Generalized differential equations: differentiability of solutions with respect to initial conditions and parameters

Size: px
Start display at page:

Download "Generalized differential equations: differentiability of solutions with respect to initial conditions and parameters"

Transcription

1 Generlize ifferentil equtions: ifferentibility of solutions with respect to initil conitions n prmeters Antonín Slvík Chrles University, Fculty of Mthemtics n Physics, Sokolovská 83, Prh 8, Czech Republic E-mil: slvik@krlin.mff.cuni.cz Abstrct We show tht uner certin ssumptions, solutions of generlize orinry ifferentil equtions re ifferentible with respect to initil conitions n prmeters. This result unifies n extens severl existing theorems for other types of equtions, such s impulsive ifferentil equtions or ynmic equtions on time scles. Keywors: Generlize orinry ifferentil equtions, ifferentibility of solutions, Kurzweil integrl, ifferentil equtions with impulses, ynmic equtions on time scles 1 Introuction In the clssicl theory of orinry ifferentil equtions, it is well known tht uner certin ssumptions, solutions of the problem x (t) = f(x(t), t), t [, b], x(t 0 ) = x 0, re ifferentible with respect to the initil conition; tht is, if x(t, x 0 ) enotes the vlue of the solution t t [, b], then the function x 0 x(t, x 0 ) is ifferentible. The key requirement is tht the righthn sie f shoul be ifferentible with respect to x. Moreover, the erivtive s function of t is known to stisfy the so-clle vritionl eqution, which might be helpful in etermining the vlue of the erivtive. Similrly, uner suitble ssumptions, solutions of ifferentil eqution whose right-hn sie epens on prmeter re ifferentible with respect to tht prmeter. These two types of theorems concerning ifferentibility of solutions with respect to initil conitions n prmeters cn be foun in mny ifferentil equtions textbooks, see e.g. [3]. Theorems of similr type re lso vilble for other types of equtions, such s ifferentil equtions with impulses (see [6]) or ynmic equtions on time scles (see [2]). In 1957, Jroslv Kurzweil introuce clss of integrl equtions clle generlize orinry ifferentil equtions (see [4]). His originl motivtion ws to use them in the stuy of continuous epenence of solutions with respect to prmeters. However, it becme cler tht generlize equtions encompss vrious other types of equtions, incluing equtions with impulses (see [8]), ynmic equtions on time scles (see [11]), or mesure ifferentil equtions (see [8]). The im of this pper is to obtin ifferentibility theorems for generlize orinry ifferentil equtions. Despite the fct tht solutions of generlize equtions nee not be ifferentible or even continuous with respect to t, we show tht ifferentibility of the right-hn sie with respect to x (n possibly with respect to prmeters) still gurntees tht the solutions re ifferentible with respect to initil conitions (n prmeters, respectively). Consequently, our result unifies n extens existing theorems for other types of equtions. 1

2 2 The Kurzweil integrl n generlize ifferentil equtions We strt this section by presenting short overview of the Kurzweil integrl, which is funmentl for the stuy of generlize orinry ifferentil equtions. For more informtion on Kurzweil integrtion, see [5, 8]. A function δ : [, b] R + is clle guge on [, b]. A tgge prtition of the intervl [, b] with ivision points = t 0 t 1 t k = b n tgs τ i [t i 1, t i ], i {1,..., k}, is clle δ-fine if [t i 1, t i ] (τ i δ(τ i ), τ i + δ(τ i )), i {1,..., k}. A mtrix-vlue function U : [, b] [, b] R n m is clle Kurzweil integrble on [, b], if there is mtrix K R n m such tht for every ε > 0, there is guge δ on [, b] such tht k (U(τ i, t i ) U(τ i, t i 1 )) K < ε i=1 for every δ-fine tgge prtition of [, b]. In this cse, we efine D tu(τ, t) = K. Obviously, mtrix-vlue function U is integrble if n only if ll its components re integrble. Note lso tht we restrict ourselves to functions with vlues in finite-imensionl spces; in this cse, the Kurzweil integrl coincies with the strong Kurzweil integrl (see Chpter 19 in [5]). An importnt specil cse is the Kurzweil-Stieltjes integrl (lso known s the Perron-Stieltjes, Henstock-Stieltjes or Henstock-Kurzweil-Stieltjes integrl) of function f : [, b] R n with respect to function g : [, b] R, which correspons to the choice U(τ, t) = f(τ)g(t) n will be enote by f(t) g(t). We re now rey to introuce generlize orinry ifferentil equtions. Consier set B R n, n intervl [, b] R n function F : B [, b] 2 R n. A generlize orinry ifferentil eqution with the right-hn sie F hs the form which is shorthn nottion for the integrl eqution x(s) = x() + t x = D tf (x, τ, t), (1) D t F (x(τ), τ, t), s [, b]. (2) In other wors, function x : [, b] B is solution of (1) if n only if (2) is stisfie. We emphsize tht (1) is symbolic nottion only n oes not men tht x hs to be ifferentible. Equtions of the form (1) hve been introuce by J. Kurzweil in [5]. In mny situtions, it is sufficient to consier the less generl type of eqution t x = D tf (x, t), (3) where the right-hn sie oes not epen on τ (in fct, most existing sources evote to generlize equtions focus on this less generl type; see e.g. the pioneering pper [4] by J. Kurzweil, or the monogrph [8] by Š. Schwbik). The corresponing integrl eqution hs the form x(s) = x() + D t F (x(τ), t), s [, b]. Uner certin conitions, n eqution of the form (1) cn be trnsforme to n eqution of the form (3) (see Chpter 27 in [5]). However, s will be cler in Section 4, the more generl type (1) is quite useful for our purposes. The rest of this section summrizes some bsic fcts concerning the Kurzweil integrl tht will be neee lter. The following existence theorem cn be foun in [8, Corollry 1.34] or [5, Chpter 20]. 2

3 Theorem 2.1. If f : [, b] R n is regulte function n g : [, b] R is nonecresing function, then the integrl f(s) g(s) exists. The next estimte follows irectly from the efinition of the Kurzweil integrl. Lemm 2.2. Let U : [, b] 2 R n n be Kurzweil integrble function. Assume there exists pir of functions f : [, b] R n g : [, b] R such tht f is regulte, g is nonecresing, n U(τ, t) U(τ, s) f(τ) g(t) g(s), τ, t, s [, b]. Then D t U(τ, t) f(τ) g(τ). For the first prt of the following sttement, see [5, Corollry 14.18] or [8, Theorem 1.16]; the secon prt is irect consequence of Lemm 2.2. Theorem 2.3. Assume tht U : [, b] 2 R n m is Kurzweil integrble n u : [, b] R n m is its primitive, i.e., u(s) = u() + D t U(τ, t), s [, b]. If U is regulte in the secon vrible, then u is regulte n stisfies u(τ+) = u(τ) + U(τ, τ+) U(τ, τ), τ [, b) u(τ ) = u(τ) + U(τ, τ ) U(τ, τ), τ (, b]. Moreover, if there exists nonecresing function h : [, b] R such tht U(τ, t) U(τ, s) h(t) h(s), τ, t, s [, b], then u(t) u(s) h(t) h(s), t, s [, b]. The following theorem represents n nlogue of Gronwll s inequlity for the Kurzweil-Stieltjes integrl; the proof cn be foun in [8, Corollry 1.43]. Theorem 2.4. Let h : [, b] [0, ) be nonecresing left-continuous function, k > 0, l 0. Assume tht ψ : [, b] [0, ) is boune n stisfies ψ(ξ) k + l Then ψ(ξ) ke l(h(ξ) h()) for every ξ [, b]. 3 Liner equtions ξ ψ(τ) h(τ), ξ [, b]. In this section, we consier the homogeneous liner generlize orinry ifferentil eqution t z = D t[a(τ, t)z], (4) where A : [, b] 2 R n n is given mtrix-vlue function n the solution z tkes vlues in R n. The integrl form of this eqution is z(s) = z() + D t [A(τ, t)z(τ)], s [, b]. The cse when A oes not epen on τ hs been stuie in numerous works (see e.g. [8, 9]). However, to prove the min result of this pper, we nee some bsic fcts concerning the more generl type (4). For convenience, let us introuce the following conition: 3

4 (A) There exists nonecresing function h : [, b] R such tht A(τ, t) A(τ, s) h(t) h(s), τ, t, s [, b]. Note tht if (A) is stisfie, then for every fixe τ [, b], the function t A(τ, t) is regulte (this follows from the Cuchy conition for the existence of one-sie limits). Also, if h is left-continuous, then t A(τ, t) is left-continuous s well. Lemm 3.1. Assume tht A : [, b] 2 R n n stisfies (A). Let y, z : [, b] R n be pir of functions such tht Then z is regulte on [, b]. z(s) = z() + Proof. Let U(τ, t) = A(τ, t)y(τ); note tht D t [A(τ, t)y(τ)], s [, b]. z(s) = z() + D t U(τ, t), s [, b]. By conition (A), U is regulte in the secon vrible. By Theorem 2.3, z is regulte. A simple consequence of the previous lemm is tht every solution of the liner generlize ifferentil eqution (4) is regulte. Lemm 3.2. Assume tht A : [, b] 2 R n n stisfies (A) with left-continuous function h. Then for every z 0 R n, the initil vlue problem hs t most one solution. t z = D t[a(τ, t)z], z() = z 0 Proof. Consier pir of functions z 1, z 2 : [, b] R n such tht Then t z i = D t [A(τ, t)z i ], for i {1, 2}. z 1 (s) z 2 (s) z 1 () z 2 () + z 1 () z 2 () + D t [A(τ, t)(z 1 (τ) z 2 (τ))] z 1 (τ) z 2 (τ) h(τ), s [, b] (the lst inequlity follows from Lemm 2.2). By Gronwll s inequlity from Theorem 2.4, we obtin z 1 (s) z 2 (s) z 1 () z 2 () e h(b) h(), s [, b]. Thus, if z 1 () = z 2 (), then z 1, z 2 coincie on [, b]. The proof of the following lemm is lmost ienticl to the proof of Theorem 3.14 in [8]; however, since our ssumptions re ifferent, we repet the proof here for reer s convenience. Lemm 3.3. Let z k : [, b] R n, k N, be uniformly boune sequence of functions, which is pointwise convergent to function z : [, b] R n. Assume tht A : [, b] 2 R n n stisfies (A) n the integrl D t[a(τ, t)z k (τ)] exists for every k N. Then D t[a(τ, t)z(τ)] exists s well n equls lim k D t[a(τ, t)z k (τ)]. 4

5 Proof. Let A i enote the i-th row of A. Clerly, it is enough to prove tht for every i {1,..., n}, the integrl D t[a i b (τ, t)z(τ)] exists n equls lim k D t[a i (τ, t)z k (τ)]. Let i {1,..., n} be fixe, U(τ, t) = A i (τ, t)z(τ) n U k (τ, t) = A i (τ, t)z k (τ) for every k N (note tht U n U k re sclr functions). Consier n rbitrry fixe ε > 0. For every τ [, b], there is number p(τ) N such tht z k (τ) z(τ) < ε h(b) h() + 1, k p(τ). Let M > 0 be such tht z k (τ) M for every k N, τ [, b]. The function µ(t) = εh(t) h(b) h() + 1, t [, b], is nonecresing n µ(b) µ() < ε. If τ, t 1, t 2 [, b], t 1 t 2, n k p(τ), we hve n U k (τ, t 2 ) U k (τ, t 1 ) U(τ, t 2 ) + U(τ, t 1 ) A i (τ, t 2 ) A i (τ, t 1 ) z k (τ) z(τ) A(τ, t 2 ) A(τ, t 1 ) z k (τ) z(τ) ε(h(t 2) h(t 1 )) h(b) h() + 1 = µ(t 2) µ(t 1 ) M( h(t 2 ) + h(t 1 )) U k (τ, t 2 ) U k (τ, t 1 ) M(h(t 2 ) h(t 1 )). The conclusion now follows from the ominte convergence theorem for the Kurzweil integrl ([8, Corollry 1.31]). Lemm 3.4. Assume tht A : [, b] 2 R n n is Kurzweil integrble n stisfies (A). Then for every regulte function y : [, b] R n, the integrl D t[a(τ, t)y(τ)] exists. Proof. Every regulte function is uniform limit of step functions. Thus, in view of Lemm 3.3, it is sufficient to prove tht the sttement is true for every step function y : [, b] R n. Let = t 0 < t 1 < < t k = b be prtition of [, b] such tht y is constnt on ech intervl (t i 1, t i ). For t i 1 < u < σ < v < t i, the integrbility of A implies tht the integrls σ u D t[a(τ, t)y(τ)] n v σ D t[a(τ, t)y(τ)] exist n re regulte functions of u, v (this follows from (A) n Lemm 3.1). Accoring to Hke s theorems for the Kurzweil integrl (see Theorems n in [5], or Theorem 1.14 n Remrk 1.15 in [8]), the integrls σ t i 1 D t [A(τ, t)y(τ)] n i σ D t[a(τ, t)y(τ)] exist s well. Thus, i t i 1 D t [A(τ, t)y(τ)] exists for every i {1,..., k}, which proves the sttement. Up to smll etil, the proof of the following theorem is the sme s the proof of Theorem 23.4 in [5]. Therefore, we provie only sketch of the proof n leve the etils to the reer. Theorem 3.5. Assume tht A : [, b] 2 R n n is Kurzweil integrble n stisfies (A) with leftcontinuous function h. Then for every z 0 R n, the initil vlue problem hs unique solution z : [, b] R n. t z = D t[a(τ, t)z], z() = z 0 (5) Proof. Uniqueness of solutions follows immeitely from Lemm 3.2. To prove the existence of solution of (5) on [, b], choose prtition = s 0 < s 1 < < s k = b of [, b] such tht h(s i ) h(s i 1 +) 1 2 for every i {1,..., k}. Now, it is sufficient to prove tht for every w 0 R n n i {1,..., k}, the initil vlue problem t z = D t[a(τ, t)z], z(s i 1 ) = w 0 5

6 hs solution on [s i 1, s i ]. This solution cn be obtine by the metho of successive pproximtions: Let v 0 (s) = w 0, s [s i 1, s i ], v j (s) = w 0 + s i 1 D t [A(τ, t)v j 1 (τ)], s [s i 1, s i ], j N. The existence of the integrl on the right-hn sie is gurntee by Lemm 3.4 (this is the only ifference ginst the proof of Theorem 23.4 in [5]). By Theorem 2.3, we hve v j (s) = ŵ 0 + D t [A(τ, t)v j 1 (τ)], s [s i 1, s i ], j N, s i 1+ where ŵ 0 = w 0 + A(s i 1, s i 1 +)w 0 A(s i 1, s i 1 )w 0. Using Lemm 2.2, it is not ifficult to see tht v j+1 (s) v j (s) v 1 (s) v 0 (s) w 0 (h(s i ) h(s i 1 )), s [s i 1, s i ], sup v j (τ) v j 1 (τ) (h(s i ) h(s i 1 +)), s (s i 1, s i ], j N. τ [s i 1,s i] Since h(s i ) h(s i 1 +) 1 2, it follows by inuction tht v j+1 (s) v j (s) w 0 ( ) j 1 (h(s i ) h(s i 1)), s (s i 1, s i ], j N. 2 This implies tht {v j } j=1 is uniformly convergent to function v : [s i 1, s i ] R n, which stisfies v(s) = lim j(s) = w 0 + lim j j D t [A(τ, t)v j 1 (τ)] = w 0 + s i 1 D t [A(τ, t)v(τ)] s i 1 for every s [s i 1, s i ] (we hve use Lemm 3.3). Throughout this section, we focuse our ttention on equtions of the form t z = D t[a(τ, t)z], z() = z 0, where z tkes vlues in R n. More generlly, it is possible to consier equtions where the unknown function hs vlues in R n n. For exmple, if Z 0 R n n is n rbitrry mtrix, then is shorthn nottion for the integrl eqution t Z = D t[a(τ, t)z], Z() = Z 0 Z(s) = Z 0 + D t [A(τ, t)z(τ)], s [, b]. (6) For n rbitrry mtrix X R n n, let X i be the i-th column of X. Then it is obvious tht (6) hols if n only if Z i (s) = Z i 0 + D t [A(τ, t)z i (τ)], s [, b], i {1,..., n}. We will encounter equtions with mtrix-vlue solutions in the following section. 6

7 4 The min results Consier generlize orinry ifferentil eqution of the form t x = D tf (x, τ, t), x() = x 0 (λ), (7) where the solution x tkes vlues in R n, n x 0 : R l R n is function which escribes the epenence of the initil conition on prmeter λ R l. Let x(s, λ) be the vlue of the solution t s [, b]. Our gol is to show tht uner certin conitions, x(s, λ) is ifferentible with respect to λ. Using the efinition of the Kurzweil integrl, we see tht the vlue of x(s, λ) cn be pproximte by x 0 (λ) + k (F (x(τ j, λ), τ j, t j ) F (x(τ j, λ), τ j, t j 1 )), j=1 where = t 0 < t 1 < < t k = s is sufficiently fine prtition of [, s] with tgs τ j [t j 1, t j ], j {1,..., k}. Assuming tht ll expressions re ifferentible with respect to λ t λ 0 R l, we see tht the erivtive x λ (s, λ 0 ), i.e., the mtrix { xi λ j (s, λ 0 )} i,j R n l, shoul be pproximtely equl to x 0 λ(λ 0 ) + k (F x (x(τ j, λ 0 ), τ j, t j )x λ (τ j, λ 0 ) F x (x(τ j, λ), τ j, t j 1 )x λ (τ j, λ 0 )). j=1 Now, the right-hn sie is n pproximtion to x 0 λ(λ 0 ) + D t [F x (x(τ, λ 0 ), τ, t)x λ (τ, λ 0 )]. Thus, it seems resonble to expect tht the erivtive Z(t) = x λ (t, λ 0 ), t [, b], is solution of the liner eqution t z = D tg(z, τ, t), z() = x 0 λ(λ 0 ), (8) where G(z, τ, t) = F x (x(τ, λ 0 ), τ, t)z. This provies motivtion for the following theorem. Note tht even in the cse when the right-hn sie of Eq. (7) oes not epen on τ n hs the form F (x, t), the right-hn sie of Eq. (8) hs the form G(z, τ, t) = F x (x(τ, λ 0 ), t)z, i.e., still epens on τ. Tht is why we h to stuy the more generl type of equtions in the previous section. The following proof is bse on elementry estimtes n Gronwll s inequlity; it is inspire by proof of Theorem 3.1 in the pper [2], which is concerne with ynmic equtions on time scles. Theorem 4.1. Let B R n be n open set, λ 0 R l, ρ > 0, Λ = {λ R l ; λ λ 0 < ρ}, x 0 : Λ B, F : B [, b] 2 R n. Assume tht F is regulte n left-continuous in the thir vrible, n tht for every λ Λ, the initil vlue problem t x = D tf (x, τ, t), x() = x 0 (λ) (9) hs solution efine on [, b]; let x(t, λ) be the vlue of tht solution t t [, b]. Moreover, let the following conitions be stisfie: 1. For every fixe pir (t, τ) [, b] 2, the function x F (x, τ, t) is continuously ifferentible on B. 2. The function x 0 is ifferentible t λ There exists left-continuous nonecresing function h : [, b] R such tht F x (x, τ, t) F x (x, τ, s) h(t) h(s), s, t, τ [, b], x B. 7

8 4. There exists continuous incresing function ω : [0, ) [0, ) such tht ω(0) = 0 n F x (x, τ, t) F x (x, τ, s) F x (y, τ, t)+f x (y, τ, s) ω( x y ) h(t) h(s), s, t, τ [, b], x, y B. 5. There exists left-continuous nonecresing function k : [, b] R such tht F (x, τ, t) F (x, τ, s) F (y, τ, t) + F (y, τ, s) x y k(t) k(s), s, t, τ [, b], x, y B. 6. There exists number η > 0 such tht if x R n stisfies x x(t, λ 0 ) < η for some t [, b], then x B (i.e., the η-neighborhoo of the solution t x(t, λ 0 ) is contine in B). Then the function λ x(t, λ) is ifferentible t λ 0, uniformly for ll t [, b]. Moreover, its erivtive Z(t) = x λ (t, λ 0 ), t [, b], is the unique solution of the generlize ifferentil eqution Z(s) = x 0 λ(λ 0 ) + Proof. Accoring to the ssumptions, we hve D t [F x (x(τ, λ 0 ), τ, t)z(τ)], s [, b]. (10) x(s, λ) = x 0 (λ) + D t F (x(τ, λ), τ, t), λ Λ, s [, b]. By Theorem 2.3, every solution x is regulte n left-continuous function on [, b]. If λ R l is such tht < ρ, then x(s, λ 0 + λ) x(s, λ 0 ) x 0 (λ 0 + λ) x 0 (λ 0 ) + D t V (τ, t), where V (τ, t) = F (x(τ, λ 0 + λ), τ, t) F (x(τ, λ 0 ), τ, t). By ssumption 5, we obtin V (τ, t 1 ) V (τ, t 2 ) x(τ, λ 0 + λ) x(τ, λ 0 ) k(t 1 ) k(t 2 ), n consequently (using Lemm 2.2) x(s, λ 0 + λ) x(s, λ 0 ) x 0 (λ 0 + λ) x 0 (λ 0 ) + for every s [, b]. Gronwll s inequlity from Theorem 2.4 implies x(τ, λ 0 + λ) x(τ, λ 0 ) k(τ). x(s, λ 0 + λ) x(s, λ 0 ) x 0 (λ 0 + λ) x 0 (λ 0 ) e k(b) k(), s [, b]. Thus we see tht for λ 0, x(s, λ 0 + λ) pproches x(s, λ 0 ) uniformly for ll s [, b]. By ssumption 3, the function A(τ, t) = F x (x(τ, λ 0 ), τ, t) stisfies conition (A). By Theorem 3.5, Eq. (10) hs unique solution Z : [, b] R n n. By Lemm 3.1, the solution is regulte. Consequently, there exists constnt M > 0 such tht Z(t) M for every t [, b]. For every λ R l such tht < ρ, let ξ(r, λ) = x(r, λ 0 + λ) x(r, λ 0 ) Z(r) λ, r [, b]. Our gol is to prove tht if λ 0, then ξ(r, λ) 0 uniformly for r [, b]. Let ε > 0 be given. There exists δ > 0 such tht if λ R l n < δ, then x(t, λ 0 + λ) x(t, λ 0 ) < min(ε, η), t [, b], n x 0 (λ 0 + λ) x 0 (λ 0 ) x 0 λ (λ 0) λ < ε. 8

9 Observe tht where ξ(, λ) = x0 (λ 0 + λ) x 0 (λ 0 ) x 0 λ (λ 0) λ, ξ(r, λ) ξ(, λ) = x(r, λ 0 + λ) x(, λ 0 + λ) = r D t U(τ, t), x(r, λ 0) x(, λ 0 ) (Z(r) Z()) λ U(τ, t) = F (x(τ, λ 0 + λ), τ, t) F (x(τ, λ 0 ), τ, t) F x (x(τ, λ 0 ), τ, t)z(τ) λ. For every τ [, b] n u [0, 1], we hve ux(τ, λ 0 + λ) + (1 u)x(τ, λ 0 ) x(τ, λ 0 ) x(τ, λ 0 + λ) x(τ, λ 0 ) < η. By ssumption 6, the point ux(τ, λ 0 + λ) + (1 u)x(τ, λ 0 ) is n element of B. In other wors, the segment connecting x(τ, λ 0 + λ) n x(τ, λ 0 ) is contine in B. Thus we cn use the men-vlue theorem for vector-vlue functions (see e.g. [3, Lemm 8.11]) to exmine the following ifference: U(τ, t) U(τ, s) = F (x(τ, λ 0 + λ), τ, t) F (x(τ, λ 0 ), τ, t) F (x(τ, λ 0 + λ), τ, s) + F (x(τ, λ 0 ), τ, s) (F x(x(τ, λ 0 ), τ, t) F x (x(τ, λ 0 ), τ, s))(x(τ, λ 0 + λ) x(τ, λ 0 )) + (F x(x(τ, λ 0 ), τ, t) F x (x(τ, λ 0 ), τ, s))(x(τ, λ 0 + λ) x(τ, λ 0 ) Z(τ) λ) ( = 1 1 (F x (ux(τ, λ 0 + λ) + (1 u)x(τ, λ 0 ), τ, t) F x (ux(τ, λ 0 + λ) + (1 u)x(τ, λ 0 ), τ, s)) u 0 ) 1 0 (F x (x(τ, λ 0 ), τ, t) F x (x(τ, λ 0 ), τ, s)) u +(F x (x(τ, λ 0 ), τ, t) F x (x(τ, λ 0 ), τ, s))ξ(τ, λ) (x(τ, λ 0 + λ) x(τ, λ 0 )) (In the secon integrl bove, we re simply integrting constnt function.) If < δ, then (by ssumption 4) F x (ux(τ, λ 0 + λ) + (1 u)x(τ, λ 0 ), τ, t) F x (ux(τ, λ 0 + λ) + (1 u)x(τ, λ 0 ), τ, s) F x (x(τ, λ 0 ), τ, t) +F x (x(τ, λ 0 ), τ, s) ω( ux(τ, λ 0 + λ) + (1 u)x(τ, λ 0 ) x(τ, λ 0 ) ) h(t) h(s) n thus (using ssumption 3) = ω( u(x(τ, λ 0 + λ) x(τ, λ 0 )) ) h(t) h(s) ω(ε) h(t) h(s), U(τ, t) U(τ, s) ω(ε) h(t) h(s) x(τ, λ 0 + λ) x(τ, λ 0 ) + h(t) h(s) ξ(τ, λ) ( h(t) h(s) ω(ε) x(τ, λ ) 0 + λ) x(τ, λ 0 ) Z(τ) λ + Z(τ) λ + ξ(τ, λ) Consequently, by Lemm 2.2, ξ(r, λ) ξ(, λ) = h(t) h(s) (ω(ε)( ξ(τ, λ) + M) + ξ(τ, λ) ). r r D t U(τ, t) (ω(ε)( ξ(τ, λ) + M) + ξ(τ, λ) ) h(τ) 9

10 It follows tht = ω(ε)m(h(r) h()) + (1 + ω(ε)) ω(ε)m(h(b) h()) + (1 + ω(ε)) r r ξ(τ, λ) h(τ) ξ(τ, λ) h(τ). ξ(r, λ) ξ(r, λ) ξ(, λ) + ξ(, λ) ε + ω(ε)m(h(b) h()) + (1 + ω(ε)) Finlly, Gronwll s inequlity les to the estimte r ξ(τ, λ) h(τ). ξ(r, λ) (ε + ω(ε)m(h(b) h()))e (1+ω(ε))(h(r) h()) (ε + ω(ε)m(h(b) h()))e (1+ω(ε))(h(b) h()). Since lim ε 0+ ω(ε) = 0, we see tht if λ 0, then ξ(r, λ) 0 uniformly for r [, b]. In the simplest cse when l = n, Λ B n x 0 (λ) = λ for every λ Λ, the previous theorem sys tht solutions of t x = D tf (x, τ, t), x() = λ re ifferentible with respect to λ, n the erivtive Z(t) = x λ (t, λ 0 ), t [, b], is the unique solution of the generlize ifferentil eqution Z(s) = I + D t [F x (x(τ, λ 0 ), τ, t)z(τ)], s [, b]. Remrk 4.2. In Theorem 4.1, we re ssuming the existence of ρ > 0 such tht for every λ R l stisfying λ λ 0 < ρ, the initil vlue problem (9) hs solution t x(t, λ) efine on [, b] n tking vlues in B. For equtions whose right-hn sie F oes not epen on τ, this ssumption cn be replce by the following simple conition: F (x, t) F (x, s) k(t) k(s), s, t [, b], x B. (11) Let us explin why this conition is sufficient. (We re still ssuming tht conitions 1 6 from Theorem 4.1 re stisfie. In prticulr, we re ssuming tht the initil vlue problem (9) hs solution corresponing to λ = λ 0.) Observe tht if c [, b) n y x(c+, λ 0 ) < η/2, then y B. (Choose δ > 0 such tht x(c+, λ 0 ) x(c + δ, λ 0 ) < η/2; then y x(c + δ, λ 0 ) y x(c+, λ 0 ) + x(c+, λ 0 ) x(c + δ, λ 0 ) < η, n thus y B by ssumption 6.) Following the first prt of proof of Theorem 4.1, we observe tht there is δ > 0 such tht if λ λ 0 < δ n if the solution t x(t, λ) exists on [, c] [, b], then x(t, λ) x(t, λ 0 ) < η ) (1, 4 min 1, t [, c]. k(b) k() + 1 If λ R l stisfies λ λ 0 < δ n the solution t x(t, λ) exists on [, c] [, b] with c [, b), then (x(c, λ) + F (x(c, λ), c+) F (x(c, λ), c)) (x(c, λ 0 ) + F (x(c, λ 0 ), c+) F (x(c, λ 0 ), c)) x(c, λ) x(c, λ 0 ) + F (x(c, λ), c+) F (x(c, λ), c) F (x(c, λ 0 ), c+) + F (x(c, λ 0 ), c) < η/4 + x(c, λ) x(c, λ 0 ) (k(c+) k(c)) < η/4 + x(c, λ) x(c, λ 0 ) (k(b) k()) < η/2 (we hve use ssumption 5). By Theorem 2.3, x(c+, λ 0 ) = x(c, λ 0 ) + F (x(c, λ 0 ), c+) F (x(c, λ 0 ), c). Thus the previous inequlity n ssumption 6 imply x(c, λ) + F (x(c, λ), c+) F (x(c, λ), c) B. All ssumptions of the locl existence theorem for generlize ifferentil equtions (see [8, Theorem 4.2]) re stisfie (we nee (11) t this moment), n thus the solution t x(t, λ) cn be extene to lrger intervl [, ], (c, b]. Consequently, for λ λ 0 < δ, the solution must exist on the whole intervl [, b]. 10

11 Remrk 4.3. Assume tht the set B from Theorem 4.1 is convex. Then it is esy to see tht ssumption 5 in this theorem is reunnt. Inee, the men-vlue theorem for vector-vlue functions n ssumption 3 le to the estimte ( 1 0 F (x, τ, t) F (x, τ, s) F (y, τ, t) + F (y, τ, s) ) F x (ux + (1 u)y, τ, t) F x (ux + (1 u)y, τ, s) u x y h(t) h(s) x y for ll s, t, τ [, b], x, y B, i.e., ssumption 5 is stisfie with k = h. With the help of Theorem 4.1, it is esy to obtin n even more generl theorem for equtions where not only the initil conition, but lso the right-hn sie of the eqution epens on the prmeter λ. The proof is inspire by similr proof of Theorem 8.49 in [3]. Theorem 4.4. Let B R n be n open set, λ 0 R l, ρ > 0, Λ = {λ R l ; λ λ 0 < ρ}, x 0 : Λ B, F : B [, b] 2 Λ R n. Assume tht F is regulte n left-continuous in the thir vrible, n tht for every λ Λ, the initil vlue problem t x = D tf (x, τ, t, λ), x() = x 0 (λ) hs solution in B; let x(t, λ) be the vlue of tht solution t t [, b]. Moreover, let the following conitions be stisfie: 1. For every fixe pir (t, τ) [, b] 2, the function (x, λ) F (x, τ, t, λ) is continuously ifferentible on B Λ. 2. The function x 0 is ifferentible t λ There exists left-continuous nonecresing function h : [, b] R such tht for ll s, t, τ [, b], x B, λ Λ. F x (x, τ, t, λ) F x (x, τ, s, λ) h(t) h(s), F λ (x, τ, t, λ) F λ (x, τ, s, λ) h(t) h(s) 4. There exists continuous incresing function ω : [0, ) [0, ) such tht ω(0) = 0 n F x (x, τ, t, λ 1 ) F x (x, τ, s, λ 1 ) F x (y, τ, t, λ 2 )+F x (y, τ, s, λ 2 ) ω( x y + λ 1 λ 2 ) h(t) h(s), F λ (x, τ, t, λ 1 ) F λ (x, τ, s, λ 1 ) F λ (y, τ, t, λ 2 )+F λ (y, τ, s, λ 2 ) ω( x y + λ 1 λ 2 ) h(t) h(s) for ll s, t, τ [, b], x, y B, λ 1, λ 2 Λ. 5. There exists left-continuous nonecresing function k : [, b] R such tht F (x, τ, t, λ 1 ) F (x, τ, s, λ 1 ) F (y, τ, t, λ 2 ) + F (y, τ, s, λ 1 ) ( x y + λ 1 λ 2 ) k(t) k(s) for ll s, t, τ [, b], x, y B, λ 1, λ 2 Λ. 6. There exists number η > 0 such tht if x R n stisfies x x(t, λ 0 ) < η for some t [, b], then x B (i.e., the η-neighborhoo of the solution t x(t, λ 0 ) is contine in B). Then the function λ x(t, λ) is ifferentible t λ 0, uniformly for ll t [, b]. Moreover, its erivtive Z(t) = x λ (t, λ 0 ), t [, b], is the unique solution of the generlize ifferentil eqution Z(s) = x 0 λ(λ 0 ) + D t [F x (x(τ, λ 0 ), τ, t, λ 0 )Z(τ) + F λ (x(τ, λ 0 ), τ, t, λ 0 )], s [, b]. 11

12 Proof. Let B = B Λ. Without loss of generlity, ssume tht ll finite-imensionl spces we re working with re equippe with the L 1 norm. In prticulr, when (x, λ) B, then (x, λ) = Define F : B [, b] 2 R n+l by n l x i + λ j = x + λ. i=1 j=1 F ((x, λ), τ, t) = (F (x, τ, t, λ), 0,..., 0) R n+l, x B, λ Λ, t, τ [, b], n y 0 : Λ B by y 0 (λ) = (x 0 (λ), λ), λ Λ. From these efinitions, it is cler tht for every λ Λ, the function y(t, λ) = (x(t, λ), λ), t [, b], is solution of the initil vlue problem t y = D t F (y, τ, t), y() = y 0 (λ) (note tht by the efinition of F, the lst l components of every solution re constnt on [, b]). Without loss of generlity, ssume tht η < ρ. If (x, λ) B is such tht (x, λ) (x(t, λ 0 ), λ 0 ) < η for some t [, b], then x x(t, λ 0 ) < η n λ λ 0 < η, i.e., x B n λ Λ. In other wors, the η-neighborhoo of the solution t y(t, λ 0 ) is contine in B. The erivtive of F with respect to y is the (n + l) (n + l) mtrix F 1 y 1 (y, τ, t) F 1 y n+l (y, τ, t) F y (y, τ, t) =..... F n+l y 1 (y, τ, t) F n+l y n+l (y, τ, t) F 1 F x 1 (x, τ, t, λ) 1 F x n (x, τ, t, λ) 1 F λ 1 (x, τ, t, λ) 1 λ l (x, τ, t, λ) F n F = x 1 (x, τ, t, λ) n F x n (x, τ, t, λ) n F λ 1 (x, τ, t, λ) n λ l (x, τ, t, λ) , where y = (x, λ) B Λ n t, τ [, b]. Similrly, the erivtive of y 0 with respect to λ t λ 0 is the (n + l) l mtrix x 0 1 x λ 1 (λ 0 ) 0 1 λ l (λ 0 )..... yλ(λ 0 x 0 n x 0 ) = λ 1 (λ 0 ) 0 n λ l (λ 0 ) Using ssumptions 3, 4 n 5, it is not ifficult to see tht F n F y stisfy ssumptions 3, 4 n 5 of Theorem 4.1. For exmple, let s, t, τ [, b], y 1, y 2 B, where y 1 = (x 1, λ 1 ) n y 2 = (x 2, λ 2 ). Then F y (y 1, τ, t) F y (y 1, τ, s) F y (y 2, τ, t) + F y (y 2, τ, s) 12

13 = F x (x 1, τ, t, λ 1 ) F x (x 1, τ, s, λ 1 ) F x (x 2, τ, t, λ 2 ) + F x (x 2, τ, s, λ 2 ) + F λ (x 1, τ, t, λ 1 ) F λ (x 1, τ, s, λ 1 ) F λ (x 2, τ, t, λ 2 ) + F λ (x 2, τ, s, λ 2 ) 2ω( x 1 x 2 + λ 1 λ 2 ) h(t) h(s) = ω( y 1 y 2 ) 2h(t) 2h(s), which verifies ssumption 4 of Theorem 4.1. Now, ccoring to Theorem 4.1, the function λ y(t, λ) is ifferentible t λ 0, uniformly for ll t [, b], n its erivtive Z(t) = y λ (t, λ 0 ), t [, b], is the unique solution of the generlize ifferentil eqution Z(s) = y 0 λ(λ 0 ) + D t [ F y (y(τ, λ 0 ), τ, t) Z(τ)], s [, b]. Let Z(t) = x λ (t, λ 0 ), t [, b]; observe tht Z is the submtrix of Z corresponing to the first n rows. Also, note tht the lst l rows of Z form the ientity mtrix. Thus it follows tht Z(s) = x 0 λ(λ 0 ) + D t [F x (x(τ, λ 0 ), τ, t, λ 0 )Z(τ) + F λ (x(τ, λ 0 ), τ, t, λ 0 )], 5 Reltion to other types of equtions s [, b]. In this section, we show tht for impulsive ifferentil equtions n for ynmic equtions on time scles, ifferentibility of solutions with respect to initil conitions follows from our Theorem 4.1. (Similrly, it cn be shown tht ifferentibility with respect to prmeters follows from Theorem 4.4). The reson is tht both types of equtions cn be rewritten s generlize equtions, whose right-hn sies o not epen on τ. Assume tht r > 0 is fixe number. We restrict ourselves to the cse B = {x R n ; x < r}; we use B to enote the closure of B. Lemm 5.1. Let µ be the Lebesgue-Stieltjes mesure generte by left-continuous nonecresing function g : [, b] R (i.e., µ([c, )) = g() g(c) for every intervl [c, ) [, b]). Assume tht f : B [, b] R m n stisfies the following conitions: For every x B, the function s f(x, s) is mesurble on [, b] with respect to the mesure µ. There exists µ-mesurble function M : [, b] R such tht M(s) µ < + n f(x, s) M(s), x B, s [, b]. For every s [, b], the function x f(x, s) is continuous in B. Consier the function F given by F (x, t) = f(x, s) µ = [,t) f(x, s) g(s), x B, t [, b]. Then the following sttements re true: 1. There exists nonecresing left-continuous function h : [, b] R n continuous incresing function ω : [0, ) [0, ) such tht ω(0) = 0 n F (x, t) F (x, s) h(t) h(s), s, t [, b], x B, F (x, t) F (x, s) F (y, t) + F (y, s) ω( x y ) h(t) h(s), s, t [, b], x, y B. 2. If x : [, b] B, Z : [, b] R n l re regulte functions, then D t [F (x(τ), t)z(τ)] = f(x(τ), τ)z(τ) g(τ). (12) 13

14 Proof. For the first sttement, see Proposition 5.9 in [8] n the references given there. Let us prove the secon sttement. Accoring to Proposition 5.12 in [8], we hve D t F (x(τ), t) = f(x(τ), τ) g(τ) (13) for every regulte function x : [, b] B. Let [α, β] [, b] n ssume tht Z : [α, β] R n l is constnt on (α, β). Then, by (13) n Theorem 2.3, = lim ε 0+ = lim ε 0+ ( β ε α+ε β ( β ε D t [F (x(τ), t)z(τ)] + α+ε f(x(τ), τ)z(τ) g(τ) ) D t [F (x(τ), t)z(τ)] α α+ε α ) β D t [F (x(τ), t)z(τ)] + D t [F (x(τ), t)z(τ)] β ε +(F (x(α), α+) F (x(α), α))z(α)+(f (x(β), β) F (x(β), β ))Z(β) ( β ε ) = lim ε 0+ f(x(τ), τ)z(τ) g(τ) + f(x(α), α)z(α)(g(α+) g(α)) + f(x(β), β)z(β)(g(β) g(β )) α+ε = β α f(x(τ), τ)z(τ) g(τ). This shows tht (12) is stisfie for ll step functions Z : [, b] R n l. For generl regulte function Z, let {Z k } k=1 be sequence of step functions tht is uniformly convergent to Z. Then = lim k D t [F (x(τ), t)z(τ)] = lim k f(x(τ), τ)z k (τ) g(τ) = D t [F (x(τ), t)z k (τ)] f(x(τ), τ)z(τ) g(τ), where the first equlity follows from Lemm 3.3 n the lst equlity from [8, Corollry 1.32]. Let us strt by consiering ifferentil equtions with impulses. Assume tht C is n open neighborhoo of B, f : C [, b] R n is continuous function whose erivtive f x exists n is continuous on C [, b], n I 1,..., I k : C R n re continuously ifferentible functions. Then it is known (see [8, Chpter 5]) tht the impulsive ifferentil eqution x (t) = f(x(t), t), t [, b]\{t 1,..., t k }, x(t i +) x(t i ) = I i (x(t i )), i {1,..., k}, x() = x 0 (λ), whose solutions re ssume to be left-continuous, is equivlent to the generlize ifferentil eqution where F (x, t) = F 1 (x, t) + F 2 (x, t) n F 1 (x, t) = t x = D tf (x, t), t [, b], x() = x 0 (λ), f(x, s) s, F 2 (x, t) = k I i (x)χ (ti, )(t) (the symbol χ A enotes the chrcteristic function of set A R). More precisely, x : [, b] B is solution of the impulsive eqution (14) if n only if it is solution of the generlize eqution (see [8, Theorem 5.20]). Now, F 1 n F 2 re ifferentible with respect to x n F 1 x (x, t) = f x (x, s) s, F 2 x (x, t) = 14 i=1 k Ix(x)χ i (ti, )(t). i=1 (14)

15 By the first prt of Lemm 5.1 (where we tke g(s) = s n µ is the Lebesgue mesure), we obtin the existence of functions h 1 : [, b] R n ω 1 : [0, ) [0, ) such tht F 1 x (x, t) F 1 x (x, s) h 1 (t) h 1 (s), s, t [, b], x B, F 1 x (x, t) F 1 x (x, s) F 1 x (y, t) + F 1 x (y, s) ω 1 ( x y ) h 1 (t) h 1 (s), s, t [, b], x, y B. By continuity, there exists K 1 such tht Ix(x) i K for ll x B, i {1,..., k}. Let h 2 (t) = K k i=1 χ (t i, )(t) for t [, b], n let ω 2 be the common moulus of continuity of the mppings I 1,..., I k on B. Then simple clcultion revels tht F 2 x (x, t) F 2 x (x, s) h 2 (t) h 2 (s), s, t [, b], x B, F 2 x (x, t) F 2 x (x, s) F 2 x (y, t) + F 2 x (y, s) ω 2 ( x y ) h 2 (t) h 2 (s), s, t [, b], x, y B. Consequently, the function F x = F 1 x + F 2 x stisfies ssumptions 3, 4 of Theorem 4.1 with h = h 1 + h 2 n ω = ω 1 + ω 2. By Remrk 4.3, ssumption 5 is stisfie with k = h. It follows tht solutions of the impulsive eqution (14) re ifferentible with respect to λ, uniformly on [, b]. (Actully, the whole proceure still works uner weker hypotheses on f; the crucil thing is to ensure tht f n f x stisfy the ssumptions of Lemm 5.1.) To obtin n eqution for the erivtive Z(s) = x λ (s, λ 0 ), we mke use of the fct tht F x (x, t) = f x (x, s) g(s), t [, b], where g(s) = s + k i=1 χ (t i, )(s), n { f x (x, t) if t [, b]\{t 1,..., t k }, f x (x, t) = Ix(x) i if t = t i for some i {1,..., k} (see e.g. [1, Remrk 3.12]). By Theorem 4.1 n the secon prt of Lemm 5.1, Z(s) = x 0 λ(λ 0 ) + D t [F x (x(τ, λ 0 ), t)z(τ)] = x 0 λ(λ 0 ) + f x (x(τ, λ 0 ), τ)z(τ) g(τ), s [, b]. This integrl eqution cn be rewritten bck (see gin [1, Remrk 3.12]) s the impulsive eqution Z (t) = f x (x(t, λ 0 ), t)z(t), t [, b]\{t 1,..., t k }, Z(t i +) Z(t i ) = Ix(x(t i i, λ 0 ))Z(t i ), i {1,..., k}, x() = x 0 λ (λ 0), which grees with the result from [6]. Next, let us turn our ttention to ynmic equtions on time scles. Let T be time scle,, b T, < b. We use the nottion [, b] T = [, b] T. For every t [, b], let t = inf{s [, b] T ; s t}. Given n rbitrry function f : [, b] T R n, we efine function f : [, b] R n by f (t) = f(t ), t [, b]. Similrly, for every function f : C [, b] T R n, where C R n, let f : C [, b] R n be efine by f (x, t) = f(x, t ), t [, b], x C. Assume tht C is n open neighborhoo of B n f : C [, b] T R n stisfies the following conitions: For every t [, b] T, the function x f(x, t) is continuously ifferentible on C. 15

16 For every continuous function x : [, b] T B, the functions t f(x(t), t) n t f x (x(t), t) re r-continuous. f x is boune in B [, b] T. A consequence of these conitions is tht f is boune in B [, b] T (use the estimte f(x, t) f(x, t) f(0, t) + f(0, t) n pply the men-vlue theorem in the first norm). Uner these ssumptions, it is known (see [11, Theorem 12]) tht the ynmic eqution x (t) = f(x(t), t), t [, b] T, x() = x 0 (λ) (15) is equivlent to the generlize orinry ifferentil eqution where t x = D tf (x, t), t [, b], x() = x 0 (λ), (16) F (x, t) = f (x, s) g(s), n g(s) = s for every s [, b]. More precisely, if x : [, b] T B is solution of (15), then the function x : [, b] B is solution of (16). Conversely, every solution y : [, b] B of (16) hs the form y = x, where x : [, b] T B is solution of (15). We hve F x (x, t) = f x(x, s) g(s). By the first prt of Lemm 5.1, there exist functions h : [, b] R n ω : [0, ) [0, ) such tht F x (x, t) F x (x, s) h(t) h(s), s, t [, b], x B, F x (x, t) F x (x, s) F x (y, t) + F x (y, s) ω( x y ) h(t) h(s), s, t [, b], x, y B. Thus, F x stisfies ssumptions 3, 4 of Theorem 4.1. By Remrk 4.3, ssumption 5 is stisfie with k = h. This mens tht solutions of the ynmic eqution (15) re ifferentible with respect to λ, uniformly on [, b] T. Let Z(s) = x λ (s, λ 0 ) be the corresponing erivtive t λ 0. By Theorem 4.1 n the secon prt of Lemm 5.1, Z(s) = x 0 λ(λ 0 ) + D t [F x (x(τ, λ 0 ), t)z(τ)] = x 0 λ(λ 0 ) + f x(x(τ, λ 0 ), τ)z(τ) g(τ), s [, b]. Consequently (see [11, Theorem 5]), n therefore Z(s) = x 0 λ(λ 0 ) + which grees with the result obtine in [2]. 6 Conclusion f x (x(τ, λ 0 ), τ)z(τ) τ, s [, b] T, Z (t) = f x (x(t, λ 0 ), t)z(t), t [, b] T, Z() = x 0 λ(λ 0 ), Besies impulsive ifferentil equtions n ynmic equtions on time scles, our ifferentibility results re lso pplicble to the so-clle mesure ifferentil equtions of the form x(t) = x() + f(x(s), s) s + g(x(s), s) u(s), t [, b], 16

17 where u is left-continuous function with boune vrition. It ws shown in [8, Chpter 5] tht uner certin ssumptions, this eqution is equivlent to the generlize orinry ifferentil eqution whose right-hn sie is F (x, t) = f(x, s) s + g(x, s) u(s). As in the previous section, simple ppliction of Lemm 5.1 shows tht uner suitble ssumptions on f n g, the hypotheses of Theorem 4.1 re stisfie, i.e., solutions of mesure ifferentil equtions re ifferentible with respect to initil conitions. An interesting open question is whether the results in this pper cn be extene to generlize equtions whose solutions tke vlues in infinite-imensionl Bnch spces. Numerous uthors hve lrey investigte equtions of this type (see e.g. [5, 7]). For exmple, it is known tht uner certin ssumptions, mesure functionl ifferentil equtions re equivlent to generlize orinry ifferentil equtions with vector-vlue solutions (see e.g. [1, 10] n the references there). Therefore, ifferentibility results for the ltter type of equtions woul be irectly pplicble in the stuy of functionl ifferentil equtions. References [1] M. Feerson, J. G. Mesquit, A. Slvík, Mesure functionl ifferentil equtions n functionl ynmic equtions on time scles, J. Differentil Equtions 252 (2012), [2] R. Hilscher, V. Zein, n W. Krtz, Differentition of Solutions of Dynmic Equtions on Time Scles with Respect to Prmeters, Av. Dyn. Syst. Appl. 4 (2009), no. 1, [3] W. G. Kelley n A. C. Peterson, The Theory of Differentil Equtions (Secon Eition), Springer, [4] J. Kurzweil, Generlize orinry ifferentil equtions n continuous epenence on prmeter, Czechoslovk Mth. J. 7 (82), 1957, [5] J. Kurzweil, Generlize Orinry Differentil Equtions. Not Absolutely Continuous Solutions, Worl Scientific, [6] V. Lkshmiknthm, D. D. Binov, P. S. Simeonov, Theory of Impulsive Differentil Equtions, Worl Scientific, [7] G. Monteiro, M. Tvrý, Generlize liner ifferentil equtions in Bnch spce: Continuous epenence on prmeter, Discrete Contin. Dyn. Syst. 33 (2013), [8] Š. Schwbik, Generlize Orinry Differentil Equtions, Worl Scientific, [9] Š. Schwbik, M. Tvrý, n O. Vejvo, Differentil n Integrl Equtions: Bounry Vlue Problems n Ajoints, Acemi, Prh, [10] A. Slvík, Mesure functionl ifferentil equtions with infinite ely, Nonliner Anl. 79 (2013), [11] A. Slvík, Dynmic equtions on time scles n generlize orinry ifferentil equtions, J. Mth. Anl. Appl. 385 (2012),

Conservation Law. Chapter Goal. 6.2 Theory

Conservation Law. Chapter Goal. 6.2 Theory Chpter 6 Conservtion Lw 6.1 Gol Our long term gol is to unerstn how mthemticl moels re erive. Here, we will stuy how certin quntity chnges with time in given region (sptil omin). We then first erive the

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

ON THE C-INTEGRAL BENEDETTO BONGIORNO

ON THE C-INTEGRAL BENEDETTO BONGIORNO ON THE C-INTEGRAL BENEDETTO BONGIORNO Let F : [, b] R be differentible function nd let f be its derivtive. The problem of recovering F from f is clled problem of primitives. In 1912, the problem of primitives

More information

Convergence results for the Abstract Kurzweil-Stieltjes integral: a survey

Convergence results for the Abstract Kurzweil-Stieltjes integral: a survey Convergence results for the Abstrct Kurzweil-Stieltjes integrl: survey Giselle A. Monteiro Mthemticl Institute, Slovk Acdemy Sciences Seminr on ordinry differentil equtions nd integrtion theory - Specil

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Math 211A Homework. Edward Burkard. = tan (2x + z)

Math 211A Homework. Edward Burkard. = tan (2x + z) Mth A Homework Ewr Burkr Eercises 5-C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

The Henstock-Kurzweil integral

The Henstock-Kurzweil integral fculteit Wiskunde en Ntuurwetenschppen The Henstock-Kurzweil integrl Bchelorthesis Mthemtics June 2014 Student: E. vn Dijk First supervisor: Dr. A.E. Sterk Second supervisor: Prof. dr. A. vn der Schft

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL 28 Nottion: N {, 2, 3,...}. (Tht is, N.. Let (X, M be mesurble spce with σ-finite positive mesure µ. Prove tht there is finite positive mesure ν on (X, M such

More information

Chapter Five - Eigenvalues, Eigenfunctions, and All That

Chapter Five - Eigenvalues, Eigenfunctions, and All That Chpter Five - Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

f a L Most reasonable functions are continuous, as seen in the following theorem:

f a L Most reasonable functions are continuous, as seen in the following theorem: Limits Suppose f : R R. To sy lim f(x) = L x mens tht s x gets closer n closer to, then f(x) gets closer n closer to L. This suggests tht the grph of f looks like one of the following three pictures: f

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Memoirs on Differential Equations and Mathematical Physics Volume 25, 2002, 1 104

Memoirs on Differential Equations and Mathematical Physics Volume 25, 2002, 1 104 Memoirs on Differentil Equtions nd Mthemticl Physics Volume 25, 22, 1 14 M. Tvrdý DIFFERENTIAL AND INTEGRAL EQUATIONS IN THE SPACE OF REGULATED FUNCTIONS Abstrct.???. 2 Mthemtics Subject Clssifiction.???.

More information

INSTITUTE of MATHEMATICS. ACADEMY of SCIENCES of the CZECH REPUBLIC

INSTITUTE of MATHEMATICS. ACADEMY of SCIENCES of the CZECH REPUBLIC INSTITUTE of MATHEMATICS Acdemy of Sciences Czech Republic INSTITUTE of MATHEMATICS ACADEMY of SCIENCES of the CZECH REPUBLIC Generlized liner differentil equtions in Bnch spce: Continuous dependence on

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS LEARNING OBJECTIVES After stuying this chpter, you will be ble to: Unerstn the bsics

More information

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as Y. D. Chong (26) MH28: Complex Methos for the Sciences 2. Integrls If we hve function f(x) which is well-efine for some x, its integrl over those two vlues is efine s N ( ) f(x) = lim x f(x n ) where x

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

arxiv: v1 [math.ca] 11 Jul 2011

arxiv: v1 [math.ca] 11 Jul 2011 rxiv:1107.1996v1 [mth.ca] 11 Jul 2011 Existence nd computtion of Riemnn Stieltjes integrls through Riemnn integrls July, 2011 Rodrigo López Pouso Deprtmento de Análise Mtemátic Fcultde de Mtemátics, Universidde

More information

Henstock-Kurzweil and McShane product integration

Henstock-Kurzweil and McShane product integration Henstock-Kurzweil nd McShne product integrtion Chrles University, Prgue slvik@krlin.mff.cuni.cz CDDE 2006 Motivtion Consider the differentil eqution y (x) = A(x)y(x) y() = y 0 where x [, b], y : [, b]

More information

Appendix to Notes 8 (a)

Appendix to Notes 8 (a) Appendix to Notes 8 () 13 Comprison of the Riemnn nd Lebesgue integrls. Recll Let f : [, b] R be bounded. Let D be prtition of [, b] such tht Let D = { = x 0 < x 1

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

A product convergence theorem for Henstock Kurzweil integrals

A product convergence theorem for Henstock Kurzweil integrals A product convergence theorem for Henstock Kurzweil integrls Prsr Mohnty Erik Tlvil 1 Deprtment of Mthemticl nd Sttisticl Sciences University of Albert Edmonton AB Cnd T6G 2G1 pmohnty@mth.ulbert.c etlvil@mth.ulbert.c

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction Ttr Mt. Mth. Publ. 44 (29), 159 168 DOI: 1.2478/v1127-9-56-z t m Mthemticl Publictions A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES Miloslv Duchoň Peter Mličký ABSTRACT. We present Helly

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Approximation of functions belonging to the class L p (ω) β by linear operators

Approximation of functions belonging to the class L p (ω) β by linear operators ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 3, 9, Approximtion of functions belonging to the clss L p ω) β by liner opertors W lodzimierz Lenski nd Bogdn Szl Abstrct. We prove

More information

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer. Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

More information

Introduction to Complex Variables Class Notes Instructor: Louis Block

Introduction to Complex Variables Class Notes Instructor: Louis Block Introuction to omplex Vribles lss Notes Instructor: Louis Block Definition 1. (n remrk) We consier the complex plne consisting of ll z = (x, y) = x + iy, where x n y re rel. We write x = Rez (the rel prt

More information

Notes on the Eigenfunction Method for solving differential equations

Notes on the Eigenfunction Method for solving differential equations Notes on the Eigenfunction Metho for solving ifferentil equtions Reminer: Wereconsieringtheinfinite-imensionlHilbertspceL 2 ([, b] of ll squre-integrble functions over the intervl [, b] (ie, b f(x 2

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f 1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales Electronic Journl of Qulittive Theory of Differentil Equtions 2009, No. 32, -3; http://www.mth.u-szeged.hu/ejqtde/ Multiple Positive Solutions for the System of Higher Order Two-Point Boundry Vlue Problems

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Basic Derivative Properties

Basic Derivative Properties Bsic Derivtive Properties Let s strt this section by remining ourselves tht the erivtive is the slope of function Wht is the slope of constnt function? c FACT 2 Let f () =c, where c is constnt Then f 0

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

ALGEBRAIC DISTANCES IN VARIOUS ALGEBRAIC CONE METRIC SPACES. Kamal Fallahi, Ghasem Soleimani Rad, and Stojan Radenović

ALGEBRAIC DISTANCES IN VARIOUS ALGEBRAIC CONE METRIC SPACES. Kamal Fallahi, Ghasem Soleimani Rad, and Stojan Radenović PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 104(118) (2018), 89 99 DOI: https://oi.org/10.2298/pim1818089f ALGEBRAIC DISTANCES IN VARIOUS ALGEBRAIC CONE METRIC SPACES Kml Fllhi, Ghsem

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Regulated functions and the regulated integral

Regulated functions and the regulated integral Regulted functions nd the regulted integrl Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics University of Toronto April 3 2014 1 Regulted functions nd step functions Let = [ b] nd let X be normed

More information

Henstock Kurzweil delta and nabla integrals

Henstock Kurzweil delta and nabla integrals Henstock Kurzweil delt nd nbl integrls Alln Peterson nd Bevn Thompson Deprtment of Mthemtics nd Sttistics, University of Nebrsk-Lincoln Lincoln, NE 68588-0323 peterso@mth.unl.edu Mthemtics, SPS, The University

More information

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 ( FUNDAMNTALS OF RAL ANALYSIS by Doğn Çömez III. MASURABL FUNCTIONS AND LBSGU INTGRAL III.. Mesurble functions Hving the Lebesgue mesure define, in this chpter, we will identify the collection of functions

More information

VII. The Integral. 50. Area under a Graph. y = f(x)

VII. The Integral. 50. Area under a Graph. y = f(x) VII. The Integrl In this chpter we efine the integrl of function on some intervl [, b]. The most common interprettion of the integrl is in terms of the re uner the grph of the given function, so tht is

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

2 Definitions and Basic Properties of Extended Riemann Stieltjes Integrals

2 Definitions and Basic Properties of Extended Riemann Stieltjes Integrals 2 Definitions nd Bsic Properties of Extended Riemnn Stieltjes Integrls 2.1 Regulted nd Intervl Functions Regulted functions Let X be Bnch spce, nd let J be nonempty intervl in R, which my be bounded or

More information

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS 4.5 The Funmentl Theorem of Clculus Contemporry Clculus 4.5 THE FUNDAMENTAL THEOREM OF CALCULUS This section contins the most importnt n most use theorem of clculus, THE Funmentl Theorem of Clculus. Discovere

More information

5.3 The Fundamental Theorem of Calculus

5.3 The Fundamental Theorem of Calculus CHAPTER 5. THE DEFINITE INTEGRAL 35 5.3 The Funmentl Theorem of Clculus Emple. Let f(t) t +. () Fin the re of the region below f(t), bove the t-is, n between t n t. (You my wnt to look up the re formul

More information

Course 2BA1 Supplement concerning Integration by Parts

Course 2BA1 Supplement concerning Integration by Parts Course 2BA1 Supplement concerning Integrtion by Prts Dvi R. Wilkins Copyright c Dvi R. Wilkins 22 3 The Rule for Integrtion by Prts Let u n v be continuously ifferentible rel-vlue functions on the intervl

More information

M 106 Integral Calculus and Applications

M 106 Integral Calculus and Applications M 6 Integrl Clculus n Applictions Contents The Inefinite Integrls.................................................... Antierivtives n Inefinite Integrls.. Antierivtives.............................................................

More information

1. On some properties of definite integrals. We prove

1. On some properties of definite integrals. We prove This short collection of notes is intended to complement the textbook Anlisi Mtemtic 2 by Crl Mdern, published by Città Studi Editore, [M]. We refer to [M] for nottion nd the logicl stremline of the rguments.

More information

arxiv:math/ v2 [math.ho] 16 Dec 2003

arxiv:math/ v2 [math.ho] 16 Dec 2003 rxiv:mth/0312293v2 [mth.ho] 16 Dec 2003 Clssicl Lebesgue Integrtion Theorems for the Riemnn Integrl Josh Isrlowitz 244 Ridge Rd. Rutherford, NJ 07070 jbi2@njit.edu Februry 1, 2008 Abstrct In this pper,

More information

The Bochner Integral and the Weak Property (N)

The Bochner Integral and the Weak Property (N) Int. Journl of Mth. Anlysis, Vol. 8, 2014, no. 19, 901-906 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2014.4367 The Bochner Integrl nd the Wek Property (N) Besnik Bush Memetj University

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

Set Integral Equations in Metric Spaces

Set Integral Equations in Metric Spaces Mthemtic Morvic Vol. 13-1 2009, 95 102 Set Integrl Equtions in Metric Spces Ion Tişe Abstrct. Let P cp,cvr n be the fmily of ll nonempty compct, convex subsets of R n. We consider the following set integrl

More information

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for ECTURE 3 Orthogonl Functions 1. Orthogonl Bses The pproprite setting for our iscussion of orthogonl functions is tht of liner lgebr. So let me recll some relevnt fcts bout nite imensionl vector spces.

More information

Analytical Methods Exam: Preparatory Exercises

Analytical Methods Exam: Preparatory Exercises Anlyticl Methods Exm: Preprtory Exercises Question. Wht does it men tht (X, F, µ) is mesure spce? Show tht µ is monotone, tht is: if E F re mesurble sets then µ(e) µ(f). Question. Discuss if ech of the

More information

NOTES AND PROBLEMS: INTEGRATION THEORY

NOTES AND PROBLEMS: INTEGRATION THEORY NOTES AND PROBLEMS: INTEGRATION THEORY SAMEER CHAVAN Abstrct. These re the lecture notes prepred for prticipnts of AFS-I to be conducted t Kumun University, Almor from 1st to 27th December, 2014. Contents

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION

SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION Physics 8.06 Apr, 2008 SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION c R. L. Jffe 2002 The WKB connection formuls llow one to continue semiclssicl solutions from n

More information

The one-dimensional Henstock-Kurzweil integral

The one-dimensional Henstock-Kurzweil integral Chpter 1 The one-dimensionl Henstock-Kurzweil integrl 1.1 Introduction nd Cousin s Lemm The purpose o this monogrph is to study multiple Henstock-Kurzweil integrls. In the present chpter, we shll irst

More information

Chapter 4. Lebesgue Integration

Chapter 4. Lebesgue Integration 4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

arxiv: v1 [math.ca] 7 Mar 2012

arxiv: v1 [math.ca] 7 Mar 2012 rxiv:1203.1462v1 [mth.ca] 7 Mr 2012 A simple proof of the Fundmentl Theorem of Clculus for the Lebesgue integrl Mrch, 2012 Rodrigo López Pouso Deprtmento de Análise Mtemátic Fcultde de Mtemátics, Universidde

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Mth. Anl. Appl. 385 2012 534 550 Contents lists vilble t ScienceDirect Journl o Mthemticl Anlysis nd Applictions www.elsevier.com/locte/jm Dynmic equtions on time scles nd generlized ordinry dierentil

More information

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LV, Number 3, September 2010 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II TIBERIU TRIF Dedicted to Professor Grigore Ştefn

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES INROADS Rel Anlysis Exchnge Vol. 26(1), 2000/2001, pp. 381 390 Constntin Volintiru, Deprtment of Mthemtics, University of Buchrest, Buchrest, Romni. e-mil: cosv@mt.cs.unibuc.ro A PROOF OF THE FUNDAMENTAL

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Overview of Calculus

Overview of Calculus Overview of Clculus June 6, 2016 1 Limits Clculus begins with the notion of limit. In symbols, lim f(x) = L x c In wors, however close you emn tht the function f evlute t x, f(x), to be to the limit L

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

More information

Mass Creation from Extra Dimensions

Mass Creation from Extra Dimensions Journl of oern Physics, 04, 5, 477-48 Publishe Online April 04 in SciRes. http://www.scirp.org/journl/jmp http://x.oi.org/0.436/jmp.04.56058 ss Cretion from Extr Dimensions Do Vong Duc, Nguyen ong Gio

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

The presentation of a new type of quantum calculus

The presentation of a new type of quantum calculus DOI.55/tmj-27-22 The presenttion of new type of quntum clculus Abdolli Nemty nd Mehdi Tourni b Deprtment of Mthemtics, University of Mzndrn, Bbolsr, Irn E-mil: nmty@umz.c.ir, mehdi.tourni@gmil.com b Abstrct

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information