Laser in Fusion. Department of Electronics of TEI of Crete. Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group

Size: px
Start display at page:

Download "Laser in Fusion. Department of Electronics of TEI of Crete. Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group"

Transcription

1 Laser in Fusion Department of Electronics of TEI of Crete Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group

2 Nuclear Fusion Since we have tried any energy source in our planet, and since we have burn all the found coal quantities, we have reached the minimum of our energy resources. At the same time we have polluted our environment so much. Now we turn our attention to the star s energy!! Fusion can give us the energy equivalent of oceans of oil

3 Fusion

4 Fusion Through fusion we get: (α) Environmental friendly energy (b) High efficiency source: The reaction of deuterium with tritium is characterized from a very high efficiency of transformation of mass to energy. (c) Covers the energy needs of our planet. Advantages of laser fusion: (a) There is no production of CO 2 (b) Minimum radioactive products (c) The fusion fuel exist in vast quantities in sea water and underground. (d) Each reaction does not demand vast quantities of fuel.

5 Nuclear Fusion Historical Review 1905: Einstein introduced the famous equation E= mc 1920: Francis William Aston discovered the 4 hydrogen isotopes : Arthur Eddington suggested that the Sun produces energy by transforming the hydrogen nucleus into Helium nucleus accompanied with instantaneous emission of energy 1939: Hans Bethe introduced the theory concerning the energy production in stars. (Nobel prize 1968). 1930s: The first experiments concerning nuclear fusion took part in Cavendish laboratories in Cambridge University. 1950s: Nuclear fusion experiments in Harwell (UK).

6 Laser in fusion What is the nuclear fusion? The nuclear fusion is the joining together two lighter nuclei in order to generate a a heavier one. During this procedure we have the emission or the absorption of energy. The joining of two nuclei with total mass smaller than the iron nucleus leads to emission of energy whereas the joining of two nuclei with total mass bigger than this of iron leads to absorption of energy. The simplest example of fusion: The fusion between deuterium ( 2 Η 1 proton and 1 neutron ) and tritium ( 3 Η 1 proton και 2 neutrons) that generates Helium 4 and neutrons particles (total emitted energy equal to 17.6 ΜeV of energy).

7 Laser in fusion What is nuclear fusion? The nucleus energy is getting higher as bigger the nucleus is. The maximum value that tales is that of iron and nickel. From this point the nucleus energy is getting smaller as the nucleons number increases. In order the Coulomb repulsion force to be overcome we need energy of the order of 0.01 MeV. During the fusion reaction among Deuterium and Tritium the energy that is Released is of the order of 17.6 MeV.

8 Laser in Fusion What is nuclear fusion?

9 Laser in Fusion What is nuclear fusion?

10 Laser in fusion What is nuclear fusion; The nuclear fusion is a reaction that takes place in stars of our universe. In 1940 the Manhattan project it was the first attempt to apply nuclear fusion for military purposes. The attempt to apply the nuclear fusion for peaceful purposes started in 1950s

11 Laser in Fusion What is nuclear fusion; In order a nuclear fusion to take place the isotopes nuclei should be brought very close each other. That s how the Coulomb repulsive forces are going to be overcome. The non-controlled nuclear fusion leads to nuclear explosions. Application of this is the nuclear bomb.

12 Laser in fusion What is nuclear fusion? The controlled nuclear fusion has a target to produce electrical current and that s why 50 years now there is an intense research activity in this field. In Tokamak reactors we use magnetic fields in order to bring the nuclei close enough to initiate the nuclear fusion among the isotopes. Using this technology it has been achieved the production of energy 10 times more than the energy that is required to to trigger the fusion reaction. The initial heating (10 kev) of the isotopes is necessary in order to overcome the Coulomb repulsion. 1 ev = 11,604 K

13 Laser in fusion What is nuclear fusion? The rate f at which the fusion reactions take place depends on the average value of their cross section σ times the reactants (hydrogen isotopes) velocity times the reactants density n 1 & n 2. Thus: The multiplication of the cross section of the reactants σ times their velocity increases as the temperature elevates. Lawson criterion: The longer the time that the reactants are kept close enough and at the same time the higher their concentration is, the higher the rate of fusion reaction is. In order a nuclear fusion to take place the above mentioned product should satisfy the following condition: f = nn 1 2συ nτ = sec/ cm

14 Lasers in fusion What is nuclear fusion? In order to satisfy the Lawson criterion some temporal confinement techniques should be applied in order to keep the reactants within the smallest available volume. The temporal confinement techniques are the following: (a) Gravitational confinement: Takes place in the interior of stars. (b) Magnetic confinement: Tokamak reactors (n = cm -3, τ = 1 sec) (c) Inertial confinement: A pulse of a laser illuminates the fuel and causes its temperature to elevate under high pressure conditions. The reactants concentrations are so high that fusion reaction takes place.. (n = cm -3, τ = sec)

15 Lasers in fusion What is nuclear fusion?

16 Laser in Fusion The use of lasers in fusion is directly related to inertial confinement scheme. The pressure that are developed is of the order of Atm and the temperatures that can be reached is of the order of 100 million Kelvins. The big target is: The creation of an unlimited energy source. The fuel (mixture of deuterium and tritium) is placed within a capsule of a pill size. The inertial confinement demands the symmetrical illumination of the target. This reduces the energy required for fusion by a factor of The nuclear fusion that involves deuterium and tritium is preferable since it has the lowest threshold.

17 Laser in Fusion Fusion Reactions

18 Laser in fusion

19 Laser in Fusion The fuel implosion efficiency is close to 10 15%. During the last phase of implosion the acquired pressure is of the order of 200 Gbars The important parameters during the implosion phase are: (a) The ratio R / R where R is the pellet radius and R is its thickness. Hydrodynamic instabilities set a limit to the above ratio. The ratio value is related with the minimum pressure that is required in order the fusion reaction to take place. Typical values are located between 25 up to 35. These ratio values correspond to pressures equal to 100 Mbars and laser intensities of W / cm 2

20 Lasers in fusion (b) The convergence ratio defines the ratio of the initial radius R A to the final radius r HS. Typical values for nuclear fusion to take place is of the order of The energy that is released during the nuclear fusion can be estimated using the following relationship: E F = εφm f where ε f is the energy per unit mass that is emitted, φ is the reaction efficiency and Μ is the exploded mass. Nuclear fusion will take place when: nτ > sec/ cm 14 3

21 Τα Laser στην θερµοπυρηνική σύντηξη The combination of the confinement and the mass explosion can further increase the exerted pressure to the fuel from 10 8 Atm to Atm. In order fusion to take part the target fuel should be illuminated uniformly spatially and temporally.

22 Laser in fusion Target of the nuclear fusion that uses inertial confinement is: (α) Generation of temperatures in the target area of the order of > 5 kev (b) The product of density to final radius to be > 0.3 g cm -2. (c) The generated Helium nuclei through collisions accelerate Deuterium and Tritium and the whole procedure goes on. Through the Lawson criterion is valid that is equivalent to have a high density of reactants for a short time confined with the situation to have a low density reactants for a long time under confinement. In the case of laser fusion is attempted the greatest density of reactants. Their confinement time is related to their inertial.

23 Laser in fusion In the case of laser fusion with inertial confinement the following things are valid: (a) Minimum fuel mass ( deuterium and tritium ) ~ ρ -2 (ρ: density) (b) Minimum energy of ignition ~ P -2 (P: pressure) Requirements: (a) Few tens of MJ of laser energy to illuminate the target within 10 ns. (b) The density of fuels should be of the order of 30 g cm -3, the exerted pressure of the order of 120 Gbar, and the fuel mass equals to g in the ignition point. (d) Symmetrical illumination of the target. The efficiency of the reaction is almost 100.

24 (α) The laser light illuminates the target. Laser in fusion (b) The laser radiation exert a pressure to the fuel target. As a consequence the target is compressed and at the same time plasma is created around the target. (c) The radiation pressure is a function of the laser radiation intensity and on laser wavelength. (d) The velocity with which the target is confined is: V implosion = P a ( r ) r (e) The target is confined up to the point where the exerted pressure takes the value: r Pimplosion = P ablation G r

25 Lasers in fusion (f) The pressure during the confinement has an initial value of the order of 30 Mbar and just before the implosion of the fuel reaches a value of the order of 100 Gbar. (g) Typical dimensions of the fuel pellet : (i) Initially: radius 3 mm, thickness 0.5 mm (ii) finally: radius 0.1 mm (confinement ratio 30:1) Theoretical calculations has shown us that the released energy during nuclear fusion depends on the final pellet radius and the final value of the exerted pressure. The greater the final pressure is the lower the energy that the fusion reaction starts. The requirements from the laser source are: (a) Symmetrical illumination of the target. (b) Laser intensity of W / cm 2 emitted in ultraviolet region. (c) Use of many laser beams (~ 50).

26 Lasers in fusion

27 Lasers in fusion

28

29

30 Lasers in fusion There are three different architectures schemes in order to trigger laser fusion: (α) Direct Drive (β) Fast Ignition (γ) Indirect Drive

31 Lasers in fusion The direct drive scheme (a) is the simplest one. The target is illuminated symmetrically by hundreds laser beams. This technique is characterized by high gain but also from strong hydrodynamic instabilities that probably will obstruct the achievement of the desired fuel densities in order the fusion to take place. The laser beam should deliver its energy to the deuterium and tritium. This means that should penetrate through the generated plasma. Laser light can penetrate electron densities smaller than a critical value that is: nc ( 3 cm ) = 2 λ µm ( ) The laser light has in the majority of cases a wavelength equal to 0.35 µm.

32 Laser in fusion Fast Ignition Scheme This technique is less demanded. The compression and the heating of the target are two independent processes. The process of compression is similar to direct drive set up. The difference is that in fast ignition scheme less of lower power laser beams are used. As the target has compressed towards the density that fusion is ready to take place a 2 nd petawatt laser beam (pulse duration 10-8 sec) is focused into the plasma and within sec are achieved temperatures (high energy electrons are accelerated and collide with the deuterium and tritium) and the nuclear fusion starts. This scheme is characterized by the less energy that is needed in order nuclear fusion to start. HiPER, OMEGA, FIREX use this scheme

33 Lasers in fusion Fast Ignition Scheme

34 Τα Laser στην θερµοπυρηνική σύντηξη Fast Ignition Scheme

35 Lasers in fusion Fast Ignition Scheme

36 Lasers in fusion The HiPER project High Power laser Energy Research 200 kj long pulse & 70 kj short pulse laser beams (CPA lasers) Objectives: (α) Clean energy source (b) Unlimited energy source (c) Capability to perform a high quality research: Budget : 800 εκατοµµύρια euros Complement by 2020

37 Τα Laser στην θερµοπυρηνική σύντηξη Το πρόγραµµα HiPER The laser that HiPER is going to be used is the PΕTAL and is located in France. PETAL: PETawatt Aquitaine Laser (3.5 kj, pulse duration ps).

38 Τα Laser στην θερµοπυρηνική σύντηξη Το πρόγραµµα HiPER

39 Lasers in fusion The OMEGA EP project Location: Rochester, USA. Fast ignition scheme. Start date: laser beams are going to deliver Joules to a focus point of 1 mm diameter. This energy is going to be delivered within 1 ns.

40 Lasers in fusion The FIREX project Location: Osaka, Japan Fast Ignition Scheme Establishment date: 2003

41 Lasers in fusion Indirect Drive Scheme The technique for laser fusion with the greatest potential is the indirect drive. This set up will use two of the biggest facilities in the world: (a) National Ignition Facility (NIF) (USA) (3.5 billions of dollars investment, 1.8 millions of Joules energy). (b) Laser MegaJoule (LMJ) (France) The basic principles of the indirect drive are the same with that one of direct drive one. The only difference is that the fuel is contained in a golden made cylinder. The compression of the target is made by the Χ rays that are generated (efficiency of 70 80%) internally to the cylinder through cylinder illumination by laser beams

42 Lasers in fusion Indirect drive scheme

43 Lasers in fusion Fast Ignition Scheme with proton particles

44 Lasers in fusion Fast Ignition Scheme with proton particles The indirect drive technique is not using the laser beams to trigger the laser fusion. We can use charged particles such as protons to suppress the target. Advantages: (a) Steady propagation through the generated plasma. (b) High efficiency Disadvantages: The intensity of the protons beam (beam diameter, pulse duration). This technique can be used in direct and indirect setup.

45 Lasers in fusion References Lasers generate plasma power, Mike Key, Physics World August 1991, pp Laser Compression of Matter to Super High Densities: Thermonuclear Applications, John Nuckolls et.al., Nature Vol. 239, September 15, 1972, pp Incoherent light on the road to ignition, C. Labaune, Nature Vol.3, October 2007, pp Ενέργεια / ΒΗΜΑ Science Κυριακή 24 Ιουνίου 2007 ΒΒC Horizon A high power laser fusion facility for Europe, M. Dunne, Nature Physics, Vol.2, January 2006, pp 2 5. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Kodama etal, Nature Vol. 412, 23 August 2001, pp Fast heating scalable to laser fusion ignition, Kodama etal, Nature, Vol. 418, August 2002, pp

46 Lasers in fusion References Fast track to fusion energy, M. Key, Nature Vol. 412, 23 August 2001, pp For Nuclear Fusion, Could Two Lasers Be Better Than One?, M. Schirber, Science Vol. 310, pp Laser facility flickers into life, E. Hand, Nature Vol. 457, 29 January 2009, pp. 517 A new age for science?, A. Jenkins, Nature Photonics Vol. 2, January 2008, pp Fast Ignition by Intense Laser Accelerated Proton Beams, Roth etal., Physical Review Letters, Vol. 86, Number 3, 15 January 2001, pp Extreme Light, Gerstner, Nature Vol. 446, 1 March 2007, pp NIF wakes up, Nature Photonics, Vol. 3, April 2009, pp 177. Ηδηµιουργία ενός αστεριού ΗΚΑΘΗΜΕΡΙΝΗ, 12 Απριλίου 2009, σελ. 26

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 3873-3889 (1998)

More information

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE In the beginning In the late fifties, alternative applications of nuclear explosions were being considered the number one suggestion

More information

Exploration of the Feasibility of Polar Drive on the LMJ. Lindsay M. Mitchel. Spencerport High School. Spencerport, New York

Exploration of the Feasibility of Polar Drive on the LMJ. Lindsay M. Mitchel. Spencerport High School. Spencerport, New York Exploration of the Feasibility of Polar Drive on the LMJ Lindsay M. Mitchel Spencerport High School Spencerport, New York Advisor: Dr. R. S. Craxton Laboratory for Laser Energetics University of Rochester

More information

What is. Inertial Confinement Fusion?

What is. Inertial Confinement Fusion? What is Inertial Confinement Fusion? Inertial Confinement Fusion: dense & short-lived plasma Fusing D and T requires temperature to overcome Coulomb repulsion density & confinement time to maximize number

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

Nuclear Chemistry. Chapter 24

Nuclear Chemistry. Chapter 24 Nuclear Chemistry Chapter 24 Radioactivity Radioisotopes are isotopes that have an unstable nucleus. They emit radiation to attain more stable atomic configurations in a process called radioactive decay.

More information

ICF ignition and the Lawson criterion

ICF ignition and the Lawson criterion ICF ignition and the Lawson criterion Riccardo Betti Fusion Science Center Laboratory for Laser Energetics, University of Rochester Seminar Massachusetts Institute of Technology, January 0, 010, Cambridge

More information

Lecture 31 Chapter 22, Sections 3-5 Nuclear Reactions. Nuclear Decay Kinetics Fission Reactions Fusion Reactions

Lecture 31 Chapter 22, Sections 3-5 Nuclear Reactions. Nuclear Decay Kinetics Fission Reactions Fusion Reactions Lecture Chapter, Sections -5 Nuclear Reactions Nuclear Decay Kinetics Fission Reactions Fusion Reactions Gamma Radiation Electromagnetic photons of very high energy Very penetrating can pass through the

More information

The Twinkle in Mother Earth s Eye: Promising fusion power. What if you could have a miniature star powering your house, your computer, and your car?

The Twinkle in Mother Earth s Eye: Promising fusion power. What if you could have a miniature star powering your house, your computer, and your car? The Twinkle in Mother Earth s Eye: Promising fusion power What if you could have a miniature star powering your house, your computer, and your car? How cool would that be! Stars produce a lot of energy,

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

Notes on fusion reactions and power balance of a thermonuclear plasma!

Notes on fusion reactions and power balance of a thermonuclear plasma! SA, 3/2017 Chapter 5 Notes on fusion reactions and power balance of a thermonuclear plasma! Stefano Atzeni See S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press (2004,

More information

Nuclear Energy Learning Outcomes

Nuclear Energy Learning Outcomes 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons. Describe the structure and operation of a nuclear reactor.

More information

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction by fastfission public domain by fastfission public domain 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons.

More information

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL PETAL+ plasma diagnostics The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL Jean-Éric Ducret CEA-Saclay/IRFU/Service d Astrophysique & CELIA UMR5107, U. Bordeaux CEA

More information

10.4 Fission and Fusion

10.4 Fission and Fusion This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The alchemists failed in their

More information

An introduction to Nuclear Physics

An introduction to Nuclear Physics An introduction to Nuclear Physics Jorge Pereira pereira@nscl.msu.edu National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics The Origin of Everything Layout The Nucleus.

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: Neutrons and protons are collectively

More information

Chapter 10 Section 4 Notes

Chapter 10 Section 4 Notes Chapter 10 Section 4 Notes This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The

More information

Nuclear Energy. Nuclear Structure and Radioactivity

Nuclear Energy. Nuclear Structure and Radioactivity Nuclear Energy Nuclear Structure and Radioactivity I. Review - Periodic Table A. Atomic Number: The number of protons in the nucleus of an atom B. Atomic Mass: The sum of the mass of protons, neutrons

More information

The Sun = Typical Star

The Sun = Typical Star The Sun = Typical Star Some Properties Diameter - 109 times Earth s Volume - about 1,000,000 times Earth s Mass - about 300,000 times Earth s 99.8% of Solar System Density = Mass/Volume = 1.4 g/cm 3 The

More information

Nuclear Fission & Fusion

Nuclear Fission & Fusion Nuclear Fission & Fusion 1 Nuclear Fission 2 There is a delicate balance between nuclear attraction and electrical repulsion between protons in the nucleus. Nuclear Fission If the uranium nucleus is stretched

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

Inertial Confinement Fusion Experiments & Modeling

Inertial Confinement Fusion Experiments & Modeling Inertial Confinement Fusion Experiments & Modeling Using X-ray Absorption Spectroscopy of Thin Tracer Layers to Diagnose the Time-Dependent Properties of ICF Ablator Materials David Cohen (Swarthmore College,

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Where are we with laser fusion?

Where are we with laser fusion? Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August

More information

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutrons: discovery In 1920, Rutherford postulated that there were neutral, massive particles in

More information

Laser Inertial Confinement Fusion Advanced Ignition Techniques

Laser Inertial Confinement Fusion Advanced Ignition Techniques Laser Inertial Confinement Fusion Advanced Ignition Techniques R. Fedosejevs Department of Electrical and Computer Engineering University of Alberta Presented at the Canadian Workshop on Fusion Energy

More information

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents.

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Table of Contents Slide 3 / 87 Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

Nuclear Physics

Nuclear Physics Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Slide 3 / 87 Table of Contents Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

Forces and Nuclear Processes

Forces and Nuclear Processes Forces and Nuclear Processes To understand how stars generate the enormous amounts of light they produce will require us to delve into a wee bit of physics. First we will examine the forces that act at

More information

Physics 2D Lecture Slides Jan 21. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 21. Vivek Sharma UCSD Physics Physics D Lecture Slides Jan 1 Vivek Sharma UCSD Physics Particle Accelerators as Testing ground for S. Relativity When Electron Goes Fast it Gets Fat E = γ mc v As 1, γ c Apparent Mass approaches Relativistic

More information

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX)

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) 1 Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) K. Mima 1), H. Azechi 1), H. Fujita 1), Y. Izawa 1), T. Jitsuno 1), T. Johzaki 1), Y. Kitagawa

More information

Fission & Fusion Movie

Fission & Fusion Movie Fission & Fusion Movie Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to

More information

Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications

Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications Joshua Levin January 9, 2009 (Edited: June 15, 2009) 1 Contents 1. Uncertainty

More information

How Is Nuclear Fusion Going?

How Is Nuclear Fusion Going? How Is Nuclear Fusion Going? Kehan Chen 2017/7/16 Math 190S Duke Summer College 1.Introduction In nuclear physics, nuclear fusion is a reaction in which two or more atomic nuclei come close enough to form

More information

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents.

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Table of Contents Slide 3 / 87 Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

Nuclear Physics. Nuclear Structure. Slide 1 / 87 Slide 2 / 87. Slide 4 / 87. Slide 3 / 87. Slide 6 / 87. Slide 5 / 87. Table of Contents.

Nuclear Physics. Nuclear Structure. Slide 1 / 87 Slide 2 / 87. Slide 4 / 87. Slide 3 / 87. Slide 6 / 87. Slide 5 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Slide 3 / 87 Slide 4 / 87 Table of Contents Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity

More information

Nuclear Physics

Nuclear Physics Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Slide 3 / 87 Table of Contents Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA High-Performance Inertial Confinement Fusion Target Implosions on OMEGA D.D. Meyerhofer 1), R.L. McCrory 1), R. Betti 1), T.R. Boehly 1), D.T. Casey, 2), T.J.B. Collins 1), R.S. Craxton 1), J.A. Delettrez

More information

Chapter 25: Radioactivity, Nuclear Processes, and Applications. What do we know about the nucleus? James Chadwick and the discovery of the neutron

Chapter 25: Radioactivity, Nuclear Processes, and Applications. What do we know about the nucleus? James Chadwick and the discovery of the neutron Chapter 25: Radioactivity, Nuclear Processes, and Applications What do we know about the nucleus? Rutherford discovered Contains positively charged protons. Held together by the Nuclear Strong Force. The

More information

NUCLEI. Atomic mass unit

NUCLEI. Atomic mass unit 13 NUCLEI Atomic mass unit It is a unit used to express the mass of atoms and particles inside it. One atomic mass unit is the mass of atom. 1u = 1.660539 10. Chadwick discovered neutron. The sum of number

More information

Nuclear fission and fusion are processes that involve extremely large amounts of energy.

Nuclear fission and fusion are processes that involve extremely large amounts of energy. Nuclear Reactions & Energy Nuclear fission and fusion are processes that involve extremely large amounts of energy. Fission = the splitting of a large nucleus into two smaller nuclei, subatomic particles

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Inertial Confinement Fusion

Inertial Confinement Fusion Inertial Confinement Fusion Prof. Dr. Mathias Groth Aalto University School of Science, Department of Applied Physics Outline Principles of inertial confinement fusion Implosion/compression physics Direct

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Chapter 7 Review. Block: Date:

Chapter 7 Review. Block: Date: Science 10 Chapter 7 Review Name: KEY Block: Date: 1. Radioactivity is the release of high-energy particles and rays from a substance as a result of changes in the nuclei of its atoms.. _Natural background

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion. By F. Winterberg University of Nevada, Reno

Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion. By F. Winterberg University of Nevada, Reno Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion By F. Winterberg University of Nevada, Reno Abstract In DT fusion 80% of the energy released goes into 14MeV neutrons,

More information

http://imgs.xkcd.com/comics/cell_phones.png Announcements: Thursday: Group A to Hayes 105 for hands-on experience Group B comes here to work on worksheet Both groups: bring your calculator! Next Tuesday

More information

FUSION NEUTRON DEUTERIUM HELIUM TRITIUM.

FUSION NEUTRON DEUTERIUM HELIUM TRITIUM. FUSION AND FISSION THE SUN Nuclear Fusion Nuclear fusion is the process by which multiple nuclei join together to form a heavier nucleus. It is accompanied by the release or absorption of energy depending

More information

Physics 2D Lecture Slides Jan 22. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 22. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Jan 22 Vivek Sharma UCSD Physics Nuclear Fusion : What Powers the Sun Opposite of Fission Mass of a Nucleus < mass of its component protons+neutrons Nuclei are stable, bound

More information

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine M. Manfred Fairport High

More information

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u 5/5 A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u The number of neutrons in the nucleus is given by the symbol N. Clearly, N = A Z. Isotope:

More information

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Solar granulation Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 7 Tues 7 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Consider Sun s energy

More information

Hans Albrecht Bethe (1906- Nobel Prize for Physics (1967)

Hans Albrecht Bethe (1906- Nobel Prize for Physics (1967) ETH Geschichte der Radioaktivität Arbeitsgruppe Radiochemie Hans Albrecht Bethe (1906- Nobel Prize for Physics (1967) Hans A. Bethe was a German-born American theoretical physicist who helped to shape

More information

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence. Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence http://apod.nasa.gov/apod/astropix.html Outline of today s lecture Hydrostatic equilibrium: balancing gravity and pressure

More information

Lecture PowerPoints. Chapter 31 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 31 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 31 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Fission and Fusion Book pg cgrahamphysics.com 2016

Fission and Fusion Book pg cgrahamphysics.com 2016 Fission and Fusion Book pg 286-287 cgrahamphysics.com 2016 Review BE is the energy that holds a nucleus together. This is equal to the mass defect of the nucleus. Also called separation energy. The energy

More information

Lecture 35 Chapter 22, Sections 4-6 Nuclear Reactions. Fission Reactions Fusion Reactions Stellar Radiation Radiation Damage

Lecture 35 Chapter 22, Sections 4-6 Nuclear Reactions. Fission Reactions Fusion Reactions Stellar Radiation Radiation Damage Lecture 35 Chapter, Sections 4-6 Nuclear Reactions Fission Reactions Fusion Reactions Stellar Radiation Radiation Damage Induced Nuclear Reactions Reactions in which a nuclear projectile collides and reacts

More information

Nuclear Physics. AP Physics B

Nuclear Physics. AP Physics B Nuclear Physics AP Physics B Nuclear Physics - Radioactivity Before we begin to discuss the specifics of radioactive decay we need to be certain you understand the proper NOTATION that is used. To the

More information

Nuclear Fusion 1 of 24 Boardworks Ltd 2011

Nuclear Fusion 1 of 24 Boardworks Ltd 2011 Nuclear Fusion 1 of 24 Boardworks Ltd 2011 2 of 24 Boardworks Ltd 2011 How do we get energy from atoms? 3 of 24 Boardworks Ltd 2011 Energy is produced from atoms in power stations using the process of

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

The slides with white background you need to know. The slides with blue background just have some cool information.

The slides with white background you need to know. The slides with blue background just have some cool information. The slides with white background you need to know. The slides with blue background just have some cool information. The Big Bang cosmology the study of the origin, properties, processes, and evolution

More information

Chapter 21 Nuclear Chemistry

Chapter 21 Nuclear Chemistry Chapter 21 Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons and neutrons

More information

The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general

The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general Some Properties Diameter - 09 times Earth s Volume -

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl Neutron Transport Calculations Using Monte-Carlo Methods Sean Lourette Fairport High School Advisor: Christian Stoeckl Laboratory for Laser Energetics University of Rochester Summer High School Research

More information

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43 Slide 1 / 43 Nuclear Chemistry The Nucleus Slide 2 / 43 Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons

More information

OpenStax-CNX module: m Fusion * OpenStax. Abstract Dene nuclear fusion. Discuss processes to achieve practical fusion energy generation.

OpenStax-CNX module: m Fusion * OpenStax. Abstract Dene nuclear fusion. Discuss processes to achieve practical fusion energy generation. OpenStax-CNX module: m42659 1 Fusion * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Dene nuclear fusion. Discuss processes to

More information

91525: Demonstrate understanding of Modern Physics

91525: Demonstrate understanding of Modern Physics 91525: Demonstrate understanding of Modern Physics Modern Physics refers to discoveries since approximately 1890 that have caused paradigm shifts in physics theory. Note 3 has a list is for guidance only

More information

ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays

ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays V ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays R. A. Lerche M.D.Cable, P. G. Dendooven This paper was prepared for submittal to the 12th International Conference on Laser Interaction and

More information

Lecture PowerPoint. Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K.

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K. (a) State, with a reason, whether or not protons and neutrons are fundamental particles....... [] (b) State two fundamental particles that can be classified as leptons.... [] (c) Some fruits, such as bananas,

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Neutral beam plasma heating

Neutral beam plasma heating Seminar I b 1 st year, 2 nd cycle program Neutral beam plasma heating Author: Gabrijela Ikovic Advisor: prof.dr. Tomaž Gyergyek Ljubljana, May 2014 Abstract For plasma to be ignited, external heating is

More information

LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY

LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY Einstein s 1 st postulate states that the laws of physics are the same for all observers

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Presented by Rick Lee Chief Operator, DIII-D Operations Manager, Energy/Fusion Outreach Program General Atomics

More information

HiPER: a laser fusion facility for Europe

HiPER: a laser fusion facility for Europe HiPER: a laser fusion facility for Europe Prof Mike Dunne Director, Central Laser Facility, Rutherford Appleton Laboratory, UK m.dunne@rl.ac.uk www.hiper-laser.eu We are entering a new era Demonstration

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

TWO FUSION TYPES NEUTRONIC ANEUTRONIC

TWO FUSION TYPES NEUTRONIC ANEUTRONIC October 2016 October 2016 WHAT IS FUSION? TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC produces neutrons produces NO neutrons NEUTRONIC

More information

Nuclear Physics Part 1: Nuclear Structure & Reactions

Nuclear Physics Part 1: Nuclear Structure & Reactions Nuclear Physics Part 1: Nuclear Structure & Reactions Last modified: 25/01/2018 Links The Atomic Nucleus Nucleons Strong Nuclear Force Nuclei Are Quantum Systems Atomic Number & Atomic Mass Number Nuclides

More information

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 Physics 102: Lecture 26 X-rays Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 X-Rays Photons with energy in approx range 100eV to 100,000eV. This large energy means they

More information

CHAPTER 19 THE ATOMIC NUCLEUS NUCLEAR STRUCTURE The nucleus consists of protons and neutrons. A protonis a positively charged particle having mass 1.6726 x 10(-27) kg and charge 1.6 x 10(-19) coulomb.

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

Nuclear Chemistry. Transmutations and the Creation of Elements

Nuclear Chemistry. Transmutations and the Creation of Elements Nuclear Chemistry Transmutations and the Creation of Elements Nuclear Fusion When two smaller elements are fused together to form a larger element. Fusion is Hard! There are two competing forces in an

More information

Nuclear Energy 6/04/08. Lecture 22 1

Nuclear Energy 6/04/08. Lecture 22 1 Nuclear Energy Fission, Fusion, the Sun s s Energy What s s in a Nucleus The nucleus of an atom is made up of protons and neutrons each is about 2000 times the mass of the electron, and thus constitutes

More information

11.5 Nuclear Reactions: Fusion

11.5 Nuclear Reactions: Fusion 11.5 Nuclear Reactions: Fusion Nuclear fusion reactions occur in the Sun and supply the energy needed to sustain life on Earth (Figure 1). Nuclear fusion is the fusing or joining of two small nuclei to

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

BUBBLE POWER SYNOPSIS: 1. ABSTRACT INTRODUCTION 3. AN IDEA OF SONOFUSION 4. CONSTRUCTION & WORKING 5. FORMATION OF BUBBLES

BUBBLE POWER SYNOPSIS: 1. ABSTRACT INTRODUCTION 3. AN IDEA OF SONOFUSION 4. CONSTRUCTION & WORKING 5. FORMATION OF BUBBLES BUBBLE POWER (BASED ON: RENEWABLE AND NON-CONVENTIONAL SOURCE OF ELECTRICAL ENERGY) SYNOPSIS: 1. ABSTRACT INTRODUCTION 3. AN IDEA OF SONOFUSION 4. CONSTRUCTION & WORKING 5. FORMATION OF BUBBLES Page 1

More information

Atoms and Nuclei 1. The radioactivity of a sample is X at a time t 1 and Y at a time t 2. If the mean life time of the specimen isτ, the number of atoms that have disintegrated in the time interval (t

More information

Nuclear Energy; Effects and Uses of Radiation

Nuclear Energy; Effects and Uses of Radiation Nuclear Energy; Effects and Uses of Radiation Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place when a nucleus is struck by another nucleus or particle. Compare with chemical

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

Tuesday, January 25, Phobos, a moon of mars

Tuesday, January 25, Phobos, a moon of mars Phobos, a moon of mars Phobos, a moon of mars A Polar Ring Galaxy Neutrinos The Sun s Power Source Mid-19th Century Debate: Darwin Lord Kelvin Darwin: Earth must be at least 300 Million years old to account

More information