Servo Motors Classification Based on the Accelerating Factor

Size: px
Start display at page:

Download "Servo Motors Classification Based on the Accelerating Factor"

Transcription

1 Servo otors Classification Based on the Accelerating Factor Hermes GIBERTI, Simone CINQUEANI echanical Engineering Department, Politecnico di ilano, Campus Bovisa Sud, via La asa 34, 0156, ilano, Italy ABSTRACT This work is focused on the analysis of the so-called accelerating factor (α) [9,10] defined, for each motor, as the ratio between the square of the motor nominal torque and its momentum of inertia. The coefficient α is exclusively defined by parameters related to the motor and therefore it doesn t depend on the machine task: it can be calculated for each motor using the information collected in the manufacturer catalogues. Actually there is not any theoretical study that investigates the dependence of the accelerating factor on the electro-mechanical characteristics of the motor. One way to investigate these relationships is to collect information from catalogues of a significant number of motors produced by different manufacturers. This allows to have a statistical population on which perform appropriate analysis. For this reason a database containing more than 300 brushless motors has been created containing, for each record, information on the most important electro-mechanical characteristics. Using the collected information, some graphs are produced showing how motors having the same size have different accelerating factors. Keywords: Electric servo-motor; accelerating factor; continuous duty power rate 1. INTRODUCTION The need to increase production capability, while maintaining the quality standards, requires the implementation of automatic machines performance ever higher. In this context, it is of strategic importance in the machine design phase the correct selection of the motor-reducer unit. Unfortunately, the choice of the electric motor required to handle a dynamic load, is closely related to the transmission choice. This operation, in fact, is bound by the limitations imposed by the motor working range and it is subjected to a great number of constraints that depend indirectly on the motor (through its inertia) and on the reducer (through its transmission ratio, its mechanical efficiency and its inertia), whose selection is the object of the design. In literature there are many procedures for the selection of a motor-reducer unit [1-8] that, while all start from the same theoretical basis, they differ from their approach to the problem. This work is focused on the analysis of the continuous duty power rate (also called accelerating factor ) [8] defined, for each motor, as the ratio between the square of the motor nominal torque and its momentum of inertia. Each manufacturer of brushless synchronous motors adopts its own technological solutions and its constructive layout, which is generally different from those of another producer. However, the designer of an automatic machine who has to choose a motor, can consider all the motors as black boxes characterized by their accelerating factor. Actually there is not any theoretical study that investigates the dependence of the accelerating factor on the electro-mechanical characteristics of the motor, therefore the comparison of motor performances in terms of their accelerating factor is possible only in relative terms and not in absolute. The aim of this paper is to put the groundwork for a deeper analysis of the accelerating factor, in order to give to the designer of an automatic machine a tool to critically evaluate the performance of motors, not only as compared to the other available, but also in absolute terms. Table 1 Nomenclature T motor torque motor momentum of inertia T,rms motor root mean square torque T,N motor nominal torque TH, max motor theoretical maximum torque T,max servo-motor maximum torque ω motor angular speed ω,n motor nominal angular speed ω& motor angular acceleration P N motor nominal power m motor mass V N motor nominal voltage p motor poles T L load torque L load momentum of inertia T L generalized load torque T L,rms generalized load root mean square torque T L,max load maximum torque ω L load angular speed ω& L load angular acceleration ω& L,rms load root mean square acceleration transmission ratio η transmission mechanical efficiency α accelerating factor β load factor ω,max maximum speed achievable by the motor ω L,max maximum speed achieved by the load t a cycle time C th motor thermal capacity R th motor thermal resistance th motor thermal constant K T torque constant i current flowing in motor windings

2 . THE OTOR Brushless motors (Fig.1) are the most widespread electrical actuators in automation field, which working range (Fig.) could be approximately subdivided into a continuous working zone (called S1, bound by motor rated torque) and in a dynamic one (called S6, bound by the maximum motor torque T,max ). Usually the motor rated torque decreases with the motor speed ω. To simplify the rated torque trend and to have a cautionary approach, the continuous working range is approximated to a rectangle, identifying two values T,N and ω,max (Fig.3). Note how the approximation used to make the S1 field rectangular, actually has consequences on the value of T,N and ω,max. Information on catalogues are often poor and, in the best case, when speed/curve torque is available, they should be managed to obtain the interesting parameters. Note how the maximum torque achieved by the servo-motor T,max strongly depends on the drive associated with it and it is generally different from the motor theoretical maximum torque TH, max. T T,max T,N T Fig.1 - Commercial brushless motor T,max T,N ω,max Figure 3 Approximated speed/torque curve ω,max Fig. - Speed/torque curve of a common brushless motor ω At low speed, the constraint introduced by the drive systems is related to the maximum current supplied to the motor. Since torque depends on the current, this limit translates into a horizontal line on the motor working field corresponding to a maximum torque different from the theoretical one. At higher speed, this constraint is overcome by the condition on the maximum voltage endurable, which causes a reduction of the motor maximum torque with its speed. 3. THE THERAL PROBLE OF ELECTRICAL OTORS The thermal problem is of great importance in electric motors, and is generally the most binding condition in the choice of an electric motor for industrial applications. During their operation, in fact, motors waste power W d as heat: this is primarily because the windings are affected by the current flow (copper losses), but also for the eddy currents (iron losses) and mechanical effects.

3 The power lost as heat determines an increase in temperature of the motor. Heat is partially removed from the environment at least until a stationary condition is determined. Naming θ(t) the difference of temperature at time t between motor and environment, C th the motor thermal capacity and R th its thermal resistance, the differential equation for the equilibrium of power is: that can be rewritten as: where: d C θ th + θ = Wd (1) dt Rth θ d th + θ = Wd Rth () dt th = RthCth (3) is the motor thermal time constant (usually defined by the manufacturer and available on catalogues). Observance of the constraints relating to thermal problem requires, when selecting a motor, that the maximum temperature reached during the operation does not exceed the maximum permissible. This requires solving Eq. (1). However, if the task operation is cyclic, with period t a << th the problem can be simplified. In this case, the motor is not able to follow the fast thermal fluctuations of the power dissipation, due to high heat resistance. The temperature of the motor, then, evolves as if it were subject to constant power dissipation W d equal to the average power dissipated in the cycle. Assuming that the dissipation is related mainly to the oule effect due to the resistance R, it is: t a R W d = i dt t a 0 (4) = KT i (5) where K T is the torque constant. By substituting eq.(5) in eq.(4), it is possible to reach the value of the so called motor root mean square torque: The motor torque T can be written as: where: = T L + TL = TL + Lω& L & ωl is the generalized resistant torque at the load shaft. When selecting the motor-reducer unit, the transmission ratio and the motor inertia are still unknown. In this phase, transmission is considered ideal (η=1). Equation (8) highlights the dependence of the motor torque on this variables, while from eq.(9) it s possible to observe that all the terms related to the load are known. The root mean square torque is obtained from: ta t a 1 & ωl, rms = dt = TL + dt ta ta 0 0 (8) (9) (10) Developing the term in brackets and using the properties of the sum of integrals, it s possible to reach the root mean square torque as: ( T L & ω L ) mean rms TL rms &, =, + ω L, rms + (11) and inequality (7) can be written as: ( T L & ω L ) mean T N TL rms &,, + ω L, rms + (1) 4. THE OTOR ACCELERATING FACTOR Since T,N is positive by definition, one can gets: ( T L & ω L ) mean N TL rms &,, ωl, rms + + (13) Let s introduce the accelerating factor of the motor:, rms = t a 1 dt ta 0 (6), N α = (14) namely the torque, acting steadily over the cycle, which is attributable to the total energy dissipation really occurred in the cycle. The condition on the thermal problem becomes: T,rms < T,N (7) where motor torque T,N is obtainable from catalogues given by motor manufacturers and it is defined as the torque that can be supplied by the motor for an infinite time, without overheat. describing the performances of each motor, and the load factor: β [& ω T ( T & ω ) ] = L, rms L, rms + L L mean (15) defining the performances required by the task. The unit of measurement of both factors is W/s. The coefficient α is exclusively defined by parameters related to the motor and therefore it doesn t depend on the machine task: it can be calculated for each motor using the information collected in the manufacturer catalogues. oreover it could be reported on them, to provide a classification of the commercial motors on

4 the basis of this standard. Otherwise, the coefficient β depends only on the working conditions (applied load and law of motion) and it s a measure that defines the power required by the system. Substituting α and β in inequality (13) we reach:,, α β + T L rms & ωl rms (16) Data analysis Figure 4 represents the trend of the accelerating factor (y axis) for the entire population of considered motors (x axis). otors are identified by a unique growing index. Notice how α can assume values really different, and how some motors have an accelerating factor extremely high compared to the considered population. Since the term in brackets is always positive, or null, the load factor β represents the minimum value of the right hand side of eq.(16). It means that the motor accelerating factor α must be sufficiently greater than the load factor β, so that inequality (7) is verified. A motor must be rejected if α<β, while if α β the motor can have enough rated torque if is chosen properly. The preliminary motor choice is conducted comparing only the values α and β; these values are easily calculated knowing the mechanical properties of the motor and the load features. 5. SERVO OTOR COPARISON The aim of this work is to put the basis of a detailed analysis of the accelerating factor (or continuous duty power rate). The starting point is the answer to the question: Let s assume that motors with different sizes are hard to be compared, may similar motors have accelerating factors α extremely different? A negative answer to this question would make unnecessary any subsequent consideration, indicating that manufacturing parameters marginally influence the accelerating factor. That means the commercial brushless motors currently on the market have similar electromechanical features, presumably best suited to obtaining high values of α. On the opposite, a positive answer would open a research field to find which are the electromechanical features of a motor that most influence the accelerating factor and which is (if it exists) the theoretical or technological value of α whose overtaking is impossible or technically not convenient. A way to answer the question is to collect enough information from different manufacturers catalogues for a significant number of motors. The resulting database will be a useful instrument to compare different commercial devices and a suitable tool to highlight how the accelerating factor can t be the only parameter to describe the performance of a motor and how all motors features influence the design of a machine. The database The database collects the main information available on catalogues of about 300 motors whose power is between 15[W] and 15[kW]. Information collected relate to: brand, model, type of motor (AC or DC), torque coefficient, winding electrical resistance, number of poles, geometrical dimensions and, naturally, motor nominal torque and the rotor momentum of inertia. The momentum of inertia includes the inertia of the rotor and the one of the positioning sensor, a needed component for the machine functioning and thus a part of it. The inertia of any brake systems, or related to any additional sensors is neglected. Figure 4 Accelerating factor (α) for the motors in the database The graph can not highlights if this high values of the accelerating factor are due to a high nominal torque, or to small rotor inertia, or to the combination of the two factors. It is also unclear whether the accelerating factor is related to the motor size or not. For this reason, values of α, motor nominal torque T,N and motor momentum of inertia are reported on the same chart for all the motors in the database (Fig.5). For ease of consultation, motors are ordered with increasing momentum of inertia. The three series of data are normalized on their respective maximum value to allow a comparison between series. Figure 5 Normalized accelerating factors (α), motor nominal torques (T,N) for the considered motors ordered with increasing momentum of inertia Figure 6 depicts the trends of motor weight () and nominal torques (T,N ) for the considered motors ordered with increasing momentum of inertia.

5 Actually, this conclusion is the starting point to investigate what are the electromechanical characteristics that allow a motor to be more performing. Figure 6 Normalized masses (Μ), motor nominal torques (T,N) for the considered motors ordered with increasing momentum of inertia Looking the chart in Fig.5, 6 some interesting consideration can be done: 1. High values of accelerating factor can be obtained, even with high values of, because of increased motor nominal torque;. otor nominal torques and rotor inertia seem to be proportional each others; 3. otors with same momentum of inertia can have accelerating factors extremely different; 4. otors momentum of inertia and mass seem to be proportional These considerations give a first answer to the question done: commercial brushless motors are built with different designs and generally have different performances. It means that some motors are better than others. Table shows, as example, the main features of motors classified as no.44 and no.30. Despite their different characteristics and dimensions, the two motors are identical at least as regards their accelerating factors. Table Comparison between two selected motors Let s now consider the transmission that could be coupled with each motor, such that condition on thermal problem is verified. The range of suitable transmission ratios can be calculated by solving eq.(16). It results: = T L,rms α β (17) where T L,rms and β do not depend on the motor. otors in table have similar accelerating factors but rotor momentum of inertia really different. Suppose their accelerating factors were higher, for a given task, than the load factor. Then motor no.30, with a greater moment of inertia, would have a wider range of useful transmission ratios than motor no CONCLUSIONS The accelerating factor, or continuous duty power rate, it is a parameter characterizing the performance of a motor and it is defined as the ratio between the motor rated torque and the square of its rotor momentum of inertia. The higher is the accelerating factor α, the wider is the range of transmission ratios that can be used for coupling the motor to the load to be moved. The designer who is choosing the motor reducer unit, however, has difficulties in understanding whether the choice done is the best or not, because there are no absolute references on the accelerating factor on which perform the selection. In other words, it is impossible, at now, to evaluate if the chosen motor is the best solution for an application, or if a smaller one with the same accelerating factor, and therefore better for weight and dimensions, is available in commerce. The analysis reveals how motors for automation field (taking into account only synchronous brushless motors) are extremely heterogeneous in terms of performance and highlights the needing to define benchmarks for the accelerating factor to help the designer in selecting the best motor-transmission coupling. 7. REFERENCES [1] Pasch K.A.,Seering W.P. On the drive systems for Highperformance achines, Transactions of ASE Vol.106, 1984, pp [] Van de Straete H., Degezelle P., de Shutter., Belmans R., Servo otor Selection Criterion for echatronic Application, IEEE/ASE Transaction on mechatronics Vol.3, 1998, pp [3] Van de Straete H., de Shutter., Belmans R., An Efficient Procedure for Checking Performance Limits in Servo Drive Selection and Optimization, IEEE/ASE Transaction on mechatronics Vol.4, 1998, pp [4] Cusimano G., A procedure for a suitable selection of laws of motion and electric drive systems under inertial loads, echanism and achine Theory Vol.38, 003, pp

6 [5] Cusimano G., Optimization of the choice of the system electric drive-device-transmission for mechatronic applications, echanism and achine Theory Vol.4, 007, pp [6] Cusimano G., Generalization of a method for the selection of drive systems and transimissions under dynamic loads, echanism and achine Theory Vol.40, 005, pp [7] Van de Straete H., de Shutter., Leuven K.U. Optimal Variable Transmission Ratio and Trajectory for an Inertial Load With Respect to Servo otor Size, Transaction of the ASE Vol.11, 1999, pp [8] Roos F., ohansson H., Wikander. Optimal selection of motor and gearhead in mechatronic application, echatronics Vol.16, 006, pp.63-7 [9] Legnani G., Tiboni., Adamini R. eccanica degli azionamenti, Esculapio, Italy, 00 [10] Giberti H., Cinquemani S., Legnani G., Evaluation of motor-reducer coupling in high demanding industrial applications, Proc. of nd International ulti- Conference on Engineering and Technological Innovation: IETI 09, Florida, USA, 009.

Selection of Servomotors and Reducer Units for a 2 DoF PKM

Selection of Servomotors and Reducer Units for a 2 DoF PKM Selection of Servomotors and Reducer Units for a 2 DoF PKM Hermes GIBERTI, Simone CINQUEMANI Mechanical Engineering Department, Politecnico di Milano, Campus Bovisa Sud, via La Masa 34, 20156, Milano,

More information

Lecture 4: Losses and Heat Transfer

Lecture 4: Losses and Heat Transfer 1 / 26 Lecture 4: Losses and Heat Transfer ELEC-E845 Electric Drives (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Autumn 215 2 / 26 Learning Outcomes After this lecture and

More information

DC motors. 1. Parallel (shunt) excited DC motor

DC motors. 1. Parallel (shunt) excited DC motor DC motors 1. Parallel (shunt) excited DC motor A shunt excited DC motor s terminal voltage is 500 V. The armature resistance is 0,5 Ω, field resistance is 250 Ω. On a certain load it takes 20 A current

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Technical Guide for Servo Motor Selection

Technical Guide for Servo Motor Selection Technical Guide for Servo otor Selection CS_Servo Selection_TG_E_3_1 Servo otor Selection Software Use your PC to select a Servo otor "otor Selection Program for Windows" o you always feel "Calculation

More information

Model of a DC Generator Driving a DC Motor (which propels a car)

Model of a DC Generator Driving a DC Motor (which propels a car) Model of a DC Generator Driving a DC Motor (which propels a car) John Hung 5 July 2011 The dc is connected to the dc as illustrated in Fig. 1. Both machines are of permanent magnet type, so their respective

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

Stepping Motors. Chapter 11 L E L F L D

Stepping Motors. Chapter 11 L E L F L D Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate

More information

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1 Chapter 6: Efficiency and Heating 9/18/2003 Electromechanical Dynamics 1 Losses As a machine transforms energy from one form to another there is always a certain power loss the loss is expressed as heat,

More information

A NEW APPROACH FOR THE CHOICE OF MOTOR AND TRANSMISSION IN MECHATRONIC APPLICATIONS

A NEW APPROACH FOR THE CHOICE OF MOTOR AND TRANSMISSION IN MECHATRONIC APPLICATIONS POLITECNICO DI MILANO Facoltàdi Ingegneria Industriale Master of Science in Mechanical Engineering A NEW APPROACH FOR THE CHOICE OF MOTOR AND TRANSMISSION IN MECHATRONIC APPLICATIONS Supervisor : Prof.

More information

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation

More information

Lecture (20) DC Machine Examples Start of Synchronous Machines

Lecture (20) DC Machine Examples Start of Synchronous Machines Lecture (20) DC Machine Examples Start of Synchronous Machines Energy Systems Research Laboratory, FIU All rights reserved. 20-1 Energy Systems Research Laboratory, FIU All rights reserved. 20-2 Ra R f

More information

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE TEMPERATURE EFFECTS ON MOTOR PERFORMANCE Authored By: Dan Montone Haydon Kerk Motion Solutions / Pittman Motors hen applying DC motors to any type of application, temperature effects need to be considered

More information

EE 410/510: Electromechanical Systems Chapter 4

EE 410/510: Electromechanical Systems Chapter 4 EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies

More information

Encoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics

Encoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics November 2013 www.designworldonline.com INSIDE: design for industry: Help clean up the ocean Page 18 3D CAD: FEA aids Deepwater Horizon failure forensics Page 37 Understanding NETWORKING: Enhancing enterprise

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Arumugam, Puvaneswaran and Dusek, Jiri and Mezani, Smail and Hamiti, Tahar and Gerada, C. (2015) Modeling and analysis of eddy current losses in permanent magnet machines with multi-stranded bundle conductors.

More information

Technical Reference Selection calculations Motors Motorized Actuators Cooling Fans Technical Service Life Reference Standard AC Motors

Technical Reference Selection calculations Motors Motorized Actuators Cooling Fans Technical Service Life Reference Standard AC Motors calculations... H-2 H-2 H Technical Reference H-8 H-28... H-29 AC... H-33... H-0 AC... H-6... H-55... H-58... H-66... H-68... H-77 H- / For Selecting a motor that satisfies the specifications required

More information

ELG4112. Electromechanical Systems and Mechatronics

ELG4112. Electromechanical Systems and Mechatronics ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Selection of precision micro drives

Selection of precision micro drives Selection of precision micro drives Overview Drive System and Selection DC and EC motors Motor data sheets, motor theory Motor gearhead selection 2017 maxon motor ag, Sachseln, Switzerland Media The Selection

More information

Selection Calculations For Motorized Actuators

Selection Calculations For Motorized Actuators Selection Calculations/ Selection Calculations For Linear Slides and Cylinders Select from the EZS Series, EZS Series for Cleanroom Use, EZC Series First determine your series, then select your model.

More information

Selection of precision micro drives

Selection of precision micro drives Selection of precision micro drives Systematics of the drive selection Situation analysis, boundary conditions How is the integration into the environment? Preselection Determining the load requirements

More information

Servo Motor Selection Flow Chart

Servo Motor Selection Flow Chart Servo otor Selection Flow Chart START Selection Has the machine Been Selected? YES NO Explanation etermine the size, mass, coefficient of References friction, and external forces of all the moving part

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1 Chapter 3: Fundamentals of Mechanics and Heat 1/11/00 Electromechanical Dynamics 1 Force Linear acceleration of an object is proportional to the applied force: F = m a x(t) F = force acting on an object

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

Dynamic Features of a Planetary Speed Increaser Usable in Small Hydropower Plants

Dynamic Features of a Planetary Speed Increaser Usable in Small Hydropower Plants Dynamic Features of a Planetary Speed Increaser Usable in Small ydropower Plants JALIU CODRUA, SAULESCU RADU, DIACONESCU DORIN, NEAGOE MIRCEA, CLIMESCU OLIVER Product Design and Robotics Department University

More information

Automatic Control Systems. -Lecture Note 15-

Automatic Control Systems. -Lecture Note 15- -Lecture Note 15- Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Cost-effective ii)

More information

6) Motors and Encoders

6) Motors and Encoders 6) Motors and Encoders Electric motors are by far the most common component to supply mechanical input to a linear motion system. Stepper motors and servo motors are the popular choices in linear motion

More information

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A 1. What are the advantages of an inter connected system? The advantages of an inter-connected system are

More information

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor

More information

D DAVID PUBLISHING. Design of Torque Balancing Mechanisms. 1. Introduction. Bruno Zappa, Vittorio Lorenzi, Paolo Righettini and Roberto Strada

D DAVID PUBLISHING. Design of Torque Balancing Mechanisms. 1. Introduction. Bruno Zappa, Vittorio Lorenzi, Paolo Righettini and Roberto Strada Journal of Mechanics Engineering and Automation 7 (207) 32-320 doi: 0.7265/259-5275/207.06.004 D DAVID PUBLISHING Bruno Zappa, Vittorio Lorenzi, Paolo Righettini and Roberto Strada Department of Engineering

More information

Motor Info on the WWW Motorola Motors DC motor» /MOTORDCTUT.

Motor Info on the WWW Motorola Motors DC motor»   /MOTORDCTUT. Motor Info on the WWW Motorola Motors DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material /MOTORDCTUT.html Brushless DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Robotics I. Test November 29, 2013

Robotics I. Test November 29, 2013 Exercise 1 [6 points] Robotics I Test November 9, 013 A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a joint axis passing through its base. The motor is connected

More information

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Adeeb Ahmed Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC, USA aahmed4@ncsu.edu

More information

SSY155 Applied Mechatronics Examination date

SSY155 Applied Mechatronics Examination date Chalmers University of Technology Department of Signals and Systems SSY155 Applied Mechatronics Examination date 937 Time: 8:3-12:3 Teacher: Jonas Sjöberg, tel 31-772 1855. Allowed material during the

More information

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS Abhinav A. Kalamdani Dept. of Instrumentation Engineering, R. V. College of Engineering, Bangalore, India. kalamdani@ieee.org Abstract: A new

More information

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008 SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008 Transient Stability Transient stability refers to the ability of a synchronous

More information

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum Kater s Pendulum The Compound Pendulum A compound pendulum is the term that generally refers to an arbitrary lamina that is allowed to oscillate about a point located some distance from the lamina s center

More information

ADMISSION TEST INDUSTRIAL AUTOMATION ENGINEERING

ADMISSION TEST INDUSTRIAL AUTOMATION ENGINEERING UNIVERSITÀ DEGLI STUDI DI PAVIA ADMISSION TEST INDUSTRIAL AUTOMATION ENGINEERING September 26, 2016 The candidates are required to answer the following multiple choice test which includes 30 questions;

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

DcMotor_ Model Help File

DcMotor_ Model Help File Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 2002-10-26 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent

More information

DYNAMICS OF ELECTROMECHANICAL DRIVE OF SUSPENDED TIMBERTRANSPORTING ROPE SYSTEM

DYNAMICS OF ELECTROMECHANICAL DRIVE OF SUSPENDED TIMBERTRANSPORTING ROPE SYSTEM Technical Sciences, 2016, 19(3) 245 256 DYNAMICS OF ELECTROMECHANICAL DRIVE OF SUSPENDED TIMBERTRANSPORTING ROPE SYSTEM Lidiya Dzyuba 1, Vasyl Baryliak 2 1 Department of Applied Mathematics and Mechanics,

More information

MODELING, COMPONENT SELECTION AND OPTIMIZATION OF SERVO-CONTROLLED AUTOMATIC MACHINERY

MODELING, COMPONENT SELECTION AND OPTIMIZATION OF SERVO-CONTROLLED AUTOMATIC MACHINERY ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA DOTTORATO DI RICERCA IN Meccanica e scienze avanzate dell ingegneria Ciclo 29 Settore Concorsuale di afferenza 09/A2 Settore Scientifico disciplinare ING-IND-13

More information

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1). Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department of Mechanical Engineering 2.010 CONTROL SYSTEMS PRINCIPLES Laboratory 2: Characterization of the Electro-Mechanical Plant Introduction: It is important (for future lab sessions) that we have

More information

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

More information

FORMULAS FOR MOTORIZED LINEAR MOTION SYSTEMS

FORMULAS FOR MOTORIZED LINEAR MOTION SYSTEMS FOR MOTORIZED LINEAR MOTION SYSTEMS Haydon Kerk Motion Solutions Pittman Motors : 203 756 7441 : 267 933 2105 SYMBOLS AND UNITS Symbol Description Units Symbol Description Units a linear acceleration m/s

More information

9. Operation Principle of the Electric Machines

9. Operation Principle of the Electric Machines 9. Operation Principle of the Electric Machines J Electric Machines Operation Principle Ø An electric achine consists of two electric circuits coupled by eans of a agnetic flu, that is linked with both

More information

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

More information

Synergetic Control for Electromechanical Systems

Synergetic Control for Electromechanical Systems Synergetic Control for Electromechanical Systems Anatoly A. Kolesnikov, Roger Dougal, Guennady E. Veselov, Andrey N. Popov, Alexander A. Kolesnikov Taganrog State University of Radio-Engineering Automatic

More information

Advantages of Variable Frequency Drive Technology for Face Conveyor and Plow Systems in Longwall Mining

Advantages of Variable Frequency Drive Technology for Face Conveyor and Plow Systems in Longwall Mining Advantages of Variable Frequency Drive Technology for Face Conveyor and Plow Systems in Longwall Mining Andreas Johannes Westphalen Caterpillar Global Mining Table of Contents Abstract Abstract... 3 Introduction...

More information

Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks

Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks International Journal of Scientific and Research Publications, Volume 5, Issue 11, November 2015 168 Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks L. Vidyaratan Meetei, Benjamin

More information

Research on Control Method of Brushless DC Motor Based on Continuous Three-Phase Current

Research on Control Method of Brushless DC Motor Based on Continuous Three-Phase Current 6th International onference on Measurement, Instrumentation and Automation (IMIA 017 Research on ontrol Method of Brushless D Motor Based on ontinuous hree-phase urrent Li Ding 1,Mingliang Hu, Jun Zhao

More information

ENGR 1100 Introduction to Mechanical Engineering

ENGR 1100 Introduction to Mechanical Engineering ENGR 1100 Introduction to Mechanical Engineering Mech. Engineering Objectives Newton s Laws of Motion Free Body Diagram Transmissibility Forces and Moments as vectors Parallel Vectors (addition/subtraction)

More information

Finite Element Method based investigation of IPMSM losses

Finite Element Method based investigation of IPMSM losses Finite Element Method based investigation of IPMSM losses Martin Schmidtner 1, Prof. Dr. -Ing. Carsten Markgraf 1, Prof. Dr. -Ing. Alexander Frey 1 1. Augsburg University of Applied Sciences, Augsburg,

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

Chapter 7: Stepper Motors. (Revision 6.0, 27/10/2014)

Chapter 7: Stepper Motors. (Revision 6.0, 27/10/2014) Chapter 7 Stepper Motors (Revision 6.0, 7/10/014) 1. Stepping Angle Analysis The following analysis derives the formula for the stepping angle of the stepper motor. It has been reproduced and edited from

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA

CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA 31 CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA 3.1 INTRODUCTION Electric motors consume over half of the electrical energy produced by power stations, almost the three-quarters of the

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO

More information

Application basics of operation of three-phase induction motors

Application basics of operation of three-phase induction motors Application basics of operation of three-phase induction motors Design Duty Types Selection Dimensioning Motor Management TM Foreword This technical manual for Three-Phase Induction is the first publication

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

An experimental robot load identification method for industrial application

An experimental robot load identification method for industrial application An experimental robot load identification method for industrial application Jan Swevers 1, Birgit Naumer 2, Stefan Pieters 2, Erika Biber 2, Walter Verdonck 1, and Joris De Schutter 1 1 Katholieke Universiteit

More information

Selection Calculations For Linear & Rotary Actuators

Selection Calculations For Linear & Rotary Actuators H-8 For Electric Linear Slides and Electric Cylinders First determine your series, then select your product. Select the actuator that you will use based on the following flow charts: Selection Procedure

More information

Energy saving in electromechanical equipment with power coefficient correction. Dimitris Al. Katsaprakakis Aeolian Land S.A.

Energy saving in electromechanical equipment with power coefficient correction. Dimitris Al. Katsaprakakis Aeolian Land S.A. Energy saving in electromechanical equipment with power coefficient correction Dimitris Al. Katsaprakakis Aeolian Land S.A. www.aiolikigi.gr Introduction Electricity production companies (utilities) provide

More information

SSY155 Applied Mechatronics Examination date

SSY155 Applied Mechatronics Examination date Chalmers University of Technology Department of Signals and Systems SSY55 Applied Mechatronics Examination date 00 Time: :008:00 Teacher: Esteban Gelso, tel 077 855 Allowed material during the exam: Mathematical

More information

Acceleration Feedback

Acceleration Feedback Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro- Mechanics Electrical- Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic

More information

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK 1 Mr.Dhaval K.Patel 1 Assistant Professor, Dept. of Electrical Engineering. Gidc Degree Engineering College Abrama, Navsari. ABSTRACT:

More information

Visualizing the Efficiency of a Continuously Variable Transmission

Visualizing the Efficiency of a Continuously Variable Transmission Visualizing the Efficiency of a Continuously Variable Transmission Florian Verbelen a,b, Stijn Derammelaere a,b, Peter Sergeant a,b, Kurt Stockman a,b a Department of Electrical Energy, Metals, Mechanical

More information

AC Induction Motor Stator Resistance Estimation Algorithm

AC Induction Motor Stator Resistance Estimation Algorithm 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA

More information

An approach for modelling quasi-stationary magnetic circuits

An approach for modelling quasi-stationary magnetic circuits An approach for modelling quasi-stationary magnetic circuits Nick Raabe Sterling Industry Consult GmbH Lindenstraße 170, 25524 Itzehoe, Germany nick.raabe@sterlingsihi.de Abstract For the design of electrical

More information

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

Jerad P. 10/1/2015. Motor Thermal Limits on Torque Production (Frameless Motor Level)

Jerad P. 10/1/2015. Motor Thermal Limits on Torque Production (Frameless Motor Level) Jerad P. 10/1/015 Motor Thermal Limits on Torque Production (Frameless Motor Level) Jerad P. 10/1/015 The theory of operation of a frameless permanent magnet motor (PMM) and its thermal limitations is

More information

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

More information

UNIT 4 FLYWHEEL 4.1 INTRODUCTION 4.2 DYNAMICALLY EQUIVALENT SYSTEM. Structure. Objectives. 4.1 Introduction

UNIT 4 FLYWHEEL 4.1 INTRODUCTION 4.2 DYNAMICALLY EQUIVALENT SYSTEM. Structure. Objectives. 4.1 Introduction UNIT 4 FLYWHEEL Structure 4.1 Introduction Objectives 4. Dynamically Equivalent System 4.3 Turning Moment Diagram 4.3.1 Turning Moment Diagram of a Single Cylinder 4-storke IC Engine 4.3. Turning Moment

More information

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil

More information

ing. A. Kragten May 2008 KD 378

ing. A. Kragten May 2008 KD 378 Basic knowledge about electrical, chemical, mechanical, potential and kinetic energy to understand literature about the generation of energy by small wind turbines ing. A. Kragten May 2008 KD 378 It is

More information

Chapter 9: Transient Stability

Chapter 9: Transient Stability Chapter 9: Transient Stability 9.1 Introduction The first electric power system was a dc system built by Edison in 1882. The subsequent power systems that were constructed in the late 19 th century were

More information

Mechatronics Engineering. Li Wen

Mechatronics Engineering. Li Wen Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

More information

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(1) pp. 157-161 (2011) PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR P. HATOS, A. FODOR, A. MAGYAR University of Pannonia, Department of

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

EC 60 TM 200W 48V. with brushless drive. brushless small & compact maintenance-free Protection IP65. Ordering Data

EC 60 TM 200W 48V. with brushless drive. brushless small & compact maintenance-free Protection IP65. Ordering Data EC-Servo motors with brushless drive EC 0 TM 200W 48V brushless small & compact maintenance-free Protection IP Ordering Data characteristics permanently energized -phase synchronous motor incremental position

More information

Evolutionary Multiobjective. Optimization Methods for the Shape Design of Industrial Electromagnetic Devices. P. Di Barba, University of Pavia, Italy

Evolutionary Multiobjective. Optimization Methods for the Shape Design of Industrial Electromagnetic Devices. P. Di Barba, University of Pavia, Italy Evolutionary Multiobjective Optimization Methods for the Shape Design of Industrial Electromagnetic Devices P. Di Barba, University of Pavia, Italy INTRODUCTION Evolutionary Multiobjective Optimization

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

EXPERIMENTAL RESEARCH REGARDING TRANSIENT REGIME OF KINEMATIC CHAINS INCLUDING PLANETARY TRANSMISSIONS USED IN INDUSTRIAL ROBOTS

EXPERIMENTAL RESEARCH REGARDING TRANSIENT REGIME OF KINEMATIC CHAINS INCLUDING PLANETARY TRANSMISSIONS USED IN INDUSTRIAL ROBOTS International Journal of Modern Manufacturing Technologies ISSN 2067 3604, Vol. VIII, No. 1 / 2016 EXPERIMENTAL RESEARCH REGARDING TRANSIENT REGIME OF KINEMATIC CHAINS INCLUDING PLANETARY TRANSMISSIONS

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

Accurate Determination of the Thermal Model Time Constant for the Electrical Servomotors

Accurate Determination of the Thermal Model Time Constant for the Electrical Servomotors Transilvania University of Brasov, Romania 13 th INTERNATIONAL CONFERENCE STANDARDIZATION, PROTYPES AND QUALITY: A MEANS OF BALKAN COUNTRIES COLLABORATION Brasov, Romania, November 3-4, 2016 Accurate Determination

More information

Design of the Forced Water Cooling System for a Claw Pole Transverse Flux Permanent Magnet Synchronous Motor

Design of the Forced Water Cooling System for a Claw Pole Transverse Flux Permanent Magnet Synchronous Motor Design of the Forced Water Cooling System for a Claw Pole Transverse Flux Permanent Magnet Synchronous Motor Ahmad Darabi 1, Ali Sarreshtehdari 2, and Hamed Tahanian 1 1 Faculty of Electrical and Robotic

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II) Chapter # 4 Three-Phase Induction Machines 1- Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In

More information

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment K. Kalaiselvi 1, K.Abinaya 2, P. Ramesh Babu 3 1,2 Under Graduate Scholar, Department of EEE, Saranathan College

More information