Pointwise ergodic theorems with rate and application to the CLT for Markov chains

Size: px
Start display at page:

Download "Pointwise ergodic theorems with rate and application to the CLT for Markov chains"

Transcription

1 Aales de l Istitut Heri Poicaré - Probabilités et Statistiques 009, Vol. 45, No. 3, DOI: 0.4/08-AIHP80 Associatio des Publicatios de l Istitut Heri Poicaré, Poitwise ergodic theorems with rate ad alicatio to the CLT for Markov chais Christohe Cuy a ad Michael Li b a Uiversité de Nouvelle Calédoie, Nouméa, New Caledoia. cuy@uiv-c.c b Be-Gurio Uiversity, Beer-Sheva, Israel. li@math.bgu.ac.il Received 5 Setember 007; revised 5 May 008; acceted May 008 Dedicated to Yves Derrieic o the occasio of his 60th birthday Abstract. Let T be Duford Schwartz oerator o a robability sace Ω, μ).forf L μ), >, we obtai growth coditios o which imly that / 0 μ-a.e. I the articular case that = adt is the isometry iduced by a robability reservig trasformatio we get better results tha i the geeral case; these are used to obtai a queched cetral limit theorem for additive fuctioals of statioary ergodic Markov chais, which imroves those of Derrieic Li ad Wu Woodroofe. Résumé. Soit T u oérateur de Duford Schwartz sur u esace de robabilité Ω, μ). Pour f L μ), >, ous obteos des théorèmes ergodiques du tye / 0 μ-.s. sous des coditios ortat sur la croissace de. Lorsque T est iduit ar ue trasformatio réservat la mesure et que =, ous obteos de meilleurs résultats. Ces deriers sot alors utilisés our obteir le théorème cetral limite queched our les sommes artielles associées aux foctioelles de chaîes de Markov statioaires et ergodiques. Nous amélioros aisi des résultats atérieurs de Derrieic Li et Wu Woodroofe. MSC: Primary 60F05; 60J05; 37A30; 37A05; secodary 47A35; 37A50 Keywords: Ergodic theorems with rates; Cetral limit theorem for Markov chais; Duford Schwartz oerators; Probability reservig trasformatios. Itroductio The motivatio for this aer was the search for a queched cetral limit theorem CLT) for additive fuctioals of Markov chais which will iclude the results of [7] ad [7]. We obtai the followig: Theorem. Let {X } 0 be a statioary ergodic Markov chai with state sace S, S), trasitio robability P, ivariat iitial distributio m, ad corresodig Markov oerator P o L S,m). For x S deote by P x the robability of the chai startig from x, defied o the roduct σ -algebra of Ω := S N. Let f L S,m)with f dm = 0. If there exists τ>such that log ) 5/ log log ) τ su 3 P k f < ) the for m-almost every oit x S the sequece fx k ) coverges i distributio, i the sace Ω, P x ), to a ossibly degeerate) Gaussia distributio N 0,σf) ) with variace σf) ideedet of x). Moreover, also the ivariace ricile holds.

2 Poitwise ergodic theorems with rate 7 The first geeral queched CLT of this tye seems to be that of Gordi ad Lifshitz i Sectio IV.8 of [6], which assumed f I P)L m). Our theorem imroves that of Derrieic ad Li [7], who assumed that P k f =O α ) for some 0 <α</, ad that of Wu ad Woodroofe [7], roved for f satisfyig log ) su β P k f < for some β>5/, uder the additioal assumtio that f L m) for some >. Both these results imly that of [3] obtaied ideedetly). Durig the rearatio of the reset mauscrit, after comletig our research, we discovered the rerit of Zhao ad Woodroofe [8]; their mai theorem imlies the queched CLT whe ) holds with τ>3/ which also imroves [7] ad [7]); however, the result of [8] does ot imly our result whe <τ3/ see Chater 5). Our strategy follows that of Derrieic ad Li. We first rove some ergodic theorems with rates, the use them to show that the error term i the martigale aroximatio teds to 0; the CLT for the martigale follows as show i [6]) from Brow s CLT. Our mai oitwise ergodic theorem with rate, used for rovig the queched CLT, may be of ideedet iterest: Theorem. Let T be the isometry iduced o L μ) by a ergodic robability reservig trasformatio. If f L μ) satisfies log ) 3/ log log ) τ su < 3 for some τ>, the 0 μ-a.e. The referee oited out that a differet sufficiet coditio was obtaied by Wu [6]. Wu s coditio does ot imly ours, ad i Chater 3 we will exhibit a examle i which our coditio holds while Wu s does ot.. O rates i the mea ergodic theorem It is well kow that i geeral there is o seed of covergece i the mea ergodic theorem for a ower-bouded oerator T o a reflexive Baach sace X, ot eve for isometries of L iduced by robability reservig trasformatios; a fixed rate for a give T imlies that the averages coverge i oerator orm, ad the I T)Xis closed ad we have a rate of / e.g., see [4]). I geeral, oly coboudaries the elemets of I T)X) have covergece of the averages to 0 with rate of /. For 0 <α<, covergece to 0 of the averages with rate of / α was obtaied i [5] forα-fractioal coboudaries, which are the elemets of I T) α X, with the oerator I T) α defied there by I T) α = I j= a α) j T j, where a α) = α ad a α) j = j! α j k α) are the coefficiets of the ower-series exasio t) α = j= a α) j t j for t. It is show i Corollary.5 ad Theorem.7 of [5] that f I T) α X imlies 0 for X reflexive), but i geeral the latter covergece imlies oly f I T) γ X for γ<α. α It is therefore of iterest to fid a growth coditio o, better faster) tha O α ɛ ), which still yields f I T) α X; we would like also to have i this case a rate i the ergodic theorem for h which satisfies f = I T) α h. Note also that sice there is o rate i the mea ergodic theorem, kowig oly f = I T) α h will ot give ay rate for h; a excetio is whe i fact f I T) α+ɛ X, which imlies that we ca take h I T) ɛ X. It was show i [5], Proositio.0, that covergece of j=0 b α) j coefficiets of t) α = j=0 b α) I T) α X. We will use the asymtotic behavior [9], vol. I,. 77) bα) Ɣα) α C α j T j f, with b α) j = j + )a α) j+ / α) the t j for t <, is sufficiet ad ecessary whe X is reflexive) for f to be i for some C>0, where Ɣ is Euler s fuctio. Whe α is uderstood, it will be coveiet to deote b α) simly by b. )

3 7 C. Cuy ad M. Li I the aer we will make use of regularly varyig fuctios. Followig [],. 76, we say that a ositive fuctio L, defied o a half lie [A, ), A 0, is slowly varyig at ifiity) if for every x>0, Ltx)/Lt), ad t + we say that a ositive fuctio Φ is regularly varyig with exoet ρ <ρ<+ ) ifφx) = x ρ Lx) for some slowly varyig fuctio L. The regularly varyig fuctios of articular iterest i this aer are Φx) = x ρ logx + c) γ. Lemma.. Let T be a ower-bouded oerator o a Baach sace X ad let f X. If there exist 0 <α< ad a o-decreasig regularly varyig fuctio Φ with exoet β>such that Φlog + )) α < +, 3) su the m 0 bα) m T m f coverges i X, to a elemet h I T)Xwhich satisfies f = I T) α h, ad for every, b m α) T m f C Φlog + )), m where Φx) := x du Φu) ), which is a o-decreasig regularly varyig fuctio with exoet β. Proof. For the give α, we will deote b m α) Abel s summatio, k =j α T k ) f = S α + ) α + k α S k j α S j. =j By 3) ad ), there exists C such that k k b T f C =j =j k α + =j by b m.for, write S = m= T m f.fork>j> we have, by α C j α + Φlogj)) + = C j α + Φlogj)) + ) α Φlog + )) + Φlogj)) + Φlogk + )) k j logk ) logj ) ) dx xφlog x) du Φu) ). 4) Sice /Φ is regularly varyig with exoet β <, the lemma o. 80 of [] yields that Φ x) := x defies a fiite-valued regularly varyig fuctio of exoet β +, so Φ as defied i the theorem is regularly varyig with exoet β. The covergece of the itegral defiig Φ show that the right-had side of 4) coverges to 0 as k>j, so the series 0 b T f coverges. Lettig k i 4) gives a estimate for the tail of the series. By Lemma i [],. 77, /j α C 3 /Φlog j) for large j; by Theorem a) i [],. 8, comarig /Φ ad Φ yields that the middle term i the estimate is bouded by a costat mutile of the last term. Hece the asserted estimate for the tail holds. Remark. For Φx) = x β we have Φx) = β )x β ; i this case the roof of the lemma is direct. It is a atural questio whether we must have β> say i the case where Φx) = x β ). I the roof of Proositio 5.3a) see also c)), we give a ormal cotractio o L ad a fuctio f for which the result holds for α = /, with β>/. This motivates a imrovemet of the revious lemma whe the oerator is a ormal cotractio V i a comlex Hilbert sace H, which is give below. dt Φt)

4 Poitwise ergodic theorems with rate 73 Let f H. By the sectral theorem e.g., [9,0,4]), there exists a uique ositive measure σ f o the Borel sets of the uit disk D, called the sectral measure of f, such that V f,f = D z σ f dz) for every 0, ad V k f = D z σ k f dz) = D z z z σ f dz). 5) We will use the reresetatio z = re iπθ with θ.for z, we clearly have z k z k mi, / r)). Covexity of x siπx/) o [0, ] yields x siπx/) for 0 x, so siπθ) θ for θ. Hece, for / r wehave z = r cosπθ)+ r = r) + 4r si πθ) 8θ. For z we have z k < < θ, so we fially obtai z k = z z z {, mi r, } z ). 6) θ As i [] ad [7], we wat to relate the rate V k f =O α Φlog+)) ), to the cocetratio of σ f at. We eed some otatio. For every defie { D := z = re iπθ : r, θ }. Notice that D is the uit disk D, ad m,, 6) yields z k mi, m) z D D m. 7) We ca ow reset the sectral characterizatio of coditio 3). Theorem.. Let V be a ormal cotractio o a comlex Hilbert sace H, let Φ be a mootoe regularly varyig fuctio ad 0 α<. The followig are equivalet for f H. i) There exists C > 0, such that, V k f C α Φlog + )) ii) There exists C > 0, such that, σ f D ), 8) C α Φlog + ))). 9) Proof. i) ii). Assume 8) holds. Let. Sice ) decreases to /e, for / r wehave r r ) >r/3, r = r) r k r)r r)/3. k=0

5 74 C. Cuy ad M. Li O the other had, siπθ) θ π siπθ) for θ For z = re iπθ D,, sice r, we thus obtai z k which yields, by 5), σ f D ) 36 = z z z = r r cosπθ) + r r cosπθ)+ r r ) + 4r si πθ) 4 r) + 4r si πθ) 36, D. z k σ f dz) 36 V k f, 0) which roves 9), by 8). ii) i). Assume 9) holds. Sice D = D,usig7) we obtai V k f = = z σ k f dz) D D z σ k f dz) + j= D j D j+ z σ k f dz) σ f D ) + j + ) σ f D j ) σ f D j+ ) ) j= σ f D ) + σ f D j ) j + ) j ) σ f D ) + 4σ f D ) j= j + C j α + f Φlogj + ))) j= 3 C Φlog )) + ) 3x x α Φlogx + ))) dx + f. ) Sice /Φ is also a mootoe regularly varyig fuctio, x /Φlogx + ))) is slowly varyig. Sice α >, it follows from [], Theorem b),. 8 with = α ad γ = 0), that the last itegral is O ). This cocludes the roof of the theorem. α Φlog+))) Lemma.3. Let T be a isometry or a ormal cotractio of a comlex Hilbert sace H ad let f H. If there exist 0 <α< ad a o-decreasig regularly varyig fuctio Φ with exoet β>/ such that Φlog + )) K := su α < +, ) the m 0 bα) m T m f coverges i H to a elemet h I T)H, which satisfies f = I T) α h, ad for every b m α) T m f C Φlog + )), 3) m

6 where Φ := x Poitwise ergodic theorems with rate 75 du Φu)) ) /, which is a o-decreasig regularly varyig fuctio with exoet β /. Proof. Assume first that T is a ormal cotractio. Let σ f be the sectral measure of f as above. Assumtio ) imlies 0, so f I T)H ad σ f {}=0. By ) ad the revious theorem there exists C>0 such that σ f D ) C α Φlog + ))). 4) By Proositio.0 of [5], if we rove that the series m 0 b mt m f coverges, the f I T) α H. For k>j>wehave k b T f =j = k b z σ f dz). D =j Defie the argumet fuctio o C {0} by arg z = θ for z = re iπθ, r>0, / <θ /. It follows from ) ad [9], vol. I,. 9, that there exists C α >, such that for every ad z = with θ = arg z 0wehave b k e iπkθ C α arg z α. O the other had, for every 0 z <, m=0 b m z m 0 b z = z ) α. Hece k b z C α mi { arg z α, z ) α} =j k>j, 0 z. 5) Sice b is decreasig e.g., [5], Lemma.5), Abel summatio ad 6) yield k { } b z Cb j mi arg z,, 0 < z. 6) z =j Usig 6) ad 5), ad the ) ad the defiitio of D r, we obtai k D =j b z σ f dz) = r C j r= D r D r+ =j b j + C Cj α r j+ k b z σ f dz) { } mi D r D r+ arg z, σ f dz) z { } mi D r D r+ arg z, α σ f dz) z j r + ) σ f D r ) σ f D r+ ) ) r= + C r + ) α σ f D r ) σ f D r+ ) ). r j+

7 76 C. Cuy ad M. Li The first term is O/Φlog )) ), by the estimate for the sum whe it aeared i ). For the series, usig 4) ad Abel summatio by art oe ca see that the residual term at ifiity is 0 by 4)), we deduce r + ) α σ f D r ) σ f D r+ ) ) C r j+ r j+ C j rφlog r)) dx xφlog x)) = C log j du Φu)), where the last itegral is coverget by the lemma i [],. 80, VIII.9, sice β >. Hece k =j b T f C du log j ) / 0, so by Cauchy s criterio Φu)) m 0 b mt m f coverges i H. The estimatio for the tail of the series follows from the last iequality, sice by the lemma i [],. 80, x du Φu)) is regularly varyig with exoet β + ; hece Φ is regularly varyig of exoet β /. I case T is a isometry, we ote that by the uitary dilatio theorem [4], there exist a larger Hilbert sace H cotaiig H ad a uitary oerator o H such that for f H we have = EU k f for every k 0, where E is the orthogoal rojectio of H oto H. Sice T is a isometry, EU k f = f = U k f shows that U k f H, so i fact = U k f, ad the result for the isometry follows from alyig the above result to the uitary U. Remarks.. For Φx) = x β we have Φx) = β x β /.. It is ot ossible to imrove the coditio o β i Lemma.3. Ideed, the examle i [5],. 7, has a symmetric cotractio T o L [0, ] ad f L such that f / I TL, ad checkig the comutatios i the examle we have that 3) holds with Φx) = x so β = ) ad α =. The costructio i the roof of Proositio 5.3 may be alied to show the same heomeo with a Markovia symmetric cotractio. Theorem.4. Let T be a ower-bouded oerator o a Baach sace X ad let f X. If there exist 0 <α< ad a o-decreasig regularly varyig fuctio Φ with exoet β> such that su Φlog + )) α < +, the f I T) α X, there is a uique elemet h I T)Xsuch that f = I T) α h, ad h satisfies Φlog + )) T k h < +, su 7) where Φ := x su du Φu) ) is a o-decreasig regularly varyig fuctio with exoet β. Theorem.5. Let T be a isometry or a ormal cotractio of a comlex Hilbert sace H ad let f H. If there exist 0 <α< ad a o-decreasig regularly varyig fuctio Φ with exoet β>/ such that Φlog + )) α < +, the f I T) α H, there is a uique elemet h I T)H such that f = I T) α h, ad h satisfies Φlog + )) T k h < +, su 8) where Φ := x du Φu)) ) / is a o-decreasig regularly varyig fuctio with exoet β /.

8 Poitwise ergodic theorems with rate 77 Proof of Theorems.4 ad.5. We will rove both theorems together. I the roof X will stad for a Baach sace or a Hilbert sace. I either case, by Lemma. or.3, the series h := 0 b T f coverges. It follows from Proositio.0 ad Theorem. of [5] that f I T) α X, ad that h is the uique elemet of I T)Xsatisfyig f = I T) α h. Moreover, by Lemma. or.3, b m T m f C Φ log + )), m 9) where accordigly Φ is a o-decreasig regularly varyig fuctio, either Φ with exoet β, or Φ with exoet β /. Let us rove the estimates 7) ad 8). For wehave k T k h = b m T m+k f = b m T m+k f + b m T m+k f. 0) m 0 m=0 m + k Let us deal with the last sum. Usig that T is a cotractio ad 9)wehave m + k b m T m+k f m + k b m T m f C Φ log + k)) = C Φ logk + )) C log + C dx Φ logx + )) C 3 Φ log + )), by Theorem b), i [],. 8 with = γ = 0), sice /Φ log) is slowly varyig. It gives the desired boud for the secod sum i 0). Let us deal with the first sum i 0). Writig S 0 := 0, ad usig b from ), we obtai k b m T m+k f = m=0 m=k m= m b m k T m f m = b m k )T m f = = C m= [ m= m= m C α b k )T m f k=0 b k )S m S m ) = b m S m ) + S b k k=0 m= ] Φlogm + )) + α Φlog + )) α k=0 C Φlog + )). Usig the costructios of the corresodig Φ ad Theorem a) i [],. 8, we obtai the Φx)/Φ x) as x, which yields the desired boud also for the first sum of 0).

9 78 C. Cuy ad M. Li 3. Poitwise ergodic theorems with rates Let T be a Duford Schwartz oerator o a robability sace Ω, μ). Theorem 3. of [5] shows that for > with dual idex q = / ) ad f I T) /q L μ) we have / log ) /q k=0 0 a.s. We wat to have k=0 0 a.s., so additioal hyotheses are eeded [5], Proositio 3.8, for examle, < +. / su / ɛ I Theorem 3. we obtai the desired a.s. covergece uder a weaker hyothesis; its roof uses the followig roositio. Proositio 3.. Fix > ad let T be a ower-bouded oerator o L μ) of a robability sace Ω, μ). Let h L μ) ad assume that there exist δ / ad τ>/ such that log + )) δ log log + )) τ su T k h < +. The for every τ <τ / we have log + )) δ / log log + )) τ T k h 0 + a.s. log+)) Moreover, su δ / log log+)) τ T k h L μ). Proof. For ay atural umber defie Ψ):= )/ log + κ)) δ log logx + κ)) τ, where κ is large eough, so Ψ is o-decreasig. Sice T is ower-bouded, the hyothesis o h yields k+ j=k+ T j h CΨ ). Usig the defiitio Λ) = [log ] k=0 Ψ ), with log k+ x beig the logarithm to base ad x the uer itegral art of x, we ca comute for our Ψ that [log ] Λ) = k=0 ) [/log ] Ψ k+ k=0 ) Ψ k+ + C )/ CΨ ). It follows from [], Theorem 4, that there exists C such that for k 0 ad, max k+l l j=k+ T j h CΛ ) C Ψ ) C log + )) δ log log + )) τ.

10 Hece for biary blocks we have l max T j m h C m l m+ log m + )) δ log log m + )) τ. j= m Now let 0 <τ <τ. The m δ / log m) τ m max m C m m l m+ Poitwise ergodic theorems with rate 79 l T j h j= m m δ log m) τ m m log + m )) δ log log m < +. + )) τ The assertios of the theorem ow follow easily, sice also m δ / log m) τ m T j h m C m m j= m δ log m) τ m m log + m )) δ log log m < +. + )) τ Remark. Poitwise ergodic theorems with rates as cosequece of rates i the mea ergodic theorem were obtaied by Gaoshki [] for geeral uitary oerators i a comlex Hilbert sace, by Derrieic Li [5] for Duford Schwartz oerators, ad by Weber [5] for ower-bouded oerators o L. A theorem of this tye for the isometries iduced i L by robability reservig trasformatios is i fact roved i [8]. Related results are i Assai Li []. For more results ad refereces see []. Theorem 3.. Let T be a Duford Schwartz oerator o a robability sace Ω, μ). Let f L μ), >. Assume that there exists τ>, such that log + )) log log + )) τ su / < +. ) The / 0 a.s. ad + k / coverges a.s. Moreover, there exists K f > 0 such that for every λ>0, { λ μ su T k } { } f / >λ K f ad λ μ su k / >λ K f. Proof. Let Φx) = x log x) τ, which is o decreasig o [, + ) ad regularly varyig with exoet. Estimatig du x C u log u) τ xlog x) τ, we obtai from Theorem.4, with α = / ad X = L μ), that there exists h L μ) with f = I T) α h such that log + )log log + )) τ su T k h < +. )

11 70 C. Cuy ad M. Li Hece f = h a T h coverges i L μ), where a = a α) are the coefficiets i the exasio t) α = a t. Sice a is absolutely coverget, the series a T h is μ-almost everywhere absolutely coverget. By [5] roof of Theorem 3.), we have k=0 = A + B + C, where A := h + a k )T j h, B := j= j + k j+ a k )T j h, T j= k=j C := ) a j T j T k h. k=0 It is roved i stes I ad II of the roof of Theorem 3. i [5],., that A / / 0 ad C / / 0a.s. uder the oly coditio f = I T) α h, sice α =. Moreover, it is roved i [5],. 3, that su C / L μ), for every h L μ). The corresodig statemet for A / / follows by Abel summatio ad the classical iequality su T k h L μ) for every h L μ). Let us rove that B / / 0 a.s. ad that λ μ{su >λ}k / f for every λ>0. By [5], Lemma.5, α k j a k = ja j,sowehavesee3.6)i[5]) B = T j= α ja j T j h + α + )a + T k h. 3) For the last term i 3), we use α + )a + = c α with c bouded to obtai / α + )a + T k h k= ) k= = c T k h 0 By the classical maximal iequality, we also have a maximal iequality for this term. It remais to rove that Let q := + q / T ja j T j h 0 j= a.s. k= a.s. be the dual idex, ad let q <τ <τ here we use τ>). Alyig Proositio 3. with δ = = to ) we obtai h := su log + )) /q log log + )) τ T k h L μ). For k ut S k := k j= T j h, ad defie S 0 := 0. Notice that for every k, T k S k = S k S k k logk + )) /q log logk + )) τ h k + logk + )) /q log logk + )) τ h 3k logk + )) /q log logk + )) τ h.

12 Deote by T the liear modulus of T.For wehave T ja j T j h = T ja j S j S j ) j= j= Poitwise ergodic theorems with rate 7 T j T j ) S j jaj j + )a j+ + a T S j= ) 3j jaj j + )a j+ logj + )) /q log logj + )) τ T j h + a T S. j= a We have already roved that T S / 0 a.s., with a maximal iequality, whe dealig with the last term of 3). Sice ja j j + )a j+ = αa j = 0/j + ) +α ), the roof will be fiished if we show that for every g L μ), / j α logj + )) /q log logj + )) τ T j g 0 a.s. 4) j= We roceed as i [5], with the required slight modificatios. Let g L μ). Usig Hölder s iequality with / + /q = ) ad Tg T g ) [9],. 65), we obtai / j α logj + )) /q log logj + )) τ T j g j= ) /q T j / j qα g / logj + ))log logj + )) qτ j= ) /q T j g ) /. 5) jlogj + ))log logj + )) qτ j= j=0 The series is coverget by our choice of τ, ad the secod term is bouded a.s., by the ergodic theorem for g L μ). Hece, for every g L μ) we have su / j α logj + )) /q log logj + )) τ T j g < + a.s. 6) j= By the Baach ricile it suffices to rove 4)forg i a dese subset of L μ). We rove it for every g L μ): / j α logj + )) /q log logj + )) τ T j g j= / j α logj + )) /q log logj + )) τ g j= C α / log + )) /q log log + )) τ g 0. Hece 4) holds for every g L μ).

13 7 C. Cuy ad M. Li Sice g L μ), the classical iequality λμ{su T k g >λ} g = g for every λ>0 yields the asserted weak-tye maximal iequality by the estimate 5). Now deote R 0 = 0 ad R k := k j= T j f for k. The k / = R k R k k / = k / k + ) / The last term teds to 0 as as we have see, ad ) k / R k k + ) / R k k +/ k +)/ k= k= coverges a.s. by Beo Levi, sice by ) wehave R k R k k +)/ k= ) R k + R. 7) / Ck / k +)/ logk + )) log logk + )) τ <. The above ad weak maximal iequality for the last term i 7) yield the a.s. covergece of existece of K f > 0 such that λ μ{su >λ}k k / f for every λ>0. T f / ad the Remarks.. The series b k, with the coefficiets b Ɣ q k = b /) )k/ k, coverges a.s. by ) ad Beo Levi s theorem, so the theorem yields that h = k=0 b k also with a.s. covergece.. Wu [6], Proositio iii)) showed that for T iduced by a robability reservig trasformatio ad f L i.e., {T f } L is strictly statioary), the coditio ) /+) < 8) is sufficiet to obtai 0 a.s. Actually it ca be show that Wu s coditio yields also a.s. / + covergece of the series. Hece, for strictly statioary sequeces our result follows from Wu s, sice ) k imlies 8). Thus, the ovelty i our / theorem is its alicatio to all Duford Schwartz oerators. We ca imrove the theorem, by weakeig the assumtio ), whe T is a isometry of L μ) iduced by a robability reservig trasformatio. Theorem 3.3. Let ϑ be a measure reservig trasformatio of Ω, F,μ). Let f L μ). Assume that there exists τ>, such that log + )) 3/ log log + )) τ su f ϑ k < +. 9) The f ϑ k 0 a.s. ad + f ϑ k k coverges a.s. Moreover, there exists K f > 0 such that for every λ>0, { λ μ su f ϑ k } { >λ K f ad λ μ su } f ϑ k >λ K f. k

14 Poitwise ergodic theorems with rate 73 Proof. Note that ϑ iduces a isometry T of L μ), hece we ca use Theorem.5 istead of Theorem.4 at the begiig of the roof of Theorem 3., this time with Φx) = x 3/ log x) τ, to obtai ). From that oit o the roof is exactly the same, takig = q = ad usig 9) istead of ). Remarks.. Oe ca see that Theorem 3.3 is valid for ay Duford Schwartz oerator T that is a isometry of L μ). However, there is a examle i [3],. 58, showig that Theorem 3.3 is ot true if oe assumes oly that T is uitary.. As metioed above, Wu [6] obtaied a differet sufficiet coditio, amely 8), imlyig the coclusio of Theorem 3.3. Whe τ>3/, 9) imlies 8). I the ext roositio we show a examle satisfyig coditio 9), with <τ<3/, but ot Wu s 8). Let {ε } Z L Ω, μ) be a sequece of strictly statioary martigale differeces e.g., i.i.d. cetered radom variables with fiite variace). For a sequece {a } l N), we defie the movig average sequece X := k 0 a kε k, which is strictly statioary, i.e., X = X 0 ϑ, with ϑ the shift associated with {ε }. Proositio 3.4. There exists a movig average {X } such that ad su log + )) 3/ log log + )) 5/4 X 0 ϑ k ) /3 =. X 0 ϑ k < 30) 3) I articular, Theorem 3.3 alies while Wu s coditio does ot hold. Proof. Let a = a = 0, for every 3 ut a =, ad let a log ) 5/ log log ) 5/4 0 = k a k,so k 0 a k = 0. Fix a statioary martigale differece sequece with uit variace {ɛ } Z, ad defie a movig average as above. By orthoormality of {ε } we have X k = a m ε k m = a k m ε m m 0 = a k m )ε m + = m= k=m m m= Usig k 0 a k = 0 we obtai ) a k + k=0 m 0 mk 0 m= m+ k=m+ ) a k m ε m a k ). X k = a k) + m+ ) a k. 3) m=0 k m m 0 k=m+ We will use the estimate k j+ a C k for j 3. log j) 3/ log log j) 5/4 For the first sum o the right-had side of 3) we have, for large, m=0 k m a k ) c + 4 m=0 C log m )) 3 log log m )) 5/ c + C log ) 3 log log ) 5/.

15 74 C. Cuy ad M. Li For the secod sum, we obtai slittig the sum, accordig to m / log ) m+ ) ) a k a k + logm + )) 5 log logm + )) 5/ log + m ) m m 0 k=m+ 0m/ log k m+ m>/ log C log ) 4 log log ) 5/ + log + )) 5 log log + )) 5/ = o log ) 3 log log ) 5/ ). m>/ log ) m Hece, X k log ) 3/ log log ) 5/4. I articular, 30) holds, while 8) does ot. Theorem 3.3 raises the questio whether the assumtio o the ower of the logarithm i Theorem 3. ca be imroved i geeral. Ideed, if we kow that the fuctio f is also i some L r, r>, we ca assume a smaller ower of the logarithm i ), ad the roof is also somewhat simler. The result below is isired by the argumets of Wu ad Woodroofe [7] whe = ) i the roof of their queched CLT. Theorem 3.5. Let T be a Duford Schwartz oerator o a robability sace Ω, μ). Let f L μ), >. Assume that there exists τ>/, such that log + )) +/ log log + )) τ su / < +. 33) If i additio f L r μ) for some r>, the / 0 a.s. ad + k / coverges a.s. Moreover, su ad su k / are i L μ). / Proof. For the claims about it suffices to rove the stroger results) that / max m/ T k f 0 ad su max m m + m m/ m L μ). Let 0 <γ </ /r. Defie u m := [ γm ]+ block size) ad v m := [ γ)m ]+ uer boud o umber of blocks). Sice γ<, we have [ lu m max max l )u m ] +j + max. m lv m ju m k=l )u m + Sice for every l v m, l )u m +j max u m max um max, l )u m +klu m ku m v m ju m k=l )u m + we obtai max max lu m T l f + u m max. 34) ku m v m m lv m

16 Poitwise ergodic theorems with rate 75 Let T be the liear modulus of T, which is also a Duford Schwartz oerator. Sice T k f ) r T k f r ) [9],. 65) ad u m v m < 3 m, we obtai u m This yields 3 m max ) r u r m max T k f r) u r m T k f r). ku m v m ku m v m m m/ max ) r dμ ku m v m um which coverges by our choice of γ. Hece m u r 3 m m rm/ T k f r) dμ 3 m ur m f r r mr/ 3 r f r r m+γr r/), m m su m u m m/ max ku m v m L r L ad u m m/ max ku m v m m 0 a.s. We ow deal with the first term o the right-had side of 34). Fix m, ad for k v m defie R k = kum i=k )u m + T i f.for0 j<l v m,33) yields l k=j+ R k = lu m i=ju m + T i f l j)u m i= T i f l j)u m C logl j)u m + )) + log logl j)u m + )) τ Cu m logu m + )) + l j). log logu m + )) τ Sice we have a liear boud, we ca use [], Theorem 3 see also [], Proositio.3), which yields the maximal iequality max j R k Hece jv m ju m max m/ jv m i= C u m logu m + )) + log logu m + )) τ log v m) v m. T i f = max j R k m jv m C mlog m) τ, which is the term of a coverget series by our assumtio o τ. The assertios cocerig the series k / are roved as i Theorem 3.,usig33) istead of ). Remarks.. I view of the revious theorem, it would be iterestig to kow whether Theorem 3.3 remais true if we take oly τ>, without assumig f Lr for some r>.. Whe f L r, r>, the revious theorem requires a smaller ower of the logarithm tha i ), amely + istead of. For T iduced by a measure-reservig trasformatio ad, is the L aalogue of Theorem 3.3, with the ower + i the logarithm, true without the additioal coditio f Lr for some r>)?

17 76 C. Cuy ad M. Li 4. A queched CLT for Markov chais We ow use our results to obtai a queched cetral limit theorem for additive fuctioals of statioary ergodic Markov chais. Let Px,A) be a trasitio robability o S, S) with Markov oerator Pgx) = gy)px,dy) defied o bouded measurable fuctios, ad let m be a ivariat robability for P, assumed ergodic. The ivariace of m ad the iequality Pgx) Pg )x) yield that P exteds to a cotractio of L m). LetΩ := S N be the sace of trajectories ad {X } 0 the corresodig Markov chai with trasitio robability P. The robability law of the chai is deoted by P m whe the iitial distributio is m, ad by P x whe the chai starts at the oit x S. We deote by ϑ the shift o Ω, which is measure reservig ad ergodic i Ω, P m ). For f L m), cosider S f ) = k=0 fx k). Theorem 4.. Let f L m), with fx)dmx) = 0. If there exists τ>such that log + )) 5/ log log + )) τ su P k f < +, 35) k=0 the σ f ) := lim E m S f ) ) exists ad is fiite, ad for m-almost every oit x S, the sequece / S f ) coverges i distributio, uder the robability measure P x, to the Gaussia distributio N 0,σ f )) if σ f ) = 0, it is the Dirac measure at 0); furthermore, also the ivariace ricile holds. Proof. We basically follow the roof of [7] with the corresodig modificatios. Defie Φx) := x 5/ log x) τ, x>. For 0 <t< defie the Gree kerel G t = k 0 tk P k. By Abel summatio, G t = t) k 0 tk k j=0 P j, ad by assumtio G t f C t) k Φlogk + )) tk. k 0 By a Tauberia theorem see Theorem 5 i Sectio XIII.5 of []), with the slowly varyig Lx) := Φlog x)),for every 3 t< π G t f C t) / Φ log t) ). 36) Write ϕ t X 0,X ) := G t fx ) PG t fx 0 ).Wehave E m [ ϕs ϕ t ) ] = {[I + P )Gs f G t f) ][ I P )G s f G t f) ]} dm. Sice I P)G t = I t)pg t for 0 t<, we have I P )G s f G t f)= t)p G t f PG s f)+ s t)pg s f. By the Cauchy Schwarz iequality ad the triagle iequality, we obtai E m [ ϕs ϕ t ) ] I + P )Gs f G t f) I P )Gs f G t f) G s f + G t f ) [ t) Gs f + G t f ) + s t Gs f ]. Hece, usig 36) to estimate G t f for t,wehave [ su E m ϕs ϕ t ) ] / C s [t,+t)/] Φ log t) ).

18 Poitwise ergodic theorems with rate 77 Fix t< ad aly the above iequality with t = + t )/ istead of t to obtai su s [t,) E m [ ϕs ϕ t ) ] / su 0 s [t,t + ) 0 E m [ ϕs ϕ t ) ] / C Φ log t ) ) = C Φ log t)/ ) ) C Φ log t) ) + C 0 0 C 3 log t) 3/ log log t) ) τ. dx Φ log t) +x log ) By Cauchy s criterio, there exists M L P m ) such that lim t ϕ t M = 0. The sums M := k=0 M ϑk defie a martigale with statioary icremets, sice M t) := k=0 ϕ tx 0,X ) ϑ k is a martigale ad P m is ϑ-ivariat. By orthogoality ad statioarity of the martigale differeces, E m [ M t) M ) ] = Em [ ϕt M) ] D Φ log t) ), 37) where, Φx) := x 3/ log x) τ, x>. To obtai the CLT we eed to estimate the residual term W := S f ) M. By costructio, I tp)g t f = f for 0 t<. Hece, for every 0 t<wehave W = Gt fx k ) tpg t fx k ) ) ϕ t X k,x k+ ) + M t) M k=0 = ) M t) M + Gt fx 0 ) G t fx ) + t) PG t fx k ). Hece, usig 37), estimatig G t f by 36), ad the takig t = /, we obtai k=0 )) Em W / D / / Φ log t) ) + C π t) / Φ log t) ) + t)c π t) / Φ log t) ) C / Φlog ) = C / log ) 3/ log log ) τ. Sice W = k=0 f X 0) M) ϑ k ad τ>, we aly Theorem 3.3 to the fuctio fx 0 ) M L Ω, P m ) ad obtai that W 0 P m -a.s., so for m-a.e. x we have k=0 W 0 P x -a.s. The ed of the roof is ow similar to [7],. 75. Remarks.. Sice P m = P x dmx), the queched CLT, with the variaces of the limitig Gaussia equal a.s. to σ ideedetly of x), imlies the aealed CLT for {fx )}: I the sace Ω, P m ), the sequece / S f ) coverges i distributio to the Gaussia distributio N 0,σ ) if σ = 0, it is the Dirac measure at 0); furthermore, also the ivariace ricile holds.

19 78 C. Cuy ad M. Li. Imrovig the result of [4], Maxwell ad Woodroofe [0] roved the aealed CLT, with variace of the limit σ f ) := lim E m S f ) ), uder the assumtio that 3/ P k f <. = The mai questio is whether this coditio is sufficiet for the queched CLT. 3. Sice 35) imlies 38), σ f ) is the variace i Ω, P m ) of the statioary martigale differeces M ϑ k. Corollary of [8] ad its roof show that 35) imlies also 38) lim su S f ) log log = σf) P m -a.s. 5. O coditios for the CLT for Markov chais I this sectio we comare some of the coditios for the CLT. We use the otatios of the revious sectio: Px,A)is a trasitio robability o S, S) with ivariat robability m, assumed ergodic. The Markov oerator P the exteds to a cotractio of L m). We deote by {X } 0 the corresodig Markov chai o the sace of trajectories. For f L m) we defie S f ) = k=0 fx k). Let us recall: Proositio 5.. Let P be a Markov oerator as described. Let f L m). Assume that oe of the followig coditios is satisfied i) P is ormal ad f I PL m) [5,6]. ii) 3/ P k f < + [0]. iii) fp f coverges i L m) [3]. The {fx )} satisfies the aealed Cetral Limit Theorem. Remarks.. It is kow that for P ormal) ii) imlies i); i fact, ii) always imlies f I PL [8]. We will aswer the questio asked i [8], whether there exists a ormal Markov oerator P ad f L such that i) is satisfied but ot ii).. Coditio ii) was itroduced by Maxwell Woodroofe [0]. For geeral strictly statioary rocesses, the coditio reads 3/ ES X 0 ) < +, were S := k=0 fx k). It was roved by Peligrad Utev [] that it is sufficiet for the fuctioal CLT i that case. 3. Coditio iii) is due to Dedecker Rio [3], ad also has a aalogous sufficiet coditio for the geeral statioary case which esures the fuctioal CLT. Of course, iii) imlies P f,f 0, so if P has eigefuctios with uimodular eigevalues, they are coboudaries which do ot satisfy iii). 4. Coditios ii) ad iii) look differet i ature. We will rovide a examle of P mixig where ii) is satisfied but iii) is ot. Proositio 5.. Let P be a Markov oerator as above. Let f L m). Assume that oe of the followig coditios is satisfied: i log ) ) su 5/ log log ) τ / P k f < +, for some τ>. ii ) su α P k f < +, for some α</. iii ) There exists a ositive o-decreasig slowly varyig fuctio l such that l) < + ad l) log) P k f < +. 3/ The {fx )} satisfies the queched Cetral Limit Theorem.

20 Poitwise ergodic theorems with rate 79 Remark. Coditio ii ) obviously imlies coditio i ), which clearly imlies ii). The queched CLT uder iii ) was obtaied by Zhao ad Woodroofe [8]. It is robably ot comarable to our coditio i ). We will rovide a examle where i ) is satisfied but iii ) is ot. Note that covergece of the secod series of iii ) ad mootoity of l imly ii). Coditio ii ) imlies iii ) with l) = log + )) +ε. I order to comare the revious coditios we will use the same symmetric Markov oerator P o L [0, ) := L [0, ), λ), where λ deotes the Lebesgue measure which geerates a reversible chai). Proositio 5.3. There exists a symmetric ositive defiite Markov oerator P o L [0, ) such that: a) There exists f L such that i) is satisfied but ii) ad iii) are ot. b) There exists f L satisfyig ii) but ot iii). c) There exists f L such that i ) is satisfied but ii ) ad iii ) are ot. Proof. We first costruct P.Letα R Q ad take P = 4 I + R α + R α ), where R α deotes the rotatio of the uit circle by the agle α. The irratioality of α makes P ergodic. Let f L [0, ], with Fourier exasio fx)= Z c e iπx. The for 0 x wehave P k fx)= Z + e iπα + e iπα ) k c e iπx = c cos k πα)e iπx. 39) 4 Z We will take α := e. I the roof of each art of the roositio, the aroriate fuctio f will be defied by its Fourier coefficiets {c } Z. I all these defiitios we take c = 0 if there is o k with =k!, ad c k! = c k! R, which makes f real valued. We will eed the followig lemma. Lemma 5.4. For every k, there exists l k N such that k ek! l k k ad for every k π, π k π cosπek!) 3k. Proof. For every k, defie l k := k! k j=0 j! N. Sice e = + j=0 j!,wehave Hece k + ek! l k! k k + )! + j=k+ k + )! j! k ek! l k k + ) /k + )) = k. = k + + s=0 ) s. k + Hece the first estimatio is true. Let k π. By the above, we have π k πk!e l k) π k that for every x [0, ],. Usig the fact that cos is decreasig o [0, ] ad x cos x x + x4 4 x + x 4 x 3, we obtai the secod estimatio.

21 730 C. Cuy ad M. Li Lemma 5.5. Let P be the above Markov oerator. Let f L [0, ) with Fourier exasio fx):= k Z c ke iπkx. Assume that c k = 0 if there is o N such that k =! ad c! = c!. The there exists K>0, such that for every o-decreasig sequece {u l } with u, ad every m, we have m 8 π m c! m P k f Proof. Let m. By 39)wehave K + 8 π 4 m P k f = m c cos πe)) k. Z 7u m 4 c! + m Hece, by the symmetry ad usig Lemma 5.4 for the o-zero coefficiets, m P k f = m ) c! cos k π!e) c! m cos 4m π!e) m π m π m c! ) 4m. m Usig Beroulli s iequality: + u) m + mu) for u, we obtai m P k f m 3 π m c!. >u m c!. Let us rove the secod iequality. By 39), the symmetry, ad Lemma 5.4, m P k f = m ) c! cos k π!e) + m c! cos k π!e) π >π K + c! cos π!e)) + c! m 7u m >u m K + 9 π 4 4 c! + m c!. 7u m >u m ) Proof of Proositio 5.3a). Fix/ <β. For ut c! = c! := Z c!e iπ!x. Usig Lemma 5.5 we obtai m P k f m 8 π m which roves that ii) is ot satisfied. c! m 8 π m dt t 3 log t) β C m log m) β, 3/ log ) β, ad defie fx) :=

22 Poitwise ergodic theorems with rate 73 Let us rove that f satisfies i). Sice P is ositive defiite, by [5] it suffices to rove the covergece of the series m 0 P m f,f. Usig39), the defiitio of {c } ad Lemma 5.4, we obtai P m f,f = c cos m eπ) = k m 0 m 0 Z k 3 log β k) cos ek!π)) k 3 log β k) cos ek!π)) + 6 π k log β k < +. kπ k π The roof that iii) is ot satisfied follows from the roof of art b) below, sice c! >. Proof of Proositio 5.3b). Takec! = c! :=,, ad ut fx):= Z c!e iπ!x. Aly Lemma 5.5 to f with u m := m /4.Wehave m P k f K + 9 π 4 4 c! + m c! K + 9 π 7u m >u 4 u m + m 3u 3 Cm /4, m m which roves ii). Let us rove that iii) is ot satisfied. Assume that {g = m= fp m f } coverges i L [0, ) to a fuctio g L [0, ). Forl Z ad h L [0, ) defie the Fourier coefficiet γ l h) := 0 ht)e πlt dt. The, γ l g ) + γ l g) for every l Z. O the other had, for every ad x [0, ) 39) yields ) cos k πje) e iπjx. P k fx)= j Z c j Hece, sice by the choice of {c } the revious series are absolutely summable, g x) = ) c j c m cos k πje) e iπj+m)x. j Z m Z Let r. By ositivity of the coefficiets, γ r!+! g ) 4r m= cos m πr!e). Hece γ r!+ g) = lim γ r!+g ) + By Lemma 5.4, we obtai γ r!+ g) lim + 4r cos m cos πr!e) πr!e) = 4r cos πr!e)). m= π /r ) 4r π /r ) π /3r ) r 6π. Hece {γ r!+ } does ot coverge to zero whe r teds to ifiity, which cotradicts the fact that g belogs to L [0, ), by the Riema Lebesgue lemma. Proof of Proositio 5.3c). Takec! = c! := for 3, ad ut fx):= 3/ log ) 5/ log log ) 3/ Z c j e πjx. By Lemma 5.5,wehave m P k f m 8 π m c! m C log m) 5 log log m) 3, 40)

23 73 C. Cuy ad M. Li which roves that ii ) is ot satisfied. Let us rove that iii ) is ot satisfied either. Let l be ay ositive fuctio of the itegers. By Hölder s iequality with cojugate exoets 3 ad 3/, ad 40), we have, for every 3 m=3 m log m log log m = ) /3 lm)) /3 ) mlm) m /3 log m log log m m=3 m=3 m=3 ) /3 mlm) m=3 ) /3 mlm) m=3 ) /3 lm) mlog m log log m) 3/ ) lm) log m m /3 P k f. Cm 3/ Hece oe of the series o the right must diverge ad iii ) caot be satisfied. However, takig u m = m, i Lemma 5.5, we obtai m P k f K + 8 π 4 4 c! + m c! 7u m >u m u m K + C log u m ) 5 log log u m ) 3 + m ) m u m log u m) 5 log log u m ) 3 C log u m ) 5 log log u m ) 3, which roves i ) with τ = 3/. Remark. The examle of Proositio 5.3a) resets P symmetric with a fuctio f I PL m) which does ot satisfy ay of the other coditios, i articular oe of the coditios for the queched CLT. However, sice this is a examle of a symmetric) radom walk o orbits of a rotatio, the queched CLT holds for {fx )} by [8]. We metio that the geeral questio of Kiis ad Varadha [8], whether for every P symmetric ad f I PL m) the queched CLT holds for {fx )}, is still oe. By lookig at the two-sided Markov shift, we see that the aealed CLT holds for f i the forward chai, govered by P, if ad oly if it does for f i the backward chai, which is govered by P. Whe P is ormal, all the coditios o f L, excet for coditio iii) of Proositio 5., hold with resect to P if ad oly if they hold with resect to P. We ow show that i geeral this is ot so. Let ϑ be the trasformatio of [0, ], defied by ϑx) = x mod for x [0, ), which reserves Lebesgue s measure. Let P be defied by Pg = g ϑ, for every measurable g; the P is a Markov oerator, ad P is give by P gx) = g x ) + gx+ )). Letf be defied by fx):= [0,/)x). Proositio 5.6. Let ϑ ad f as above. We have: i) m m 3/ P ) k f <, so f I P L. m ii) f/ I PL, so m m 3/ P k f =. m iii) 0 fp ) f coverges i L m), but 0 fp f does ot. Proof. Oe ca see that P f = 0, hece the series i i) coverges i L [0, ) ad f I P L. To rove ii) just ote that the rocess {f ϑ } 0 is the Rademacher sequece, hece the series P m f m m does ot coverge i L [0, ),sof/ Im I P. Obviously 0 fp ) f coverges i L m), sice P f = 0. Sice P is a isometry of L ad f, we have fp f = f =, so 0 fp f does ot coverge i L.

24 Poitwise ergodic theorems with rate 733 Ackowledgmet The secod author is grateful to the Uiversity of New Caledoia, where this research was carried out, for its hositality ad suort. Refereces [] I. Assai ad M. Li. O the oe-sided ergodic Hilbert trasform. Cotem. Math ) MR3333 [] G. Cohe ad M. Li. Extesios of the Mechoff Rademacher theorem with alicatios to ergodic theory. Israel J. Math ) MR94 [3] J. Dedecker ad E. Rio. O the fuctioal cetral limit theorem for statioary rocesses. A. Ist. H. Poicaré Probab. Statist ) 34. MR [4] Y. Derrieic. Some asects of recet works o limit theorems i ergodic theory with secial emhasis o the cetral limit theorem. Discrete Coti. Dy. Syst ) MR9389 [5] Y. Derrieic ad M. Li. Fractioal Poisso equatios ad ergodic theorems for fractioal coboudaries. Israel J. Math. 3 00) MR83590 [6] Y. Derrieic ad M. Li. The cetral limit theorem for Markov chais with ormal trasitio oerators, started at a oit. Probab. Theory Related Fields 9 00) MR86405 [7] Y. Derrieic ad M. Li. The cetral limit theorem for Markov chais started at a oit. Probab. Theory Related Fields 5 003) MR95457 [8] Y. Derrieic ad M. Li. The cetral limit theorem for radom walks o orbits of robability reservig trasformatios. Cotem. Math ) 3 5. MR436 [9] N. Duford ad J. Schwartz. Liear Oerators, Part I. Wiley, New York MR0096 [0] N. Duford ad J. Schwartz. Liear Oerators, Part II. Wiley, New York, 963. MR00963 [] W. Feller. A Itroductio to Probability Theory ad Its Alicatios, Vol. II, d editio. Wiley, New York, 97. MR [] V. F. Gaoshki. O the deedece of the covergece rate i the SLLN for statioary rocesses o the rate of decay of correlatio fuctio. Theory Probab. Al. 6 98) MR [3] V. F. Gaoshki. Sectral criteria for the existece of geeralized ergodic trasformatios i Russia). Teor. Veroyatost. i Primee. 4) 996) 5 7. Traslatio i Theory Probab. Al ) ).) MR [4] M. Gordi ad B. Lifshitz. A cetral limit theorem for Markov rocess. Soviet Math. Doklady 9 978) MR05077 [5] M. Gordi ad B. Lifshitz. A remark about a Markov rocess with ormal trasitio oerator. Proc. Third Vilius Cof. Probab. Statist Akad. Nauk Litovsk., Vilius, 98 i Russia). [6] M. Gordi ad B. Lifshitz. The cetral limit theorem for Markov rocesses with ormal trasitio oerator, ad a strog form of the cetral limit theorem. I Limit Theorems for Fuctioals of Radom Walks Sectios IV.7 ad IV.8. A. Borodi ad I. Ibragimov Eds). Proc. Steklov Ist. Math. 95, 994. Eglish traslatio Amer. Math. Soc., Providece, RI, 995.) [7] A. G. Kachurovskii. The rate of covergece i ergodic theorems. Russia Math. Surveys 5 996) MR48 [8] C. Kiis ad S. R. Varadha. Cetral limit theorem for additive fuctioals of reversible Markov rocesses ad alicatios to simle exclusios. Comm. Math. Phys ) 9. MR [9] U. Kregel. Ergodic Theorems. De Gruyter, Berli, 985. MR07974 [0] M. Maxwell ad M. Woodroofe. Cetral limit theorems for additive fuctioals of Markov chais. A. Probab ) MR787 [] F. Moricz. Momet iequalities ad the strog laws of large umbers. Z. Wahrsch. Verw. Gebiete ) MR [] M. Peligrad ad S. Utev. A ew maximal iequality ad ivariace ricile for statioary sequeces. A. Probab ) MR30 [3] F. Rassoul-Agha ad T. Seäläie. A almost sure ivariace ricile for additive fuctioals of Markov chais. Statist. Probab. Lett ) MR [4] F. Riesz ad B. Sz.-Nagy. Leços D aalyse Foctioelle, 3rd editio. Akadémiai Kiadó, Budaest, 955. MR [5] M. Weber. Uiform bouds uder icremet coditios. Tras. Amer. Math. Soc ) MR77045 [6] W. B. Wu. Strog ivariace riciles for deedet radom variables. A. Probab ) MR [7] W. B. Wu ad M. Woodroofe. Martigale aroximatios for sums of statioary rocesses. A. Probab ) MR06034 [8] O. Zhao ad M. Woodroofe. Laws of the iterated logarithm for statioary rocesses. A. Probab ) 7 4. MR [9] A. Zygmud. Trigoometric Series, corrected d editio. Cambridge Uiv. Press, Cambridge, UK, 969. MR036587

On the optimality of McLeish s conditions for the central limit theorem

On the optimality of McLeish s conditions for the central limit theorem O the optimality of McLeish s coditios for the cetral limit theorem Jérôme Dedecker a a Laboratoire MAP5, CNRS UMR 845, Uiversité Paris-Descartes, Sorboe Paris Cité, 45 rue des Saits Pères, 7570 Paris

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

ECE534, Spring 2018: Solutions for Problem Set #2

ECE534, Spring 2018: Solutions for Problem Set #2 ECE534, Srig 08: s for roblem Set #. Rademacher Radom Variables ad Symmetrizatio a) Let X be a Rademacher radom variable, i.e., X = ±) = /. Show that E e λx e λ /. E e λx = e λ + e λ = + k= k=0 λ k k k!

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

A Note on Sums of Independent Random Variables

A Note on Sums of Independent Random Variables Cotemorary Mathematics Volume 00 XXXX A Note o Sums of Ideedet Radom Variables Pawe l Hitczeko ad Stehe Motgomery-Smith Abstract I this ote a two sided boud o the tail robability of sums of ideedet ad

More information

ECE534, Spring 2018: Final Exam

ECE534, Spring 2018: Final Exam ECE534, Srig 2018: Fial Exam Problem 1 Let X N (0, 1) ad Y N (0, 1) be ideedet radom variables. variables V = X + Y ad W = X 2Y. Defie the radom (a) Are V, W joitly Gaussia? Justify your aswer. (b) Comute

More information

Diagonal approximations by martingales

Diagonal approximations by martingales Alea 7, 257 276 200 Diagoal approximatios by martigales Jaa Klicarová ad Dalibor Volý Faculty of Ecoomics, Uiversity of South Bohemia, Studetsa 3, 370 05, Cese Budejovice, Czech Republic E-mail address:

More information

Proposition 2.1. There are an infinite number of primes of the form p = 4n 1. Proof. Suppose there are only a finite number of such primes, say

Proposition 2.1. There are an infinite number of primes of the form p = 4n 1. Proof. Suppose there are only a finite number of such primes, say Chater 2 Euclid s Theorem Theorem 2.. There are a ifiity of rimes. This is sometimes called Euclid s Secod Theorem, what we have called Euclid s Lemma beig kow as Euclid s First Theorem. Proof. Suose to

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Notes on the prime number theorem

Notes on the prime number theorem Notes o the rime umber theorem Keji Kozai May 2, 24 Statemet We begi with a defiitio. Defiitio.. We say that f(x) ad g(x) are asymtotic as x, writte f g, if lim x f(x) g(x) =. The rime umber theorem tells

More information

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can.

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can. Mathematics H104 A. Ogus Fall, 004 Fial Solutios 1. (5ts) Defie the followig terms. Be as recise as you ca. (a) (3ts) A ucoutable set. A ucoutable set is a set which ca ot be ut ito bijectio with a fiite

More information

THE INTEGRAL TEST AND ESTIMATES OF SUMS

THE INTEGRAL TEST AND ESTIMATES OF SUMS THE INTEGRAL TEST AND ESTIMATES OF SUMS. Itroductio Determiig the exact sum of a series is i geeral ot a easy task. I the case of the geometric series ad the telescoig series it was ossible to fid a simle

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

BIRKHOFF ERGODIC THEOREM

BIRKHOFF ERGODIC THEOREM BIRKHOFF ERGODIC THEOREM Abstract. We will give a proof of the poitwise ergodic theorem, which was first proved by Birkhoff. May improvemets have bee made sice Birkhoff s orgial proof. The versio we give

More information

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 1,. 153-164, February 2010 This aer is available olie at htt://www.tjm.sysu.edu.tw/ A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS FOR f-divergence

More information

Solutions to HW Assignment 1

Solutions to HW Assignment 1 Solutios to HW: 1 Course: Theory of Probability II Page: 1 of 6 Uiversity of Texas at Austi Solutios to HW Assigmet 1 Problem 1.1. Let Ω, F, {F } 0, P) be a filtered probability space ad T a stoppig time.

More information

ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE RELATED TO THE SPACES l p AND l I. M. Mursaleen and Abdullah K. Noman

ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE RELATED TO THE SPACES l p AND l I. M. Mursaleen and Abdullah K. Noman Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: htt://www.mf.i.ac.rs/filomat Filomat 25:2 20, 33 5 DOI: 0.2298/FIL02033M ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE RELATED

More information

A Note on Bilharz s Example Regarding Nonexistence of Natural Density

A Note on Bilharz s Example Regarding Nonexistence of Natural Density Iteratioal Mathematical Forum, Vol. 7, 0, o. 38, 877-884 A Note o Bilharz s Examle Regardig Noexistece of Natural Desity Cherg-tiao Perg Deartmet of Mathematics Norfolk State Uiversity 700 Park Aveue,

More information

MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS MATH48E FOURIER ANALYSIS AND ITS APPLICATIONS 7.. Cesàro summability. 7. Summability methods Arithmetic meas. The followig idea is due to the Italia geometer Eresto Cesàro (859-96). He shows that eve if

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

5 Birkhoff s Ergodic Theorem

5 Birkhoff s Ergodic Theorem 5 Birkhoff s Ergodic Theorem Amog the most useful of the various geeralizatios of KolmogorovâĂŹs strog law of large umbers are the ergodic theorems of Birkhoff ad Kigma, which exted the validity of the

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

John H. J. Einmahl Tilburg University, NL. Juan Juan Cai Tilburg University, NL

John H. J. Einmahl Tilburg University, NL. Juan Juan Cai Tilburg University, NL Estimatio of the margial exected shortfall Laures de Haa, Poitiers, 202 Estimatio of the margial exected shortfall Jua Jua Cai Tilburg iversity, NL Laures de Haa Erasmus iversity Rotterdam, NL iversity

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

Introduction to Probability. Ariel Yadin

Introduction to Probability. Ariel Yadin Itroductio to robability Ariel Yadi Lecture 2 *** Ja. 7 ***. Covergece of Radom Variables As i the case of sequeces of umbers, we would like to talk about covergece of radom variables. There are may ways

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Mi-Hwa Ko and Tae-Sung Kim

Mi-Hwa Ko and Tae-Sung Kim J. Korea Math. Soc. 42 2005), No. 5, pp. 949 957 ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES Mi-Hwa Ko ad Tae-Sug Kim Abstract. For weighted sum of a sequece

More information

Weil Conjecture I. Yichao Tian. Morningside Center of Mathematics, AMSS, CAS

Weil Conjecture I. Yichao Tian. Morningside Center of Mathematics, AMSS, CAS Weil Cojecture I Yichao Tia Morigside Ceter of Mathematics, AMSS, CAS [This is the sketch of otes of the lecture Weil Cojecture I give by Yichao Tia at MSC, Tsighua Uiversity, o August 4th, 20. Yuaqig

More information

A Central Limit Theorem for Belief Functions

A Central Limit Theorem for Belief Functions A Cetral Limit Theorem for Belief Fuctios Larry G. Estei Kyougwo Seo November 7, 2. CLT for Belief Fuctios The urose of this Note is to rove a form of CLT (Theorem.4) that is used i Estei ad Seo (2). More

More information

Equations and Inequalities Involving v p (n!)

Equations and Inequalities Involving v p (n!) Equatios ad Iequalities Ivolvig v (!) Mehdi Hassai Deartmet of Mathematics Istitute for Advaced Studies i Basic Scieces Zaja, Ira mhassai@iasbs.ac.ir Abstract I this aer we study v (!), the greatest ower

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION

PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION DANIEL LITT Abstract. This aer is a exository accout of some (very elemetary) argumets o sums of rime recirocals; though the statemets i Proositios

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

Lebesgue Sequence Spaces

Lebesgue Sequence Spaces Chater 2 Lebesgue Seuece Saces Abstract I this chater, we will itroduce the so-called Lebesgue seuece saces, i the fiite ad also i the ifiite dimesioal case We study some roerties of the saces, eg, comleteess,

More information

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS KEENAN MONKS Abstract The Legedre Family of ellitic curves has the remarkable roerty that both its eriods ad its suersigular locus have descritios

More information

1 The Haar functions and the Brownian motion

1 The Haar functions and the Brownian motion 1 The Haar fuctios ad the Browia motio 1.1 The Haar fuctios ad their completeess The Haar fuctios The basic Haar fuctio is 1 if x < 1/2, ψx) = 1 if 1/2 x < 1, otherwise. 1.1) It has mea zero 1 ψx)dx =,

More information

Weak and Strong Convergence Theorems of New Iterations with Errors for Nonexpansive Nonself-Mappings

Weak and Strong Convergence Theorems of New Iterations with Errors for Nonexpansive Nonself-Mappings doi:.36/scieceasia53-874.6.3.67 ScieceAsia 3 (6: 67-7 Weak ad Strog Covergece Theorems of New Iteratios with Errors for Noexasive Noself-Maigs Sorsak Thiawa * ad Suthe Suatai ** Deartmet of Mathematics

More information

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng The value of Baach limits o a certai sequece of all ratioal umbers i the iterval 0, Bao Qi Feg Departmet of Mathematical Scieces, Ket State Uiversity, Tuscarawas, 330 Uiversity Dr. NE, New Philadelphia,

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Some Tauberian theorems for weighted means of bounded double sequences

Some Tauberian theorems for weighted means of bounded double sequences A. Ştiiţ. Uiv. Al. I. Cuza Iaşi. Mat. N.S. Tomul LXIII, 207, f. Some Tauberia theorems for weighted meas of bouded double sequeces Cemal Bele Received: 22.XII.202 / Revised: 24.VII.203/ Accepted: 3.VII.203

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS Ryszard Zieliński Ist Math Polish Acad Sc POBox 21, 00-956 Warszawa 10, Polad e-mail: rziel@impagovpl ABSTRACT Weak laws of large umbers (W LLN), strog

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Math 25 Solutions to practice problems

Math 25 Solutions to practice problems Math 5: Advaced Calculus UC Davis, Sprig 0 Math 5 Solutios to practice problems Questio For = 0,,, 3,... ad 0 k defie umbers C k C k =! k!( k)! (for k = 0 ad k = we defie C 0 = C = ). by = ( )... ( k +

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Council for Innovative Research

Council for Innovative Research ABSTRACT ON ABEL CONVERGENT SERIES OF FUNCTIONS ERDAL GÜL AND MEHMET ALBAYRAK Yildiz Techical Uiversity, Departmet of Mathematics, 34210 Eseler, Istabul egul34@gmail.com mehmetalbayrak12@gmail.com I this

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

A non-reflexive Banach space with all contractions mean ergodic

A non-reflexive Banach space with all contractions mean ergodic A o-reflexive Baach space with all cotractios mea ergodic Vladimir P. Fof, Michael Li Be-Gurio Uiversity Przemyslaw Wojtaszczyk Uiversity of Warsaw May 4, 2009 Dedicated to the memory of Aryeh Dvoretzky

More information

13.1 Shannon lower bound

13.1 Shannon lower bound ECE598: Iformatio-theoretic methods i high-dimesioal statistics Srig 016 Lecture 13: Shao lower boud, Fao s method Lecturer: Yihog Wu Scribe: Daewo Seo, Mar 8, 016 [Ed Mar 11] I the last class, we leared

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

A REMARK ON A PROBLEM OF KLEE

A REMARK ON A PROBLEM OF KLEE C O L L O Q U I U M M A T H E M A T I C U M VOL. 71 1996 NO. 1 A REMARK ON A PROBLEM OF KLEE BY N. J. K A L T O N (COLUMBIA, MISSOURI) AND N. T. P E C K (URBANA, ILLINOIS) This paper treats a property

More information

Sequences and Limits

Sequences and Limits Chapter Sequeces ad Limits Let { a } be a sequece of real or complex umbers A ecessary ad sufficiet coditio for the sequece to coverge is that for ay ɛ > 0 there exists a iteger N > 0 such that a p a q

More information

An operator equality involving a continuous field of operators and its norm inequalities

An operator equality involving a continuous field of operators and its norm inequalities Available olie at www.sciecedirect.com Liear Algebra ad its Alicatios 49 (008) 59 67 www.elsevier.com/locate/laa A oerator equality ivolvig a cotiuous field of oerators ad its orm iequalities Mohammad

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

The Poisson Summation Formula and an Application to Number Theory Jason Payne Math 248- Introduction Harmonic Analysis, February 18, 2010

The Poisson Summation Formula and an Application to Number Theory Jason Payne Math 248- Introduction Harmonic Analysis, February 18, 2010 The Poisso Summatio Formula ad a Applicatio to Number Theory Jaso Paye Math 48- Itroductio Harmoic Aalysis, February 8, This talk will closely follow []; however some material has bee adapted to a slightly

More information

Entropy Rates and Asymptotic Equipartition

Entropy Rates and Asymptotic Equipartition Chapter 29 Etropy Rates ad Asymptotic Equipartitio Sectio 29. itroduces the etropy rate the asymptotic etropy per time-step of a stochastic process ad shows that it is well-defied; ad similarly for iformatio,

More information

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS LIVIU I. NICOLAESCU ABSTRACT. We ivestigate the geeralized covergece ad sums of series of the form P at P (x, where P R[x], a R,, ad T : R[x] R[x]

More information

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS ARCHIVU ATHEATICU BRNO Tomus 40 2004, 33 40 SOE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS E. SAVAŞ AND R. SAVAŞ Abstract. I this paper we itroduce a ew cocept of λ-strog covergece with respect to a Orlicz

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probability for mathematicias INDEPENDENCE TAU 2013 28 Cotets 3 Ifiite idepedet sequeces 28 3a Idepedet evets........................ 28 3b Idepedet radom variables.................. 33 3 Ifiite idepedet

More information

A Note on the Kolmogorov-Feller Weak Law of Large Numbers

A Note on the Kolmogorov-Feller Weak Law of Large Numbers Joural of Mathematical Research with Applicatios Mar., 015, Vol. 35, No., pp. 3 8 DOI:10.3770/j.iss:095-651.015.0.013 Http://jmre.dlut.edu.c A Note o the Kolmogorov-Feller Weak Law of Large Numbers Yachu

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

A NOTE ON INVARIANT SETS OF ITERATED FUNCTION SYSTEMS

A NOTE ON INVARIANT SETS OF ITERATED FUNCTION SYSTEMS Acta Math. Hugar., 2007 DOI: 10.1007/s10474-007-7013-6 A NOTE ON INVARIANT SETS OF ITERATED FUNCTION SYSTEMS L. L. STACHÓ ad L. I. SZABÓ Bolyai Istitute, Uiversity of Szeged, Aradi vértaúk tere 1, H-6720

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Law of the sum of Bernoulli random variables

Law of the sum of Bernoulli random variables Law of the sum of Beroulli radom variables Nicolas Chevallier Uiversité de Haute Alsace, 4, rue des frères Lumière 68093 Mulhouse icolas.chevallier@uha.fr December 006 Abstract Let be the set of all possible

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 6 9/23/203 Browia motio. Itroductio Cotet.. A heuristic costructio of a Browia motio from a radom walk. 2. Defiitio ad basic properties

More information

Local and global estimates for solutions of systems involving the p-laplacian in unbounded domains

Local and global estimates for solutions of systems involving the p-laplacian in unbounded domains Electroic Joural of Differetial Euatios, Vol 20012001, No 19, 1 14 ISSN: 1072-6691 UR: htt://ejdemathswtedu or htt://ejdemathutedu ft ejdemathswtedu logi: ft ocal global estimates for solutios of systems

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

Measure and Measurable Functions

Measure and Measurable Functions 3 Measure ad Measurable Fuctios 3.1 Measure o a Arbitrary σ-algebra Recall from Chapter 2 that the set M of all Lebesgue measurable sets has the followig properties: R M, E M implies E c M, E M for N implies

More information

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS LOUKAS GRAFAKOS AND RICHARD G. LYNCH 2 Abstract. We exted a theorem by Grafakos ad Tao [5] o multiliear iterpolatio betwee adjoit operators

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Hyun-Chull Kim and Tae-Sung Kim

Hyun-Chull Kim and Tae-Sung Kim Commu. Korea Math. Soc. 20 2005), No. 3, pp. 531 538 A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUM OF LNQD RANDOM VARIABLES AND ITS APPLICATION Hyu-Chull Kim ad Tae-Sug Kim Abstract. I this paper we

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

1. Introduction. g(x) = a 2 + a k cos kx (1.1) g(x) = lim. S n (x).

1. Introduction. g(x) = a 2 + a k cos kx (1.1) g(x) = lim. S n (x). Georgia Mathematical Joural Volume 11 (2004, Number 1, 99 104 INTEGRABILITY AND L 1 -CONVERGENCE OF MODIFIED SINE SUMS KULWINDER KAUR, S. S. BHATIA, AND BABU RAM Abstract. New modified sie sums are itroduced

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Almost Sure Invariance Principles via Martingale Approximation

Almost Sure Invariance Principles via Martingale Approximation Almost Sure Ivariace Priciples via Martigale Approximatio Florece Merlevède a, Costel Peligrad b ad Magda Peligrad c a Uiversité Paris Est, Laboratoire de mathématiques, UMR 8050 CNRS, Bâtimet Coperic,

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

Solutions to Problem Sheet 1

Solutions to Problem Sheet 1 Solutios to Problem Sheet ) Use Theorem. to rove that loglog for all real 3. This is a versio of Theorem. with the iteger N relaced by the real. Hit Give 3 let N = [], the largest iteger. The, imortatly,

More information

ON MEAN ERGODIC CONVERGENCE IN THE CALKIN ALGEBRAS

ON MEAN ERGODIC CONVERGENCE IN THE CALKIN ALGEBRAS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX0000-0 ON MEAN ERGODIC CONVERGENCE IN THE CALKIN ALGEBRAS MARCH T. BOEDIHARDJO AND WILLIAM B. JOHNSON 2

More information

CARLEMAN INTEGRAL OPERATORS AS MULTIPLICATION OPERATORS AND PERTURBATION THEORY

CARLEMAN INTEGRAL OPERATORS AS MULTIPLICATION OPERATORS AND PERTURBATION THEORY Kragujevac Joural of Mathematics Volume 41(1) (2017), Pages 71 80. CARLEMAN INTEGRAL OPERATORS AS MULTIPLICATION OPERATORS AND PERTURBATION THEORY S. M. BAHRI 1 Abstract. I this paper we itroduce a multiplicatio

More information

Maximal Inequalities of Kahane-Khintchine s Type in Orlicz Spaces

Maximal Inequalities of Kahane-Khintchine s Type in Orlicz Spaces Math. Proc. Cambridge Philos. Soc. Vol. 5, No., 994, (75-90) Prerit Ser. No. 33, 992, Math. Ist. Aarhus Maximal Iequalities of Kahae-Khitchie s Tye i Orlicz Saces GORAN PESKIR Several imal iequalities

More information

Central limit theorem and almost sure central limit theorem for the product of some partial sums

Central limit theorem and almost sure central limit theorem for the product of some partial sums Proc. Idia Acad. Sci. Math. Sci. Vol. 8, No. 2, May 2008, pp. 289 294. Prited i Idia Cetral it theorem ad almost sure cetral it theorem for the product of some partial sums YU MIAO College of Mathematics

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Metric Space Properties

Metric Space Properties Metric Space Properties Math 40 Fial Project Preseted by: Michael Brow, Alex Cordova, ad Alyssa Sachez We have already poited out ad will recogize throughout this book the importace of compact sets. All

More information

Notes 27 : Brownian motion: path properties

Notes 27 : Brownian motion: path properties Notes 27 : Browia motio: path properties Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces:[Dur10, Sectio 8.1], [MP10, Sectio 1.1, 1.2, 1.3]. Recall: DEF 27.1 (Covariace) Let X = (X

More information

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences Commuicatios of the Korea Statistical Society 29, Vol. 16, No. 5, 841 849 Precise Rates i Complete Momet Covergece for Negatively Associated Sequeces Dae-Hee Ryu 1,a a Departmet of Computer Sciece, ChugWoo

More information

On equivalent strictly G-convex renormings of Banach spaces

On equivalent strictly G-convex renormings of Banach spaces Cet. Eur. J. Math. 8(5) 200 87-877 DOI: 0.2478/s533-00-0050-3 Cetral Europea Joural of Mathematics O equivalet strictly G-covex reormigs of Baach spaces Research Article Nataliia V. Boyko Departmet of

More information