New Multi-Solid Thermodynamic Model for the Prediction of Wax Formation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "New Multi-Solid Thermodynamic Model for the Prediction of Wax Formation"

Transcription

1 World Academy o cece, Egeerg ad echology Iteratoal Joural o Chemcal ad Molecular Egeerg New Mult-old hermodyamc Model or the Predcto o Wax Formato Ehsa Ghaae, Ferdu Esmaelzadeh, ad Jamshd Fath Kalah Iteratoal cece Idex, Chemcal ad Molecular Egeerg waset.org/publcato/7848 Absact I the prevous mult-sold models,ϕ approach s used or the calculato o ugacty the lqud phase. For the rst tme, the proposed mult-sold thermodyamc model,γ approach has bee used or calculato o ugacty the lqud mxture. hereore, some actvty coecet models have bee studed that the results show that the predctve Wlso model s more approprate tha others. he results demosate γ approach usg the predctve Wlso model s more agreemet wth expermetal data tha the prevous mult-sold models. Also, by ths method, geerates a ew approach or presetg stablty aalyss phase equlbrum calculatos. Meawhle, the ru tme γ approach s less tha the prevous methods used ϕ approach. he results o the ew model preset 0.75 AAD % (Average Absolute Devato) rom the expermetal data whch s less tha the results error o the prevous mult-sold models obvously. Keywords Mult-sold thermodyamc model, Predctve Wlso model, Wax ormato. I. INRODUCION N the mult-sold model, t s assumed the sold phase (wax) I cosst o several pure compoet. he studes show two ma models apply the cocept o mult-sold model, cludg ra-galeaa et al. [1] ad Nchta et al. [] models. he other mult-sold models are smlar to them approxmately. I 1996, ra-galeaa et al. [1] preseted a approach based o mult-sold model or the predcto o wax ormato. I ths model, a correlato was preseted or estmatg the meltg pot o pure compoets cludg ormal parac (C 6 -C 30 ), aphthec (C 6 -C 30 alkylcycloalkaes) ad aromatc (C 6 -C 30 alkylbezees) hydrocarbos. Also, they suggested a correlato or the estmatg o the ethalpy o uso. hey used the Pederse et al. correlato [3] to estmate the specc heat capacty derece betwee sold ad lqud phase. Also, the term o sold-sold phase asto was gored the calculato o Mauscrpt receved Jue 9, 007. Ehsa Ghaae s wth the Chemcal ad Peoleum Egeerg Departmet, hraz Uversty, hraz, Ira (e-mal: Ferdu Esmaelzadeh s wth the Chemcal ad Peoleum Egeerg Departmet, hraz Uversty, hraz, Ira (correspodg author to provde phoe: ; ax: ; e-mal: Jamshd Fath Kalah s wth the Chemcal ad Peoleum Egeerg Departmet, hraz Uversty, hraz, Ira (e-mal: ). ugacty rato o the sold ad lqud phase or a pure compoet. he PR Eo [4, 5] was used or the ugacty calculato the lud phases. I 001, Nchta et al. [] suggested a mult-sold model. I ths model, the meltg pot temperature o ormal alkaes was estmated rom the correlato proposed by Wo [6]. Also, they appled sold-sold phase asto term or the calculato o the ugacty rato o sold ad lqud phase or a pure compoet. hey suggested correlatos or estmatg o temperature ad ethalpy o sold-sold phase asto. he PR Eo [4, 5] was appled or calculatg ugacty the lud phases. I ths work, or the rst tme, a mult-sold model based oγ approach has bee preseted or the predcto o wax ormato pheomea. ome actvty coecet models cludg the regular soluto [3, 6, 7], UNIFAC [8-10], predctve UNIQUAC [11-13] ad predctve Wlso [14] models ad deal soluto approach have bee employed ad compared. For valdatg the proposed model some expermetal data have bee used whch are or 56 equlbrum data pots. II. EXPERIMENA DAA I ths work, our terary systems cludg C 14 -C 15 -C 16 (terary 1), C 16 -C 17 -C 18 (terary ), C 18 -C 19 -C 0 (terary 3) ad C 19 -C 0 -C 1 (terary 4) have bee used [15]. hese systems cota 56 mxtures that the amout o WD (Wax Dsappearace emperature) Kelv (K) at atmospherc pressure ad compostos o mxtures have bee reported ables I-IV. ABE I EXPERIMENA WD (K) DAA FOR C 14 -C 15 -C 16 ERNARY YEM 1 Mxture Composto (molar %) C 14 C 15 C 16 Exp. WD (K) Iteratoal cholarly ad cetc Research & Iovato 1(5)

2 World Academy o cece, Egeerg ad echology Iteratoal Joural o Chemcal ad Molecular Egeerg Iteratoal cece Idex, Chemcal ad Molecular Egeerg waset.org/publcato/7848 ABE II EXPERIMENA WD (K) DAA FOR C 16 -C 17 -C 18 ERNARY YEM Mxture Composto (molar %) C 16 C 17 C 18 Exp. WD (K) ABE III EXPERIMENA WD (K) DAA FOR C 18-C 19-C 0 ERNARY YEM 3 Mxture Composto (molar %) C 18 C 19 C 0 Exp. WD (K) ABE IV EXPERIMENA WD (K) DAA FOR C 19-C 0-C 1 ERNARY YEM 4 Mxture Composto (molar %) C 19 C 0 C 1 Exp. WD (K) III. HE MUI-OID MODE BAED ONγ APPROACH I the mult-sold model, the umber o compoets precptate should be obtaed by stablty aalyss codto. he compouds cover ths codto precptates as a pure sold phase. he deto o stablty aalyss s the ollowg expresso [16]:, Pure, ) ) > 0 1,..., C (1) where,, ), s the compoet ugacty the mxture at pressure P, temperature ad wth mxture composto. I (1),C, s the umber o compoets. I all correlatos ths paper, subscrpts, ad superscrpt are reerred to the sold ad lqud phase ad the umber o compoets, respectvely. By the deto o ugacty γ approach, compoet ugacty the mxture,, ), ca be calculated as ollows: thus: ad, ) ) γ x (), Pure, Pure, Pure ) γ x ) > 0 (3), Pure ) γ x > 0 (4), Pure ) I (4), γ ca be calculated usg the actvty coecet models. o obta a sutable actvty coecet model, the regular soluto [3, 6, 7], UNIFAC [8-10], predctve UNIQUAC [11-13] ad predctve Wlso [14] models have bee appled reported the Appedx. he deal soluto approach ( γ 1 ) has bee also cosdered. he ugacty rato ca be calculated as ollows []: (, ) Δ pure P H exp[ 1 + (, ) pure P R Δ H 1 + R 1 1 ΔC d R p R he uso temperature ( ΔC p d ] (5) ) o ormal alkaes s estmated rom the ollowg correlato proposed by Wo [6] MW (6) MW Iteratoal cholarly ad cetc Research & Iovato 1(5)

3 World Academy o cece, Egeerg ad echology Iteratoal Joural o Chemcal ad Molecular Egeerg Iteratoal cece Idex, Chemcal ad Molecular Egeerg waset.org/publcato/7848 For the estmato o sold state asto temperature ( ), Nchta et al. proposed the ollowg correlato []: MW (7) MW I (6) ad (7), s K, ad MW s the compoet molecular weght. For the calculato o uso ad the soldsold asto ethalpy o ormal alkaes, Nchta et al. suggested the ollowg correlatos or MW > 8 (gr/mol) []: Δ H MW (8) Δ H MW (9) ad or MW < 8 (gr/mol), Nchta et al. expressed the total ethalpy (uso+ sold state asto) by the ollowg correlato []: Δ H MW (10) t I (8) to (10), ΔH s cal/mol. For calculato o heat capacty derece betwee sold ad lqud phase, Δ C, the ollowg correlato proposed by Pederse et al. have bee appled [3]: that ΔC 4 Δ C MW MW (11) P p ad are cal/mol.k ad K, respectvely. For precptatg compoets the thermodyamc equlbrum ca be wrtte as ollows [1,, 16]:, x ) ) 1,..., C (1), Pure where, C s s the umber o precptatg compoets. By usg the stablty aalyss correlato, (4), ad materal balace or precptatg ad o-precptatg compoets, the mole racto ad composto o sold phase ca be obtaed. he algorthm ad materal balace equatos have bee reported the lterature [16]. IV. REU AND DICUION he results o calculatos have bee reported able V. hs table shows the ew mult-sold model usg predctve Wlso model gves better results comparso wth other actvty coecet models ad deal soluto approach ad the prevous mult-sold models. Fgs. 1-4 show the results o calculatos wth ew mult-sold model by usg the predctve Wlso model. s p ABE V HE REU OF CACUAION erary systems otal No. o data pots Models AAD % a ra-galeaa et al. (1996) [ ] Nchta et al. (001) [ ] New Model γ New M model Regular soluto New M model UNIFAC New M Model P. UNIQUAC New M model P. Wlso a Cal Exp %AAD Exp WD (K) WD (K) Expermetal data New mult-sold model ad usg predctve Wlso Number o mxture Fg. 1 he results o calculato by ew mult-sold model ad predctve Wlso model terary 1 (C 14 -C 15 -C 16 ) Expermetal data New mult-sold model ad usg predctve Wlso Number o mxture Fg. he results o calculato by ew mult-sold model ad predctve Wlso model terary (C 16 -C 17 -C 18 ) Iteratoal cholarly ad cetc Research & Iovato 1(5)

4 World Academy o cece, Egeerg ad echology Iteratoal Joural o Chemcal ad Molecular Egeerg Iteratoal cece Idex, Chemcal ad Molecular Egeerg waset.org/publcato/7848 Also, able VI dcates the Nchta et al. ad ew multsold models gve better results tha the ra-galeaa model sogly. It proves that the cosderato o sold-sold asto term s requred or the calculato o sold-lqud phase equlbrum based o the cocept o mult-sold model or predcto o wax ormato pheomea. WD (K) WD (K) Expermetal data New mult-sold model ad usg predctve Wlso Number o mxture Fg. 3 he results o calculato by ew mult-sold model ad predctve Wlso model terary 3 (C 18 -C 19 -C 0 ) Expermetal data New mult-sold model ad usg predctve Wlso Number o mxture Fg. 4 he results o calculato by ew mult-sold model ad predctve Wlso model terary 4 (C 19 -C 0 -C 1 ) V. CONCUION I the prevous mult-sold models or the predcto o wax precptato pheomea, the equato o state has bee used or calculato o ugacty the lqud phase. For the rst tme, ths work, actvty coecet models have bee appled or the stablty aalyss ad ugacty calculato. he results show that ths approach s better tha that oe uses the equato o state. Also, the ru tme o ew method s less tha the prevous models. APPENDIX A. Actvty Coecet Models 1) Regular oluto heory [6, 7] V ( δ δ ) lγ (1) R Where,V,δ adδ are the molar volume, solublty parameter ad average solublty parameter, respectvely. δ ϕ δ () As, ϕ ad ϕ are the volume racto o lqud ad sold phases, respectvely. x V ϕ (3) x V x V x V ϕ (4) I ths approach, the lqud ad sold molar volumes are assumed to be equal. hereore, MW V V V (5) d,5 For estmato o the lqud desty o each compoet at 5 c ( d, 5 ), the ollowg correlato depedg o molecular weght s used [3]: d, MW (6) MW olublty parameters the lqud ad sold phases ( δ ad δ ) related to carbo umber ( C ) are calculated by (7) ad (8) suggested by Pederse et al. [3]: δ (l C l 7) (7) δ (l C l 7) (8) ) UNIFAC [8] For mxtures cotag alkaes oly, the ollowg correlato s used [8]: Φ Φ Φ Φ l γ + l 1 q l + x x θ 1 (9) θ s the coordato umber. For orthorhombc molecular sucture s set to 6 ad θ, the area racto, adϕ, the segmet racto, are obtaed rom the ollowg correlatos: xq θ (10) x q Iteratoal cholarly ad cetc Research & Iovato 1(5)

5 World Academy o cece, Egeerg ad echology Iteratoal Joural o Chemcal ad Molecular Egeerg Iteratoal cece Idex, Chemcal ad Molecular Egeerg waset.org/publcato/7848 Φ x r x r (11) he values o molecular sze parameter, r, ad molecular exteral surace parameter, q, have bee obtaed rom the Esmaelzadeh et al. correlatos [9-10]: r (1) lγ C.54C q (13) 3) Predctve UNIQUAC [11, 1] Φ l x + q q Φ + 1 x l 1 Φ Φ q l + 1 θ θ θ τ q θ τ m 1 k 1 k θ τ k (14) λ λ τ exp (15) q R I ths equato, the λ s the teracto eergy. mlar to UNFAC, θ ad Φ are calculated by (10) ad (11). he correlatos or the r ad q values wth the -alkae cha legth are [13]: r C (16).0185C q (17) he teracto eergy, λ s estmated rom the heat o sublmato o pure orthorhombc crystal, λ ( ΔH sub R ) (18) wth beg the coordato umber. For the orthorhombc crystals, the value o 6 s cosdered or [11, 14]. he teracto eergy betwee two o-detcal molecules s gve by: λ λ λ (19) where s the -alkae wth the shorter cha o the par. Heat o sublmato ca be calculated by: sub vap Δ H ΔH + ΔH + ΔH (0) where vaporzato ethalpy s assessed usg the PER correlato by Morga ad Kobayash [17]. he crtcal propertes eeded Morga ad Kobayash correlatos ca be calculated by wu correlatos [18]. Δ H, s calculated by the ollowg correlato: Δ H ΔH tot ΔH (1) ΔH C () tot Λ 4) Predctve Wlso [14] x Λ lγ 1 l x Λ (3) k k x Λ λ λ exp (4) R mlar to the predctve UNIQUAC approach, λ s calculated ad the value o 6 s cosdered or. NOMENCAURE ymbols C umber o compoet C carbo umber C p d H MW P q r R V x specc heat capacty desty ugacty ethalpy couter o compoet molecular weght pressure molecular exteral surace parameter molecular sze parameter gas uversal costat temperature volume mole racto coordato umber eed composto Greek letters Δ varato actvty coecet γ δ δ ϕ Φ θ Λ λ τ uperscrpts lqud sold solublty parameter average solublty parameter volume racto segmet racto area racto teracto parameter teracto eergy characterstc eergy parameter k k Iteratoal cholarly ad cetc Research & Iovato 1(5) 007 5

6 World Academy o cece, Egeerg ad echology Iteratoal Joural o Chemcal ad Molecular Egeerg Iteratoal cece Idex, Chemcal ad Molecular Egeerg waset.org/publcato/7848 ubscrpts C crtcal F eed uso sub tot vap compoet umber compoet umber compoet umber sublmato total asto vaporzato ACKNOWEDGMEN he authors are grateul to the hraz Uversty or supportg ths research. REFERENCE [1] C. ra-galea, A. Froozabad ad J.M Praustz, hermodyamc o wax precptato peoleum mxtures, AIChE J., vol. 4, pp , [] D.V. Nchta,. Goual ad A. Froozabad, Wax precptato gas codesate mxtures, PE Prod. Facl., vol. 16, pp , 001. [3] K.. Pederse, P. kovborg ad H.P. Rogse, Wax precptato rom orth sea crude ols 4. hermodyamc modelg, Eergy ad Fuels, vol. 5, pp , [4] D.Y. Peg ad D.B. Robso, A ew two-costat equato o state, Id. Eg. Chem. Fud., vol. 15, pp , [5] A. Daesh, PV ad Phase Behavor o Peoleum Reservor Fluds, 3rd mpresso, Elsever, Netherlads, 003. [6] K.W. Wo, hermodyamcs or sold soluto-lqud-vapor equlbra: wax phase ormato rom heavy hydrocarbo mxtures, Flud Phase Equlb., vol. 30, pp , [7] J.M. Praustz, R.N. chtethaler ad E.G. de Azevedo, Molecular hermodyamcs o Flud-Phase Equlbra, Pretce-Hall, Eglewood Cls, NJ, [8] B.. arse, P. Rasmusse ad A. Fredeslud, A moded UNIFAC group-cobuto model or predcto o phase equlbra ad heats o mxg, Id. Eg. Chem. Res., vol. 6, pp , [9] F. Esmaelzadeh, J. Fath Kalah ad E. Ghaae, Ivestgato o deret actvty coecet models thermodyamc modelg o wax precptato, Flud Phase Equlb., vol. 48, pp. 7-18, 006. [10] E. Ghaae, hermodyamc modelg o wax precptato through gas codesate ppeles, M.. thess, Chem. ad Pet. Eg. Dept., hraz Uv., hraz, Ira, 006. [11] J.A.P. Coutho, Predctve UNIQUAC: A ew model or the descrpto o multphase sold-lqud equlbra complex hydrocarbo mxtures, Id. Eg. Chem. Res., vol. 37, pp , [1] J.A.P. Coutho, Predctve local composto models: NR ad UNIQUAC ad ther applcato to model sold lqud equlbrum o - alkae, Flud Phase Equlb., vol , pp , [13] J.A.P. Coutho, C. Dauph, J.. Dardo, Measuremets ad modellg o wax ormato desel uels, Fuel, vol. 79, pp , 000. [14] J.A.P. Coutho, E.H. teby, Predctve local composto models or sold/lqud equlbrum -alkae systems: Wlso equato or multcompoet systems, Id. Eg. Chem. Res., vol. 35, pp , [15] V. Metvaud, F. Raabalee, H.A.J. Ook, D. Modeg, Y. Haget, Complete determato o the sold (RI)-lqud equlbra o our cosecutve -alkae terary systems the rage C 14 H 30 -C 1 H 44 usg oly bary data, Ca. J. Chem., vol. 77, pp , [16] A. Froozabad, hermodyamcs o Hydrocarbo Reservors, 1 st edto, McGraw-Hll, New York Cty, [17] D.. Morga, R. Kobayash, Exteso o Ptzer CP models or vapor pressures ad heats o vaporzato to log-cha hydrocarbos, Flud Phase Equlb., vol. 94, pp , [18] C.H. wu, A terally cosstet correlato or predctg the crtcal propertes ad molecular weghts o peoleum ad coal-tar lquds, Flud Phase Equlb., vol. 16, pp , Ehsa Ghaae was bor 1979 Mashhad, Ira. He has a B.. degree chemcal egeerg rom the Ira Uversty o cece ad echology, ehra, Ira (003) ad a M.. degree Natural Gas Egeerg rom the hraz Uversty, hraz, Ira (006). Hs research terests clude hermodyamc o Peoleum Reservor Fluds such as thermodyamc modelg o wax precptato peoleum luds specally porous meda. He has publshed ad preseted artcles Flud Phase Equlbra oural ad teratoal coereces wth Dr. Esmaelzadeh ad Proessor Fath Kalah. He s a member o ocety o Peoleum Egeers (PE). Ferdu Esmaelzadeh was bor 1963 Abada, Ira. He has a B.. degree rom the Abada Isttute o echology, Abada, Ira (1986), a M.. degree rom the hraz Uversty, hraz, Ira (1990) ad a Ph.D. degree rom the har Uversty o echology, ehra, Ira (001), all chemcal egeerg. He s Assstat Proessor o the hraz Uversty ad Aduct Proessor o the har Uversty o echology sce 00 ad 001, respectvely. He was Vstg Proessor o Peoleum Uversty o echology ad Isaha Uversty o echology He has more tha 10 years' experece the Natoal Iraa Ol Compay (N.I.O.C.) as a admsator o Reservor mulato, Producto Egeerg ad Peophyscs Ahvaz, ehra ad hraz Ira. Hs prmary research terests clude Gas Codesate Reservor, upercrtcal Fluds, Phase Equlbrum (Eo), mulato ad urace Faclty Problems Peoleum Iduses ad publshed artcles related to these subects ourals. He s a member o ocety o Peoleum Egeers (PE) ad Iraa Assocato o Chemcal Egeerg. Jamshd Fath Kalah was bor 1947 abrz, Ira. He has a B.. degree rom the Orego tate Uversty, Corvalls, Orego, UA (1974), a M.. degree rom Vrga Polytechque Isttute ad tate Uversty, Blacksburg Vrga, UA (1976) ad a Ph.D. degree rom Vrga Polytechque Isttute ad tate Uversty, Blacksburg Vrga, UA (1978) all chemcal egeerg. He s Proessor o the hraz Uversty sce He was vstg Proessor o Oklahoma tate Uversty (Oklahoma, UA) ad akehead Uversty (Otaro, Caada) ad , respectvely. He was Charma o Chemcal ad Peoleum Egeerg Departmet o hraz Uversty or seve years. He s teachg Chemcal Egeerg hermodyamc, Chemcal Reactor Desg, Mass aser ad Polymer cece ad echology, B.., M.. ad Ph.D. levels ad he has publshed artcles theses subects ourals. He s a member o ocety o Peoleum Egeers (PE) ad Iraa Assocato o Chemcal Egeerg. Iteratoal cholarly ad cetc Research & Iovato 1(5)

A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures

A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures A Helmholtz eergy equato of state for calculatg the thermodyamc propertes of flud mxtures Erc W. Lemmo, Reer Tller-Roth Abstract New Approach based o hghly accurate EOS for the pure compoets combed at

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Computing Thermal Properties of Natural Gas by Utilizing AGA8 Equation of State

Computing Thermal Properties of Natural Gas by Utilizing AGA8 Equation of State Iteratoal Joural of Chemcal geerg ad Applcatos, Vol., o., Jue ISS: - Computg Thermal Propertes of atural as by Utlzg AA8 quato of State Mahmood Farzaeh-ord, Azad hamforoush, Shahram Hashem ad Hosse Pourhadem

More information

Chapter 11 The Analysis of Variance

Chapter 11 The Analysis of Variance Chapter The Aalyss of Varace. Oe Factor Aalyss of Varace. Radomzed Bloc Desgs (ot for ths course) NIPRL . Oe Factor Aalyss of Varace.. Oe Factor Layouts (/4) Suppose that a expermeter s terested populatos

More information

We have already referred to a certain reaction, which takes place at high temperature after rich combustion.

We have already referred to a certain reaction, which takes place at high temperature after rich combustion. ME 41 Day 13 Topcs Chemcal Equlbrum - Theory Chemcal Equlbrum Example #1 Equlbrum Costats Chemcal Equlbrum Example #2 Chemcal Equlbrum of Hot Bured Gas 1. Chemcal Equlbrum We have already referred to a

More information

First Law of Thermodynamics

First Law of Thermodynamics Cocept o Iteral Eergy, U Iteral eergy s the sum o the ketc ad potetal eerges o the partcles that make up the system. Frst Law o Thermodyamcs Chapter Coservato o Eergy At molecular level, cotrbutors to

More information

Assignment #7 - Solutions

Assignment #7 - Solutions hem 453/544 Fall 003 /05/03 Assgmet #7 - olutos. M& #0. 0.4: 0.: Euler s theorem says that... s homogeeous the....... rove Euler s theorem by deretatg the equato roblem 0- wth respect to ad the settg.

More information

Statistics of Random DNA

Statistics of Random DNA Statstcs of Radom DNA Aruma Ray Aaro Youg SUNY Geeseo Bomathematcs Group The Am To obta the epectato ad varaces for the ethalpy chage ΔH, etropy chage ΔS ad the free eergy chage ΔG for a radom -mer of

More information

Statistical modelling and latent variables (2)

Statistical modelling and latent variables (2) Statstcal modellg ad latet varables (2 Mxg latet varables ad parameters statstcal erece Trod Reta (Dvso o statstcs ad surace mathematcs, Departmet o Mathematcs, Uversty o Oslo State spaces We typcally

More information

Journal of Water and Soil Vol. 26, No. 1, Mar-Apr 2012, p Kriging. (

Journal of Water and Soil Vol. 26, No. 1, Mar-Apr 2012, p Kriging. ( Joural of Water ad Sol Vol. 26, No. 1, Mar-Apr 212, p. 53-64 ( ) 53-64. 1391 1 26 *2 1-89/7/26: 9/8/15:.. (1386-87 1361-62) 26 32.. (GPI) (IDW). (Co-Krgg) (Krgg) (RBF) (LPI) 64/46 6/49 77/2 66/86 IDW RBF.

More information

On Signed Product Cordial Labeling

On Signed Product Cordial Labeling Appled Mathematcs 55-53 do:.436/am..6 Publshed Ole December (http://www.scrp.or/joural/am) O Sed Product Cordal Label Abstract Jayapal Baskar Babujee Shobaa Loaatha Departmet o Mathematcs Aa Uversty Chea

More information

Bootstrap Method for Testing of Equality of Several Coefficients of Variation

Bootstrap Method for Testing of Equality of Several Coefficients of Variation Cloud Publcatos Iteratoal Joural of Advaced Mathematcs ad Statstcs Volume, pp. -6, Artcle ID Sc- Research Artcle Ope Access Bootstrap Method for Testg of Equalty of Several Coeffcets of Varato Dr. Navee

More information

Chapter Statistics Background of Regression Analysis

Chapter Statistics Background of Regression Analysis Chapter 06.0 Statstcs Backgroud of Regresso Aalyss After readg ths chapter, you should be able to:. revew the statstcs backgroud eeded for learg regresso, ad. kow a bref hstory of regresso. Revew of Statstcal

More information

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates Joural of Moder Appled Statstcal Methods Volume Issue Artcle 8 --03 Comparso of Parameters of Logormal Dstrbuto Based O the Classcal ad Posteror Estmates Raja Sulta Uversty of Kashmr, Sragar, Ida, hamzasulta8@yahoo.com

More information

(Monte Carlo) Resampling Technique in Validity Testing and Reliability Testing

(Monte Carlo) Resampling Technique in Validity Testing and Reliability Testing Iteratoal Joural of Computer Applcatos (0975 8887) (Mote Carlo) Resamplg Techque Valdty Testg ad Relablty Testg Ad Setawa Departmet of Mathematcs, Faculty of Scece ad Mathematcs, Satya Wacaa Chrsta Uversty

More information

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn:

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn: Chapter 3 3- Busess Statstcs: A Frst Course Ffth Edto Chapter 2 Correlato ad Smple Lear Regresso Busess Statstcs: A Frst Course, 5e 29 Pretce-Hall, Ic. Chap 2- Learg Objectves I ths chapter, you lear:

More information

A Note on Ratio Estimators in two Stage Sampling

A Note on Ratio Estimators in two Stage Sampling Iteratoal Joural of Scetfc ad Research Publcatos, Volume, Issue, December 0 ISS 0- A ote o Rato Estmators two Stage Samplg Stashu Shekhar Mshra Lecturer Statstcs, Trdet Academy of Creatve Techology (TACT),

More information

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic Covergece of the Desrozers scheme ad ts relato to the lag ovato dagostc chard Méard Evromet Caada, Ar Qualty esearch Dvso World Weather Ope Scece Coferece Motreal, August 9, 04 o t t O x x x y x y Oservato

More information

General Families of Estimators for Estimating Population Mean in Stratified Random Sampling under Non-Response

General Families of Estimators for Estimating Population Mean in Stratified Random Sampling under Non-Response J. tat. Appl. Pro. Lett. 3, No., 7-7 06 7 Joural of tatstcs Applcatos & Probablty Letters A Iteratoal Joural http://dx.do.org/0.8576/jsapl/0300 Geeral Famles of Estmators for Estmatg Populato Mea tratfed

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Chapter -2 Simple Random Sampling

Chapter -2 Simple Random Sampling Chapter - Smple Radom Samplg Smple radom samplg (SRS) s a method of selecto of a sample comprsg of umber of samplg uts out of the populato havg umber of samplg uts such that every samplg ut has a equal

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Reliable Computation of Mixture Critical Points

Reliable Computation of Mixture Critical Points Relable omputato of Mxture rtcal Pots Beto A. Strad, Joa. Breecke, James P. Koh ad Mark A. Stadtherr epartmet of hemcal Egeerg Uversty of Notre ame Notre ame, IN 46556 USA ecember 999 (revsed, July 000)

More information

Cloud formation by condensation

Cloud formation by condensation Cloud formato by codesato U ( r) SV r m RT r: radus of droplet : surface teso of lqud ( ) - 80 - N/m : desty of lqud ( ) (r): vapor pressure over covex surface e Clouds develop from codesato of water vapor

More information

A GENERIC METHOD TO MODEL FREQUENCY-DIRECTION WAVE SPECTRA FOR FPSO MOTIONS

A GENERIC METHOD TO MODEL FREQUENCY-DIRECTION WAVE SPECTRA FOR FPSO MOTIONS Proceedgs o the ASME 7th Iteratoal Coerece o Oshore Mechacs ad Arctc Egeerg OMAE8 Jue 5-, 8, Estorl, Portugal OMAE8-5748 A GENERIC METHOD TO MODEL FREQUENCY-DIRECTION WAVE SPECTRA FOR FPSO MOTIONS Hermoe

More information

Simple Linear Regression - Scalar Form

Simple Linear Regression - Scalar Form Smple Lear Regresso - Scalar Form Q.. Model Y X,..., p..a. Derve the ormal equatos that mmze Q. p..b. Solve for the ordary least squares estmators, p..c. Derve E, V, E, V, COV, p..d. Derve the mea ad varace

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures. Lecture 31

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures. Lecture 31 Departet of echacal Egeerg E 322 echacal Egeerg Therodyacs Ideal Gas xtures Lecture 31 xtures Egeerg Applcatos atural gas ethae, ethae, propae, butae, troge, hydroge, carbo doxde, ad others Refrgerats

More information

C. Statistics. X = n geometric the n th root of the product of numerical data ln X GM = or ln GM = X 2. X n X 1

C. Statistics. X = n geometric the n th root of the product of numerical data ln X GM = or ln GM = X 2. X n X 1 C. Statstcs a. Descrbe the stages the desg of a clcal tral, takg to accout the: research questos ad hypothess, lterature revew, statstcal advce, choce of study protocol, ethcal ssues, data collecto ad

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

A Collocation Method for Solving Abel s Integral Equations of First and Second Kinds

A Collocation Method for Solving Abel s Integral Equations of First and Second Kinds A Collocato Method for Solvg Abel s Itegral Equatos of Frst ad Secod Kds Abbas Saadatmad a ad Mehd Dehgha b a Departmet of Mathematcs, Uversty of Kasha, Kasha, Ira b Departmet of Appled Mathematcs, Faculty

More information

On Fuzzy Arithmetic, Possibility Theory and Theory of Evidence

On Fuzzy Arithmetic, Possibility Theory and Theory of Evidence O Fuzzy rthmetc, Possblty Theory ad Theory of Evdece suco P. Cucala, Jose Vllar Isttute of Research Techology Uversdad Potfca Comllas C/ Sata Cruz de Marceado 6 8 Madrd. Spa bstract Ths paper explores

More information

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function 7659, Eglad, UK Joural of Iformato ad Computg Scece Vol. 2, No. 3, 2007, pp. 9-96 Geeratg Multvarate Noormal Dstrbuto Radom Numbers Based o Copula Fucto Xaopg Hu +, Jam He ad Hogsheg Ly School of Ecoomcs

More information

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1, Lecture (Part II) Materals Covered Ths Lecture: Chapter 2 (2.6 --- 2.0) The umber of ways of parttog dstct obects to dstct groups cotag, 2,, obects, respectvely, where each obect appears exactly oe group

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

The E vs k diagrams are in general a function of the k -space direction in a crystal

The E vs k diagrams are in general a function of the k -space direction in a crystal vs dagram p m m he parameter s called the crystal mometum ad s a parameter that results from applyg Schrödger wave equato to a sgle-crystal lattce. lectros travelg dfferet drectos ecouter dfferet potetal

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

STRATIFIED SAMPLING IN AGRICULTURAL SURVEYS

STRATIFIED SAMPLING IN AGRICULTURAL SURVEYS 3 STRATIFIED SAMPLIG I AGRICULTURAL SURVEYS austav Adtya Ida Agrcultural Statstcs Research Isttute, ew Delh-00 3. ITRODUCTIO The prme objectve of a sample survey s to obta fereces about the characterstc

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

SPATIAL RAINFALL FIELD SIMULATION WITH RANDOM CASCADE INTRODUCING OROGRAPHIC EFFECTS ON RAINFAL

SPATIAL RAINFALL FIELD SIMULATION WITH RANDOM CASCADE INTRODUCING OROGRAPHIC EFFECTS ON RAINFAL Proc. of the d Asa Pacfc Assocato of Hydrology ad Water Resources (APHW) Coferece, July 5-8, 4, Sutec Sgapore Iteratoal Coveto Exhbto Cetre, Sgapore, vol., pp. 67-64, 4 SPATIAL RAINFALL FIELD SIMULATION

More information

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved. VOL., NO., November 0 ISSN 5-77 ARPN Joural of Scece ad Techology 0-0. All rghts reserved. http://www.ejouralofscece.org Usg Square-Root Iverted Gamma Dstrbuto as Pror to Draw Iferece o the Raylegh Dstrbuto

More information

(b) By independence, the probability that the string 1011 is received correctly is

(b) By independence, the probability that the string 1011 is received correctly is Soluto to Problem 1.31. (a) Let A be the evet that a 0 s trasmtted. Usg the total probablty theorem, the desred probablty s P(A)(1 ɛ ( 0)+ 1 P(A) ) (1 ɛ 1)=p(1 ɛ 0)+(1 p)(1 ɛ 1). (b) By depedece, the probablty

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

An algorithm for estimating the volatility of the velocity of money

An algorithm for estimating the volatility of the velocity of money PRA uch Persoal RePEc Archve A algorthm for estmatg the volatlty of the velocty of moey urat Alkhaov ad Leo Taylor KIEP Uversty August 93 Ole at http://mpra.ub.u-mueche.de/4933/ PRA Paper No. 4933, posted

More information

: At least two means differ SST

: At least two means differ SST Formula Card for Eam 3 STA33 ANOVA F-Test: Completely Radomzed Desg ( total umber of observatos, k = Number of treatmets,& T = total for treatmet ) Step : Epress the Clam Step : The ypotheses: :... 0 A

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Multi-Step Methods Applied to Nonlinear Equations of Power Networks

Multi-Step Methods Applied to Nonlinear Equations of Power Networks Electrcal ad Electroc Egeerg 03, 3(5): 8-3 DOI: 0.593/j.eee.030305.0 Mult-Step s Appled to olear Equatos of Power etworks Rubé llafuerte D.,*, Rubé A. llafuerte S., Jesús Meda C. 3, Edgar Meja S. 3 Departmet

More information

Calculation of Failure Probability of Series and Parallel Systems for Imprecise Probability

Calculation of Failure Probability of Series and Parallel Systems for Imprecise Probability IJ Egeerg ad Mauacturg, 2012,2, 79-85 Publshed Ole Aprl 2012 MECS (http://wwwmecs-presset) DOI: 105815/jem20120212 Avalable ole at http://wwwmecs-presset/jem Calculato o Falure Probablty o Seres ad Parallel

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Bezier curve and its application

Bezier curve and its application , 49-55 Receved: 2014-11-12 Accepted: 2015-02-06 Ole publshed: 2015-11-16 DOI: http://dx.do.org/10.15414/meraa.2015.01.02.49-55 Orgal paper Bezer curve ad ts applcato Duša Páleš, Jozef Rédl Slovak Uversty

More information

Temperature Memory Effect in Amorphous Shape Memory Polymers. Kai Yu 1, H. Jerry Qi 1, *

Temperature Memory Effect in Amorphous Shape Memory Polymers. Kai Yu 1, H. Jerry Qi 1, * Electroc Supplemetary Materal (ESI) for Soft Matter. h joural he Royal Socety of Chemtry 214 Supplemetary Materal for: emperature Memory Effect Amorphou Shape Memory Polymer Ka Yu 1, H. Jerry Q 1, * 1

More information

Introduction to Numerical Differentiation and Interpolation March 10, !=1 1!=1 2!=2 3!=6 4!=24 5!= 120

Introduction to Numerical Differentiation and Interpolation March 10, !=1 1!=1 2!=2 3!=6 4!=24 5!= 120 Itroducto to Numercal Deretato ad Iterpolato Marc, Itroducto to Numercal Deretato ad Iterpolato Larr Caretto Mecacal Egeerg 9 Numercal Aalss o Egeerg stems Marc, Itroducto Iterpolato s te use o a dscrete

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

THE EFFICIENCY OF EMPIRICAL LIKELIHOOD WITH NUISANCE PARAMETERS

THE EFFICIENCY OF EMPIRICAL LIKELIHOOD WITH NUISANCE PARAMETERS Joural of Mathematcs ad Statstcs (: 5-9, 4 ISSN: 549-3644 4 Scece Publcatos do:.3844/jmssp.4.5.9 Publshed Ole ( 4 (http://www.thescpub.com/jmss.toc THE EFFICIENCY OF EMPIRICAL LIKELIHOOD WITH NUISANCE

More information

Computational Geometry

Computational Geometry Problem efto omputatoal eometry hapter 6 Pot Locato Preprocess a plaar map S. ve a query pot p, report the face of S cotag p. oal: O()-sze data structure that eables O(log ) query tme. pplcato: Whch state

More information

Quantitative analysis requires : sound knowledge of chemistry : possibility of interferences WHY do we need to use STATISTICS in Anal. Chem.?

Quantitative analysis requires : sound knowledge of chemistry : possibility of interferences WHY do we need to use STATISTICS in Anal. Chem.? Ch 4. Statstcs 4.1 Quattatve aalyss requres : soud kowledge of chemstry : possblty of terfereces WHY do we eed to use STATISTICS Aal. Chem.? ucertaty ests. wll we accept ucertaty always? f ot, from how

More information

Normalized Exponential Tilting: Pricing and Measuring Multivariate Risks

Normalized Exponential Tilting: Pricing and Measuring Multivariate Risks Normalzed Expoetal Tltg: Prcg ad easurg ultvarate Rsks Shau Wag Departmet o Rsk aagemet ad Isurace Georga State Uversty Abstract: Ths paper dscusses expoetal tltg o the probablty desty ucto o a uderlyg

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Statistics: Unlocking the Power of Data Lock 5

Statistics: Unlocking the Power of Data Lock 5 STAT 0 Dr. Kar Lock Morga Exam 2 Grades: I- Class Multple Regresso SECTIONS 9.2, 0., 0.2 Multple explaatory varables (0.) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (0.2) Exam 2 Re- grades Re-

More information

Nonlinear Blind Source Separation Using Hybrid Neural Networks*

Nonlinear Blind Source Separation Using Hybrid Neural Networks* Nolear Bld Source Separato Usg Hybrd Neural Networks* Chu-Hou Zheg,2, Zh-Ka Huag,2, chael R. Lyu 3, ad Tat-g Lok 4 Itellget Computg Lab, Isttute of Itellget aches, Chese Academy of Sceces, P.O.Box 3, Hefe,

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

The OK weights define the best linear unbiased predictor (BLUP). The OK prediction, z ( x ), is defined as: (2) given.

The OK weights define the best linear unbiased predictor (BLUP). The OK prediction, z ( x ), is defined as: (2) given. JSR data archve materal for HOW POROSITY AND PERMEABILITY VARY SPATIALLY WITH GRAIN SIZE, SORTING, CEMENT VOLUME AND MINERAL DISSOLUTION IN FLUVIAL TRIASSIC SANDSTONES: THE VALUE OF GEOSTATISTICS AND LOCAL

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions

Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions Scece Joural of Appled Mathematcs ad Statstcs 06; 4(5): 9-35 http://www.scecepublshggroup.com/j/sjams do: 0.648/j.sjams.060405.6 ISSN: 376-949 (Prt); ISSN: 376-953 (Ole) Mmax stmato of the Parameter of

More information

Applied Mathematics and Computation

Applied Mathematics and Computation Appled Mathematcs ad Computato 215 (2010) 4198 4202 Cotets lsts avalable at SceceDrect Appled Mathematcs ad Computato joural homepage: www.elsever.com/locate/amc Improvemet estmatg the populato mea smple

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE (STATISTICS) STATISTICAL INFERENCE COMPLEMENTARY COURSE B.Sc. MATHEMATICS III SEMESTER ( Admsso) UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY P.O., MALAPPURAM, KERALA, INDIA -

More information

On the Modeling and Simulation of Collision and Collision-Free Motion for Planar Robotic Arm Galia V. Tzvetkova

On the Modeling and Simulation of Collision and Collision-Free Motion for Planar Robotic Arm Galia V. Tzvetkova Iteratoal Joural of Egeerg Research & Scece (IJOER [Vol-, Issue-9, December- 25] O the Modelg ad Smulato of Collso ad Collso-Free Moto for Plaar Robotc Arm Gala V. Tzvetova Isttute of mechacs, Bulgara

More information

INTERNATIONAL BACCALAUREATE ORGANIZATION GROUP 5 MATHEMATICS FORMULAE AND STATISTICAL TABLES

INTERNATIONAL BACCALAUREATE ORGANIZATION GROUP 5 MATHEMATICS FORMULAE AND STATISTICAL TABLES INTERNATIONAL BACCALAUREATE ORGANIZATION GROUP 5 MATHEMATICS ORMULAE AND STATISTICAL TABLES To be used the teachg ad eamato of: Mathematcs HL Mathematcal Methods SL Mathematcal Studes SL urther Mathematcs

More information

Likelihood and Bayesian Estimation in Stress Strength Model from Generalized Exponential Distribution Containing Outliers

Likelihood and Bayesian Estimation in Stress Strength Model from Generalized Exponential Distribution Containing Outliers IAENG Iteratoal Joural of Appled Mathematcs, 46:, IJAM_46 5 Lkelhood ad Bayesa Estmato Stress Stregth Model from Geeralzed Expoetal Dstrbuto Cotag Outlers Chupg L, Hubg Hao Abstract Ths paper studes the

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

A Primer on Summation Notation George H Olson, Ph. D. Doctoral Program in Educational Leadership Appalachian State University Spring 2010

A Primer on Summation Notation George H Olson, Ph. D. Doctoral Program in Educational Leadership Appalachian State University Spring 2010 Summato Operator A Prmer o Summato otato George H Olso Ph D Doctoral Program Educatoal Leadershp Appalacha State Uversty Sprg 00 The summato operator ( ) {Greek letter captal sgma} s a structo to sum over

More information

Numerical Solution of Linear Second Order Ordinary Differential Equations with Mixed Boundary Conditions by Galerkin Method

Numerical Solution of Linear Second Order Ordinary Differential Equations with Mixed Boundary Conditions by Galerkin Method Mathematcs ad Computer Scece 7; (5: 66-78 http://www.scecepublshggroup.com//mcs do:.648/.mcs.75. Numercal Soluto of Lear Secod Order Ordary Dfferetal Equatos wth Mxed Boudary Codtos by Galer Method Aalu

More information

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution Scece Joural of Appled Mathematcs ad Statstcs 06; 4(4): 9- http://www.scecepublshggroup.com/j/sjams do: 0.648/j.sjams.060404. ISSN: 76-949 (Prt); ISSN: 76-95 (Ole) Estmato of the Loss ad Rsk Fuctos of

More information

1 Edge Magic Labeling for Special Class of Graphs

1 Edge Magic Labeling for Special Class of Graphs S.Srram et. al. / Iteratoal Joural of Moder Sceces ad Egeerg Techology (IJMSET) ISSN 349-3755; Avalable at https://www.jmset.com Volume, Issue 0, 05, pp.60-67 Edge Magc Labelg for Specal Class of Graphs

More information

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN EP2200 Queueg theory ad teletraffc systems Queueg etworks Vktora Fodor Ope ad closed queug etworks Queug etwork: etwork of queug systems E.g. data packets traversg the etwork from router to router Ope

More information

Probability of Loss on Loan Portfolio

Probability of Loss on Loan Portfolio Probablty of Loss o Loa Portfolo KMV Corporato COPYRIGHT 1987, KMV CORPORATION, SAN FRANCISCO, CALIFORNIA, USA. All rghts reserved. Documet Number: 999-0000-056. Revso 1.0.0. Ths s a hghly cofdetal documet

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

arxiv: v1 [math.st] 24 Oct 2016

arxiv: v1 [math.st] 24 Oct 2016 arxv:60.07554v [math.st] 24 Oct 206 Some Relatoshps ad Propertes of the Hypergeometrc Dstrbuto Peter H. Pesku, Departmet of Mathematcs ad Statstcs York Uversty, Toroto, Otaro M3J P3, Caada E-mal: pesku@pascal.math.yorku.ca

More information

PLATE COLUMNS ABSORPTION: ALTERNATIVE METHODOLOGY TO GRAPHICAL METHODS

PLATE COLUMNS ABSORPTION: ALTERNATIVE METHODOLOGY TO GRAPHICAL METHODS 2 d Mercosur Cogress o Chemcal geerg 4 th Mercosur Cogress o Process Sstems geerg PAT COUMNS ABSORPTION: ATRNATI MTHODOOGY TO GRAPHICA MTHODS O. C. Motta ma, J. M. Müller, M. A. S. D. Barros, A. H. Osterle

More information

Combining Gray Relational Analysis with Cumulative Prospect Theory for Multi-sensor Target Recognition

Combining Gray Relational Analysis with Cumulative Prospect Theory for Multi-sensor Target Recognition Sesors & Trasducers, Vol 172, Issue 6, Jue 2014, pp 39-44 Sesors & Trasducers 2014 by IFSA Publshg, S L http://wwwsesorsportalcom Combg Gray Relatoal Aalyss wth Cumulatve Prospect Theory for Mult-sesor

More information

Reliability Based Design Optimization with Correlated Input Variables

Reliability Based Design Optimization with Correlated Input Variables 7--55 Relablty Based Desg Optmzato wth Correlated Iput Varables Copyrght 7 SAE Iteratoal Kyug K. Cho, Yoojeog Noh, ad Lu Du Departmet of Mechacal & Idustral Egeerg & Ceter for Computer Aded Desg, College

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

Statistics Descriptive and Inferential Statistics. Instructor: Daisuke Nagakura

Statistics Descriptive and Inferential Statistics. Instructor: Daisuke Nagakura Statstcs Descrptve ad Iferetal Statstcs Istructor: Dasuke Nagakura (agakura@z7.keo.jp) 1 Today s topc Today, I talk about two categores of statstcal aalyses, descrptve statstcs ad feretal statstcs, ad

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medical. Diagnosis

Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medical. Diagnosis Neutrosophc Sets ad Systems, Vol. 6, 04 48 Dce Smlarty Measure betwee Sgle Valued Neutrosophc Multsets ad ts pplcato Medcal Dagoss Sha Ye ad Ju Ye Tasha Commuty Health Servce Ceter. 9 Hur rdge, Yuecheg

More information

Linear and Non-Linear Regression: Powerful and Very Important Forecasting Methods

Linear and Non-Linear Regression: Powerful and Very Important Forecasting Methods Epert Joural of Busess ad Maagemet, Volume, Issue, pp. 0-8, 0 0 The Author. Publshed b Sprt Ivestf. ISSN 44-678 http://busess.epertjourals.com Lear ad No-Lear Regresso: Powerful ad Ver Importat Forecastg

More information

Kangwon National University, South Korea

Kangwon National University, South Korea Evaluato of WAT Auto-calbrato usg Dverse Effcecy Crtera 0 Iteratoal WAT Coferece Hyuwoo Kag Kagwo Natoal Uversty, outh Korea Itroducto Calbrato ad Valdato of hydrologcal model Nash-utclffe Model Effcecy

More information

Numerical Integration of Arbitrary Functions over a Convex and Non Convex Polygonal Domain by Eight Noded Linear Quadrilateral Finite Element Method

Numerical Integration of Arbitrary Functions over a Convex and Non Convex Polygonal Domain by Eight Noded Linear Quadrilateral Finite Element Method Australa Joural of Basc ad Appled Sceces, 10(16) ovember 016, Pages: 104-110 AUSTRALIA JOURAL OF BASI AD APPLIED SIEES ISS:1991-8178 EISS: 309-8414 Joural home page: www.abasweb.com umercal Itegrato of

More information

Barycentric Interpolators for Continuous. Space & Time Reinforcement Learning. Robotics Institute, Carnegie Mellon University

Barycentric Interpolators for Continuous. Space & Time Reinforcement Learning. Robotics Institute, Carnegie Mellon University Barycetrc Iterpolators for Cotuous Space & Tme Reforcemet Learg Rem Muos & Adrew Moore Robotcs Isttute, Carege Mello Uversty Pttsburgh, PA 15213, USA. E-mal:fmuos, awmg@cs.cmu.edu Category : Reforcemet

More information

Stress Wave propagation in Electro-Magneto-Elastic plate of arbitrary cross-sections

Stress Wave propagation in Electro-Magneto-Elastic plate of arbitrary cross-sections Iteratoal Joural of Scetfc & Egeerg Research Volume 3, Issue 8, August-1 1 ISSN 9-5518 Stress Wave propagato Electro-Mageto-Elastc plate of arbtrary cross-sectos P. Pousamy Departmet of Mathematcs Govermet

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Vector Similarity Measures between Refined Simplified Neutrosophic Sets and Their Multiple Attribute Decision-Making Method

Vector Similarity Measures between Refined Simplified Neutrosophic Sets and Their Multiple Attribute Decision-Making Method S S symmetry Artcle Vector Smlarty Measures betwee Refed Smplfed Neutrosophc Sets ad Ther Multple Attrbute Decso-Makg Method Jqa Che 1, Ju Ye 1,2, * ad Shgu Du 1 1 Key Laboratory of Rock Mechacs ad Geohazards,

More information

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm Appled Mathematcal Sceces, Vol 6, 0, o 4, 63-7 Soluto of Geeral Dual Fuzzy Lear Systems Usg ABS Algorthm M A Farborz Aragh * ad M M ossezadeh Departmet of Mathematcs, Islamc Azad Uversty Cetral ehra Brach,

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

Determination of Sediment Transport Characteristic Diameter for the Odra River Section

Determination of Sediment Transport Characteristic Diameter for the Odra River Section PUBLS. INST. GEOPHYS. POL. ACA. SC. E-7 (4) 27 etermato of Sedmet Trasport Characterstc ameter for the Odra Rver Secto Rysard COUFAL ad Zygmut MEYER Scec Uversty of Techology Al. Pastów 5 7-3 Scec Polad

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology It J Pure Appl Sc Techol, () (00), pp 79-86 Iteratoal Joural of Pure ad Appled Scece ad Techology ISSN 9-607 Avalable ole at wwwjopaaat Reearch Paper Some Stroger Chaotc Feature of the Geeralzed Shft Map

More information