

More information

Circular Motion Problem Solving

Circular Motion Problem Solving iula Motion Poblem Soling Aeleation o a hange in eloity i aued by a net foe: Newton nd Law An objet aeleate when eithe the magnitude o the dietion of the eloity hange We aw in the lat unit that an objet

More information

1121 T Question 1

1121 T Question 1 1121 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, tavelling on the sae path in the sae diection as you, at a constant speed

More information

Physics 111. Lecture 14 (Walker: Ch. 6.5) Circular Motion Centripetal Acceleration Centripetal Force February 27, 2009

Physics 111. Lecture 14 (Walker: Ch. 6.5) Circular Motion Centripetal Acceleration Centripetal Force February 27, 2009 Physics 111 Lectue 14 (Walke: Ch. 6.5) Cicula Motion Centipetal Acceleation Centipetal Foce Febuay 7, 009 Midtem Exam 1 on Wed. Mach 4 (Chaptes 1-6) Lectue 14 1/8 Connected Objects If thee is a pulley,

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

Torque, Angular Momentum and Rotational Kinetic Energy

Torque, Angular Momentum and Rotational Kinetic Energy Toque, Angula Moentu and Rotational Kinetic Enegy In ou peious exaples that inoled a wheel, like fo exaple a pulley we wee always caeful to specify that fo the puposes of the poble it would be teated as

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic. Cicula motion π π a he angula speed is just ω 5. 7 ad s. he linea speed is ω 5. 7 3. 5 7. 7 m s.. 4 b he fequency is f. 8 s.. 4 3 a f. 45 ( 3. 5). m s. 3 a he aeage

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

NEETIIT.COM. Angular Displacement. Page - 1

NEETIIT.COM. Angular Displacement. Page - 1 - Download ou andoid App. 1. ANGULA DISPLACEMENT Intoduction : Angle subtended by position ecto of a paticle moing along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle

More information

Physics 110. Exam #1. September 30, 2016

Physics 110. Exam #1. September 30, 2016 Phyic 110 Exa #1 Septebe 30, 016 Nae Pleae ead and follow thee intuction caefully: Read all poble caefully befoe attepting to olve the. You wok ut be legible, and the oganization clea. You ut how all wok,

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

Section 25 Describing Rotational Motion

Section 25 Describing Rotational Motion Section 25 Decibing Rotational Motion What do object do and wh do the do it? We have a ve thoough eplanation in tem of kinematic, foce, eneg and momentum. Thi include Newton thee law of motion and two

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

SECTION 1. Objectives. Solve problems involving centripetal acceleration. Solve problems involving centripetal force.

SECTION 1. Objectives. Solve problems involving centripetal acceleration. Solve problems involving centripetal force. SECTION 1 Plan and Pepae Peiew Vocabulay Latin Wod Oigins The wod centipetal is ombination of two pats, cente and petal. The second pat of the wod is deied fom the Latin wod petee, which means seeking.

More information

Chapter 7 Rotational Motion and the Law of Gravity

Chapter 7 Rotational Motion and the Law of Gravity Chapte 7 Rotational Motion and the Law of Gaity What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

PHY 121 Finals Review FSE Tutoring Centers Spring 2016

PHY 121 Finals Review FSE Tutoring Centers Spring 2016 11-Ap-16 11-Apil,016 Vecto Addition PHY 11 Final Reiew FSE Tutoing Cente Sping 016 Vecto Addition: Place the ecto tip to tail. A ecto ma be moed an wa ou pleae poided that ou do not change it length no

More information

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line 1 CIRCULAR MOTION 1. ANGULAR DISPLACEMENT Intoduction: Angle subtended by position vecto of a paticle moving along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle moving

More information

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4.

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4. ASTR 3740 Relativity & Comology Sping 019. Anwe to Poblem Set 4. 1. Tajectoie of paticle in the Schwazchild geomety The equation of motion fo a maive paticle feely falling in the Schwazchild geomety ae

More information

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin technical poof TP A.4 Pot-impact cue ball tajectoy fo any cut anle, peed, and pin uppotin: The Illutated Pinciple of Pool and Billiad http://billiad.colotate.edu by Daid G. Alciatoe, PhD, PE ("D. Dae")

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Have you eve idden on the amusement pak ide shown below? As it spins you feel as though you ae being pessed tightly against the wall. The ide then begins to tilt but you emain glued

More information

Solutions Practice Test PHYS 211 Exam 2

Solutions Practice Test PHYS 211 Exam 2 Solution Pactice Tet PHYS 11 Exam 1A We can plit thi poblem up into two pat, each one dealing with a epaate axi. Fo both the x- and y- axe, we have two foce (one given, one unknown) and we get the following

More information

Unit 4 Circular Motion and Centripetal Force

Unit 4 Circular Motion and Centripetal Force Name: Unit 4 Cicula Motion and Centipetal Foce H: Gading: Show all wok, keeping it neat and oganized. Show equations used and include all units. Vocabulay Peiod: the time it takes fo one complete evolution

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

Ch04: Motion in two and three dimensions (2D and 3D)

Ch04: Motion in two and three dimensions (2D and 3D) Ch4: Motion in two and thee dimensions (D and 3D) Displacement, elocity and acceleation ectos Pojectile motion Cicula motion Relatie motion 4.: Position and displacement Position of an object in D o 3D

More information

4. Two and Three Dimensional Motion

4. Two and Three Dimensional Motion 4. Two and Thee Dimensional Motion 1 Descibe motion using position, displacement, elocity, and acceleation ectos Position ecto: ecto fom oigin to location of the object. = x i ˆ + y ˆ j + z k ˆ Displacement:

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Physics 201 Homework 4

Physics 201 Homework 4 Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Sections and Chapter 10

Sections and Chapter 10 Cicula and Rotational Motion Sections 5.-5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous

More information

Physics 2001 Problem Set 5 Solutions

Physics 2001 Problem Set 5 Solutions Physics 2001 Poblem Set 5 Solutions Jeff Kissel Octobe 16, 2006 1. A puck attached to a sting undegoes cicula motion on an ai table. If the sting beaks at the point indicated in the figue, which path (A,

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1 PHYSICS 0 Lectue 08 Cicula Motion Textbook Sections 5.3 5.5 Lectue 8 Pudue Univesity, Physics 0 1 Oveview Last Lectue Cicula Motion θ angula position adians ω angula velocity adians/second α angula acceleation

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. In a oto ide such as the one shown in the figue, what is the maximum peiod of otation that the oto ide can hae so that people do not slip down the wall if the coefficient of fiction between the wall and

More information

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z Moentu, Ipulse and Collisions Moentu eeyday connotations? physical eaning the tue easue of otion (what changes in esponse to applied foces) d d ΣF ( ) dt dt Moentu (specifically Linea Moentu) defined p

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. In a oto ide such as the one shown in the figue, what is the maximum peiod of otation that the oto ide can hae so that people do not slip down the wall if the coefficient of fiction between the wall and

More information

ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION

ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION Unit 3 Physics 16 6. Cicula Motion Page 1 of 9 Checkpoints Chapte 6 CIRCULAR MOTION Question 13 Question 8 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

FARADAY'S LAW dt

FARADAY'S LAW dt FAADAY'S LAW 31.1 Faaday's Law of Induction In the peious chapte we leaned that electic cuent poduces agnetic field. Afte this ipotant discoey, scientists wondeed: if electic cuent poduces agnetic field,

More information

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION POINTS TO REMEMBER 1. Tanslatoy motion: Evey point in the body follows the path of its peceding one with same velocity including the cente of mass..

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

Motion in a Circle. Content 1. Kinematics of uniform circular motion 2. Centripetal acceleration 3. Centripetal force.

Motion in a Circle. Content 1. Kinematics of uniform circular motion 2. Centripetal acceleration 3. Centripetal force. JJ 014 H PHYSICS (9646) Motion in a Cicle Motion in a Cicle Content 1. Kinematics of unifom cicula motion. Centipetal acceleation 3. Centipetal foce Leaning Outcomes Candidates should be able to: (a) expess

More information

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc.

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc. AP Phyic Gavity Si Iaac Newton i cedited with the dicovey of gavity. Now, of coue we know that he didn t eally dicove the thing let face it, people knew about gavity fo a long a thee have been people.

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information

Tidal forces. m r. m 1 m 2. x r 2. r 1

Tidal forces. m r. m 1 m 2. x r 2. r 1 Tidal foces Befoe we look at fee waves on the eath, let s fist exaine one class of otion that is diectly foced: astonoic tides. Hee we will biefly conside soe of the tidal geneating foces fo -body systes.

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

Chapter 5 Applications of Newton s Laws

Chapter 5 Applications of Newton s Laws Chapte 5 Application of Newton Law Conceptual Poblem Detemine the Concept Becaue the object ae peeding up (acceleating), thee mut be a net foce acting on them. The foce acting on an object ae the nomal

More information

2013 Checkpoints Chapter 6 CIRCULAR MOTION

2013 Checkpoints Chapter 6 CIRCULAR MOTION 013 Checkpoints Chapte 6 CIRCULAR MOTIO Question 09 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity to change (in diection). Since the speed is constant,

More information

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields Magnets and Magnetic ields Magnetism Howee, if you cut a magnet in half, you don t get a noth pole and a south pole you get two smalle magnets. ectue otes Chapte 20 Topics Magnets and Magnetic ields Magnets

More information

ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES ON EARTH S SURFACE

ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES ON EARTH S SURFACE Fundamental Jounal of Mathematical Physics Vol. 3 Issue 1 13 Pages 33-44 Published online at http://www.fdint.com/ ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

3.2 Centripetal Acceleration

3.2 Centripetal Acceleration unifom cicula motion the motion of an object with onstant speed along a cicula path of constant adius 3.2 Centipetal Acceleation The hamme thow is a tack-and-field event in which an athlete thows a hamme

More information

Circular Motion. Subtopics. Introduction. Angular displacement. acceleration. Relation between linear velocity and angular velocity

Circular Motion. Subtopics. Introduction. Angular displacement. acceleration. Relation between linear velocity and angular velocity Chapte 0 : Cicula Motion 0 Cicula Motion Subtopics.0 Intoduction. Angula displacement. Angula elocity acceleation.3 Relation between linea elocity and angula elocity.4 Unifom cicula motion.5 Acceleation

More information

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS 5.4 Radian Measue So fa, ou hae measued angles in degees, with 60 being one eolution aound a cicle. Thee is anothe wa to measue angles called adian measue. With adian measue, the ac length of a cicle is

More information

Formula Formula symbols Units. s = F A. e = x L. E = s ε. k = F δ. G = t γ. e = at. maximum load original cross sectional area. s M E = = N/m.

Formula Formula symbols Units. s = F A. e = x L. E = s ε. k = F δ. G = t γ. e = at. maximum load original cross sectional area. s M E = = N/m. A Lit of foulae fo ecanical engineeing pinciple Foula Foula ybol Unit Ste Stain applied foce co ectionalaea cange in lengt oiginal lengt F A e x L Young odulu of elaticity te tain Stiffne foce extenion

More information

ISSUED BY K V - DOWNLOADED FROM CIRCULAR MOTION

ISSUED BY K V - DOWNLOADED FROM  CIRCULAR MOTION K.V. Silcha CIRCULAR MOTION Cicula Motion When a body moves such that it always emains at a fixed distance fom a fixed point then its motion is said to be cicula motion. The fixed distance is called the

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Chapter 19 Webassign Help Problems

Chapter 19 Webassign Help Problems Chapte 9 Webaign Help Poblem 4 5 6 7 8 9 0 Poblem 4: The pictue fo thi poblem i a bit mileading. They eally jut give you the pictue fo Pat b. So let fix that. Hee i the pictue fo Pat (a): Pat (a) imply

More information

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving. Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings

More information

Written as per the revised syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune.

Written as per the revised syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune. Witten as pe e evised syllabus pescibed by e Mahaashta State oad of Seconday and Highe Seconday Education, Pune. Pecise Physics I SD. XII Sci. Salient Featues Concise coveage of syllabus in Question nswe

More information