Learning Terminological Naïve Bayesian Classifiers Under Different Assumptions on Missing Knowledge

Size: px
Start display at page:

Download "Learning Terminological Naïve Bayesian Classifiers Under Different Assumptions on Missing Knowledge"

Transcription

1 Learning Terminological Naïve Bayesian Classifiers Under Different Assumptions on Missing Knowledge Pasquale Minervini Claudia d Amato Nicola Fanizzi Department of Computer Science University of Bari URSW 2011 Bonn, October 23, 2011

2 Contents 1 Introduction & Motivation

3 Introduction & Motivations Uncertainty is inherently present in real-world knowledge In the SW context difficulties arise modeling real-world domains using only purely logical formalisms Several approaches for coping with unceratin knowledge have been proposed (probabilistic, fuzzy,...) usually probabilistic information is assumed to be available the CWA is adopted Exploiting an already populated ontology, a method capturing probabilistic information could be of help the OWA has to be taken into account

4 Paper Contributions Proposal of a Terminological naïve Bayesian classifier for predicting class-membership probabilistically it is a naïve Bayesian network modeling the conditional dependencies between a learned set of Description Logic (complex) concepts and a target concept it deals with the incomplete knowledge due the OWA by considering different ignorance models: Missing Completely at Random Missing at Random Informatively Missing

5 Knowledge Base Representation The Reference Representation Language Bayesian Networks Assumption: resources, concepts and relationships are defined in terms of a representation that can be mapped to some DL language (with the standard model-theoretic semantics) K = T, A T-box T is a set of definitions A-box A contains extensional assertions on concepts and roles e.g. C(a) and R(a, b) The set of the individuals (resources) occurring in A will be denoted Ind(A)

6 Basics of Bayesian Networks... The Reference Representation Language Bayesian Networks A Bayesian network (BN) is a DAG G representing the conditional dependencies in a set of random variables Each vertex in G corresponds to a random variable X i Each edge in G indicates a direct influence relation between the two connected random variables A set of conditional probability distributions θ G is associated with each vertex Each vertex X i in G is conditionally independent of any subset S Nd(X i ) of vertices that are not descendants of X i

7 ...Basics of Bayesian Networks The Reference Representation Language Bayesian Networks The joint probability distribution Pr(X 1,..., X n ) over a set of random variables {X 1,..., X n } is computed as Pr(X 1,..., X n ) = n Pr(X i parents(x i )); i=1 Given a BN, it is possible to evaluate inference queries by marginalization To decrease the inference complexity the naïve Bayes network is often considered it is assumed that the presence (or absence) of a particular feature (random variable) of a class is unrelated to the presence (or absence) of any other feature, given the class variable (random variable)

8 Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models Terminological Naïve Bayesian Network: Definition A Terminological Bayesian Network (TBN) N K, w.r.t. defined as a pair G, Θ G, where: G = V, E is a directed acyclic graph, in which: a DL KB K, is V = {F 1,..., F n, C} is a set of vertices, each F i representing a DL (eventually complex) concepts defined over K and C representing a target concept E V V is a set of edges, modeling the dependence relations between the elements of V; Θ G is a set of conditional probability distributions (CPD), one for each V V, representing the conditional probability of the feature concept given its parents in the graph In the case of a Terminological Naïve Bayesian Network, E = { C, F i i {1,..., n}}, namely i, j {1,..., n} and i j F i is independent of F j given the value of the target concept

9 Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models Terminological Naïve Bayesian Network: Example Given: a set of DL feature concepts F = {Female, HasChild := haschild.person} (variable names are used instead of complex feature concepts) a target concept Father the Terminological Naïve Bayesian Network is: Pr(Female Father) Pr(Female Father) Female Father Pr(HasChild Father) Pr(HasChild Father) HasChild

10 Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models Given: a target concept C a DL KB K = T, A the sets of of positive, negative and neutral examples for C, denoted with Ind + C (A), Ind C (A) and Ind C 0 (A), so that: a Ind + C (A) : K = C(a), a Ind C (A) : K = C(a), a IndC 0 (A) : K = C(a) K = C(a); an ignorance model a scoring function score for a TBN N K w.r.t. Ind C (A) Find: a network NK maximizing the scoring function N K arg max N K score(n K, Ind C (A)))

11 TBN: the Learning Algorithm... Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models function learn(k, Ind C (A)) {The TBN is initialized as containing only the target concept node} NK = G, Θ G ; G = V {C}, E ; N K ; repeat N K NK ; {A new network is created, having one more node and different parameters than the previous one} Network = c, N K, s extend(n K, Ind C (A)); NK N K ; {Possible stopping conditions: a) improvements in score below a threshold; b) reaching a maximum number of nodes} until stopping criterion on Network; return N K ;

12 ...TBN: the Learning Algorithm Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models function extend(n K, Ind C (A)) Concept Start; Best ; repeat Concepts ; for c {c ρ cl (Concept) c min( c + d, maxlen)} do V V {c }; N K optimalnetwork(v, Ind C (A)); s score(n K, Ind C (A)); Concepts Concepts { c, N K, s }; end for Best arg max c,n K,s Concepts {Best} s ; Concept c : c, N K, s = Best; {Possible stopping conditions: a) exceeding a maximum number of iterations; b) exceeding a maximum number of refinement steps} until Stopping criterion on Best; return Best;

13 Learning a Naïve TBN: Example Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models Initial Network Searching for the first feature F ather Male F emale haschild. hasp arent. P erson married. Adding the first feature to the network Searching for the second feature F ather F emale P erson Mammal haschild.p erson hasp arent.p erson hassibling. married. Adding the second feature to the network F ather F emale haschild.p erson

14 The ignorance models Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models To learn the TBN, different assumptions (ignorance models) on the nature of the missing information are considered, given an ideal KB K having additional knowledge: MCAR (Missing Completely At Random) the probability that a C I is missing is independent of any kind of (additional) knowledge: Pr(K = C(a) K = C(a) K ) = Pr(K = C(a) K = C(a)); MAR (Missing At Random) the probability that a C I is missing depends only from K and does not depend on additional knowledge: Pr(K = C(a) K = C(a) K ) = Pr(K = C(a) K = C(a) K); NMAR (Not Missing At Random or IM, Informatively Missing) the probability that a C I is missing could be not the same if additional knowledge is available Pr(K = C(a) K = C(a) K ) Pr(K = C(a) K = C(a) K).

15 TBN under MCAR assumption Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models Only positive and negative examples is considered Parameters estimated by the use of the frequency distribution score computed as the log-likelihood on training data: L(N K Ind C (A)) = = log Pr(C(a) N K ) + log Pr( C(a) N K ); a Ind + C (A) a Ind C (A)

16 TBN under MAR assumption Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models Positive, negative and neutral examples are considered The EM algorithm is adopted for parameters estimation score is computed as the log-likelihood on training data considering also the neutral examples L(N K Ind C (A)) = + a IndC 0 (A) C {C, C} a Ind + C (A) log Pr(C(a) N K ) + log Pr(C (a) N K ) Pr(C N K ) a Ind C (A) log Pr( C(a) N K );

17 TBN under NMAR assumption Defining a Terminological Naïve Bayesian Network TBN: the Learning Algorithm The Ignorance Models Positive and negative examples are considered For the neutral examples, all the possible fillings are considered Robust Bayesian estimation (RBE) is adopted to learn conditional probability distributions probability intervals are determined instead of single probability values score: as for MCAR considering the mean value of the probability intervals

18 : Example Given: the feature concepts F = {Female, HasChild} the target concept Father the naïve TBN of the previous example the DL KB K an individual a s.t. K = HasChild(a) while the membership of a to Female is not known The probability that a is instance of Father is given by: Pr(Father(a)) = Pr(Father) Pr(HasChild Father) Pr(Father ) Pr(HasChild Father ) ; Father {Father, Father}

19 Classifying individuals using RBE: Example A naïve TBN using Robust Bayesian Estimation for inferring posterior probability intervals in presence of NMAR assumption is s.t. conditional probability contain probability intervals (defined by upper and lower bound) instead of probability values [Pr(Female Father),Pr(Female Father)] [Pr(Female Father),Pr(Female Father)] Female Father [Pr(HasChild Father),Pr(HasChild Father)] [Pr(HasChild Father),Pr(HasChild Father)] HasChild Inference on a instance of Father given that K = HasChild(a), is given by the interval [Pr(Father HasChild), Pr(Father HasChild)], where: Pr(Fa(a)) = Pr(Fa HC) = Pr(Fa(a)) = Pr(Fa HC) = Pr(HC Fa)Pr(Fa) Pr(HC Fa)Pr(Fa) + Pr(HC Fa)Pr( Fa) ; Pr(HC Fa)Pr(Fa) Pr(HC Fa)Pr(Fa) + Pr(HC Fa)Pr( Fa) ;

20 Conclusions & Future Work Conclusions: Proposed a ML method based on the naïve Bayes assumption for estimating the probability that a generic individual belongs to a certain target concept, given its membership relation to an induced set of (complex) DL concepts an ignorance model for handling incomplete knowledge Future works: experimenting with the method finding optimizations of the proposed method

21 The End That s all! Questions?

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data SUPPLEMENTARY MATERIAL A FACTORED DELETION FOR MAR Table 5: alarm network with MCAR data We now give a more detailed derivation

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net Bayesian Networks aka belief networks, probabilistic networks A BN over variables {X 1, X 2,, X n } consists of: a DAG whose nodes are the variables a set of PTs (Pr(X i Parents(X i ) ) for each X i P(a)

More information

{ p if x = 1 1 p if x = 0

{ p if x = 1 1 p if x = 0 Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 4 Learning Bayesian Networks CS/CNS/EE 155 Andreas Krause Announcements Another TA: Hongchao Zhou Please fill out the questionnaire about recitations Homework 1 out.

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Learning Bayesian Networks (part 1) Goals for the lecture

Learning Bayesian Networks (part 1) Goals for the lecture Learning Bayesian Networks (part 1) Mark Craven and David Page Computer Scices 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some ohe slides in these lectures have been adapted/borrowed from materials

More information

Probabilistic Representation and Reasoning

Probabilistic Representation and Reasoning Probabilistic Representation and Reasoning Alessandro Panella Department of Computer Science University of Illinois at Chicago May 4, 2010 Alessandro Panella (CS Dept. - UIC) Probabilistic Representation

More information

Introduction to Bayesian Learning

Introduction to Bayesian Learning Course Information Introduction Introduction to Bayesian Learning Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Apprendimento Automatico: Fondamenti - A.A. 2016/2017 Outline

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Preliminaries Bayesian Networks Graphoid Axioms d-separation Wrap-up. Bayesian Networks. Brandon Malone

Preliminaries Bayesian Networks Graphoid Axioms d-separation Wrap-up. Bayesian Networks. Brandon Malone Preliminaries Graphoid Axioms d-separation Wrap-up Much of this material is adapted from Chapter 4 of Darwiche s book January 23, 2014 Preliminaries Graphoid Axioms d-separation Wrap-up 1 Preliminaries

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Review: Bayesian learning and inference

Review: Bayesian learning and inference Review: Bayesian learning and inference Suppose the agent has to make decisions about the value of an unobserved query variable X based on the values of an observed evidence variable E Inference problem:

More information

A Tutorial on Learning with Bayesian Networks

A Tutorial on Learning with Bayesian Networks A utorial on Learning with Bayesian Networks David Heckerman Presented by: Krishna V Chengavalli April 21 2003 Outline Introduction Different Approaches Bayesian Networks Learning Probabilities and Structure

More information

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Bayesian networks: Representation

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Bayesian networks: Representation STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas Bayesian networks: Representation Motivation Explicit representation of the joint distribution is unmanageable Computationally:

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Qualifier: CS 6375 Machine Learning Spring 2015

Qualifier: CS 6375 Machine Learning Spring 2015 Qualifier: CS 6375 Machine Learning Spring 2015 The exam is closed book. You are allowed to use two double-sided cheat sheets and a calculator. If you run out of room for an answer, use an additional sheet

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Alessandro Antonucci Marco Zaffalon IDSIA, Istituto Dalle Molle di Studi sull

More information

Bayesian Networks. 10. Parameter Learning / Missing Values

Bayesian Networks. 10. Parameter Learning / Missing Values Bayesian Networks Bayesian Networks 10. Parameter Learning / Missing Values Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial C:145 Artificial Intelligence@ Uncertainty Readings: Chapter 13 Russell & Norvig. Artificial Intelligence p.1/43 Logic and Uncertainty One problem with logical-agent approaches: Agents almost never have

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 2: Directed Graphical Models Theo Rekatsinas 1 Questions Questions? Waiting list Questions on other logistics 2 Section 1 1. Intro to Bayes Nets 3 Section

More information

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Introduction to Bayes Nets CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Introduction Review probabilistic inference, independence and conditional independence Bayesian Networks - - What

More information

An Introduction to Description Logic III

An Introduction to Description Logic III An Introduction to Description Logic III Knowledge Bases and Reasoning Tasks Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, November 6 th 2014

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Aaron C. Courville Université de Montréal Note: Material for the slides is taken directly from a presentation prepared by Christopher M. Bishop Learning in DAGs Two things could

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

A Brief Introduction to Graphical Models. Presenter: Yijuan Lu November 12,2004

A Brief Introduction to Graphical Models. Presenter: Yijuan Lu November 12,2004 A Brief Introduction to Graphical Models Presenter: Yijuan Lu November 12,2004 References Introduction to Graphical Models, Kevin Murphy, Technical Report, May 2001 Learning in Graphical Models, Michael

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

On the errors introduced by the naive Bayes independence assumption

On the errors introduced by the naive Bayes independence assumption On the errors introduced by the naive Bayes independence assumption Author Matthijs de Wachter 3671100 Utrecht University Master Thesis Artificial Intelligence Supervisor Dr. Silja Renooij Department of

More information

Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme. Tanya Braun (Exercises)

Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme. Tanya Braun (Exercises) Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Exercises) Slides taken from the presentation (subset only) Learning Statistical Models From

More information

Directed Graphical Models

Directed Graphical Models Directed Graphical Models Instructor: Alan Ritter Many Slides from Tom Mitchell Graphical Models Key Idea: Conditional independence assumptions useful but Naïve Bayes is extreme! Graphical models express

More information

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects

More information

Extensions of Bayesian Networks. Outline. Bayesian Network. Reasoning under Uncertainty. Features of Bayesian Networks.

Extensions of Bayesian Networks. Outline. Bayesian Network. Reasoning under Uncertainty. Features of Bayesian Networks. Extensions of Bayesian Networks Outline Ethan Howe, James Lenfestey, Tom Temple Intro to Dynamic Bayesian Nets (Tom Exact inference in DBNs with demo (Ethan Approximate inference and learning (Tom Probabilistic

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III Bayesian Networks Announcements: Drop deadline is this Sunday Nov 5 th. All lecture notes needed for T3 posted (L13,,L17). T3 sample

More information

T Machine Learning: Basic Principles

T Machine Learning: Basic Principles Machine Learning: Basic Principles Bayesian Networks Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK) Autumn 2007

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lecture 4 Learning Bayesian belief networks Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administration Midterm: Monday, March 7, 2003 In class Closed book Material covered by Wednesday, March

More information

Causality in Econometrics (3)

Causality in Econometrics (3) Graphical Causal Models References Causality in Econometrics (3) Alessio Moneta Max Planck Institute of Economics Jena moneta@econ.mpg.de 26 April 2011 GSBC Lecture Friedrich-Schiller-Universität Jena

More information

Probabilistic clustering

Probabilistic clustering Aprendizagem Automática Probabilistic clustering Ludwig Krippahl Probabilistic clustering Summary Fuzzy sets and clustering Fuzzy c-means Probabilistic Clustering: mixture models Expectation-Maximization,

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Data Mining 2018 Bayesian Networks (1)

Data Mining 2018 Bayesian Networks (1) Data Mining 2018 Bayesian Networks (1) Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Data Mining 1 / 49 Do you like noodles? Do you like noodles? Race Gender Yes No Black Male 10

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Bayesian Networks

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Bayesian Networks STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Bayesian Networks Representing Joint Probability Distributions 2 n -1 free parameters Reducing Number of Parameters: Conditional Independence

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Directed Probabilistic Graphical Models CMSC 678 UMBC

Directed Probabilistic Graphical Models CMSC 678 UMBC Directed Probabilistic Graphical Models CMSC 678 UMBC Announcement 1: Assignment 3 Due Wednesday April 11 th, 11:59 AM Any questions? Announcement 2: Progress Report on Project Due Monday April 16 th,

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Chapter 2 The Naïve Bayes Model in the Context of Word Sense Disambiguation

Chapter 2 The Naïve Bayes Model in the Context of Word Sense Disambiguation Chapter 2 The Naïve Bayes Model in the Context of Word Sense Disambiguation Abstract This chapter discusses the Naïve Bayes model strictly in the context of word sense disambiguation. The theoretical model

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Chapter 8&9: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu March 12, 2013 Midterm Report Grade Distribution 90-100 10 80-89 16 70-79 8 60-69 4

More information

Learning Bayesian networks

Learning Bayesian networks 1 Lecture topics: Learning Bayesian networks from data maximum likelihood, BIC Bayesian, marginal likelihood Learning Bayesian networks There are two problems we have to solve in order to estimate Bayesian

More information

Bayesian Networks. Distinguished Prof. Dr. Panos M. Pardalos

Bayesian Networks. Distinguished Prof. Dr. Panos M. Pardalos Distinguished Prof. Dr. Panos M. Pardalos Center for Applied Optimization Department of Industrial & Systems Engineering Computer & Information Science & Engineering Department Biomedical Engineering Program,

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification

Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification G. Corani 1, A. Antonucci 1, and M. Zaffalon 1 IDSIA, Manno, Switzerland {giorgio,alessandro,zaffalon}@idsia.ch

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Structure Learning: the good, the bad, the ugly

Structure Learning: the good, the bad, the ugly Readings: K&F: 15.1, 15.2, 15.3, 15.4, 15.5 Structure Learning: the good, the bad, the ugly Graphical Models 10708 Carlos Guestrin Carnegie Mellon University September 29 th, 2006 1 Understanding the uniform

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Choosing Hypotheses Generally want the most probable hypothesis given the training data Maximum a posteriori

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

Uncertainty. Introduction to Artificial Intelligence CS 151 Lecture 2 April 1, CS151, Spring 2004

Uncertainty. Introduction to Artificial Intelligence CS 151 Lecture 2 April 1, CS151, Spring 2004 Uncertainty Introduction to Artificial Intelligence CS 151 Lecture 2 April 1, 2004 Administration PA 1 will be handed out today. There will be a MATLAB tutorial tomorrow, Friday, April 2 in AP&M 4882 at

More information

Representation. Stefano Ermon, Aditya Grover. Stanford University. Lecture 2

Representation. Stefano Ermon, Aditya Grover. Stanford University. Lecture 2 Representation Stefano Ermon, Aditya Grover Stanford University Lecture 2 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 2 1 / 32 Learning a generative model We are given a training

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Bayesian Networks to design optimal experiments. Davide De March

Bayesian Networks to design optimal experiments. Davide De March Bayesian Networks to design optimal experiments Davide De March davidedemarch@gmail.com 1 Outline evolutionary experimental design in high-dimensional space and costly experimentation the microwell mixture

More information

Epistemic and Statistical Probabilistic Ontologies

Epistemic and Statistical Probabilistic Ontologies Epistemic and Statistical Probabilistic Ontologies Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, Riccardo Zese ENDIF University of Ferrara, Italy fabrizio.riguzzi@unife.it, elena.bellodi@unife.it, evelina.lamma@unife.it,

More information

Lecture 5: Bayesian Network

Lecture 5: Bayesian Network Lecture 5: Bayesian Network Topics of this lecture What is a Bayesian network? A simple example Formal definition of BN A slightly difficult example Learning of BN An example of learning Important topics

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Yuriy Sverchkov Intelligent Systems Program University of Pittsburgh October 6, 2011 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa)

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Representing Uncertainty Manfred Huber 2005 1 Reasoning with Uncertainty The goal of reasoning is usually to: Determine the state of the world Determine what actions to take

More information

Conditional Independence

Conditional Independence Conditional Independence Sargur Srihari srihari@cedar.buffalo.edu 1 Conditional Independence Topics 1. What is Conditional Independence? Factorization of probability distribution into marginals 2. Why

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models, Spring 2015 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Yi Cheng, Cong Lu 1 Notation Here the notations used in this course are defined:

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information