Die Beschriinkung auf "nichtlineare" Programmierung ist so zu verstehen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Die Beschriinkung auf "nichtlineare" Programmierung ist so zu verstehen."

Transcription

1 BIBLIOGRAPHIE Die ~m folgenden aufgefiihrten Publikationen sind gedacht als Materialsammlung zu einer umfassenden Bestandesaufnahme der nichtlinearen Programmierung nebst ihren Grundlagen und Anwendungen. Die Ausarbeitung wird an anderer Stelle erfolgen. Einstweilen soli diese Sammlung als Arbeitsinstrument einem grosseren Kreis zur Verfiigung gestellt werden. Dies geschieht in der Hoffnung. dass sie dem Beniitzer ein einigermassen zuverhissiges Bild von der Aktivitiit auf diesem Gebiet vermittle. und dass sie dem selbst in der Forschung Tiitigen helfe. unnotige Duplikationen zu vermeiden. Bei den Arbeiten zur Theorie der nichtlinearen Programmierung wurde Vollstiindigkeit angestrebt; dagegen mag eine gewisse Unausgeglichenheit bei der Beriicksichtigung der verschiedenen Anwendungsgebiete daraus resultieren. dass die Sammlung anfiinglich nur zum privaten Gebrauch angelegt wurde. Die Beschriinkung auf "nichtlineare" Programmierung ist so zu verstehen. dass keine Arbeiten aufgenommen wurden. die lineare Programmierungsprobleme vorwiegend im Rahmen der linear en Algebra (Gauss-Jordan Elimination) abhandeln. Wohl aber wurden lineare Programme in abstrakten Riiumen beriicksichtigt. ebenso iterative Verfahren zur Losung linearer Programme (diese Verfahren lassen sich meist unschwer auf den konvexen Fall iibertragen). Auch bestimmte Anwendungen der linearen Programmierung. die in den auf die Bediirfnisse des Operations Research zugeschnittenen Darstellungen meist zu kurz kommen. wurden aufgenommen. Quadratische und gebrochen-lineare Programme wurden. allgemeinem Sprachgebrauch folgend. zur nichtlinear en Programmierung gerechnet und entsprechend beriicksichtigt. Nicht einbezogen wurden Arbeiten zur dynamischen. stochastiscl1en und ganzzahligen Programmierung. eben so blosse Rechenbeispiele.

2 Unter den theoretischen Anwendungen nehmen die numerische Analysis (insbesondere Approximationstheorie), Kontrolltheorie. Wirtschaftswissenschaften und Unternehmungsforschung den grossten Raum ein. (Hierbei ist darauf hinzuweisen. dass nicht alle zitierten Arbeiten die Beziehung zur mathematischen Programmierung explizite herstellen). Bei den Grundlagen schienen besonders wichtig: die Theorie konvexer Mengen und Funktionen, sowie Verfahren zur Optimierung einer Funktion ohne Nebenbedingungen. Die Titel der Arbeiten sind entweder im Original oder in englischer Uebersetzung wiedergegeben. Die Quellenangaben folgen dem Muster der "Mathematical Reviews". Insbesondere sind die verwendeten AbkUrzungen der Zeitschriften bis auf geringfugige Aenderungen den "Abbreviations of Names of Journals" am Schluss der Bande 34 (1967) bis ~ (1969) von "Mathematical Reviews" entnommen oder dem dort benutzten System nachgebildet. FUr die Transkription kyrillischer Eigennamen wurde gegenuber "Mathematical Reviews" eine mehr phonetische Schreibweise gewahlt, die Akzente UberflUssig macht. Die in Abschnitt B aufgefuhrten Sammelwerke werden in Abschnitt C nur durch Herausgabe und Erscheinungsjahr gekennzeichnet. z. B. [Abadie, 1967J Publikationen in Manuskriptform (sogenannte Reports) wurden nur vereinzelt aufgenommen, und nur in solchen Fallen, wo eine Veroffentlichung in anderer Form nicht nachzuweisen war. Hinweise auf etwaige Fehler sowie Erganzungsvorschlage werden an die folgende Anschrift erbeten: W. Oettli, IBM Forschungslaboratorium ZUrich, 8803 RUschlikon, Schweiz.

3 BIBLIOGRAPHY The references collected hereafter are intended to contain the rawmaterial of a comprehensive inventory of non-linear programming, including its foundations and applications. The decision to publish them in the present (and preliminary) form was made in the hope, that this will help the interested in keeping up with the activity going on in this field. Whereas the list of papers concerned with the very theory of non-linear programming should be reasonable complete, a certain "bias" regarding the selected applications may eventually be due to the subjective motivation which stood at the origin of this collection. The restriction to "non-linear" programming essentially is to mean, that papers handling linear programming problems within the framework of linear programming problems in abstract spaces were included, as well as iterative procedures for solving linear programs. Also included were quadratic and fractionally -linear programming. Dynamic, stochastic and integer programming are missing. Among the theoretical applications numerical analysis (especially approximation theory), control theory, economics and operations research playa dominant role. (At this point the reader should be warned that in the case of many of the quoted references he has to establish himself the connections with mathematical programming. ) Among the foundations convex functions and methods for unconstrained optimization take the largest part. The quotations follow the style of "Mathematical Reviews". Abbreviations of names of journals are the same as those given at the end of volumes 34 (1967) through ~ (1969) of "Mathematical Reviews". The transliteration of cyrillic names however ist slightly different from the system adopted by "Mathematical Reviews".

4 The collective volumes listed in section B are identified in section C only by name of editor and year of publication. e. g. [Abadie. 1967J. Any critical comments concerning errors or omissions are welcomed at the following address: W. Oettli. IBM Zurich Research Laboratory Ruschlikon. Switzerland.

5 SCHRIFTTUM ZUR NICHTLINEAREN PROGRAMMIERUNG NEBST VERW ANDTEN GEBIETEN REFERENCES IN NON-LINEAR PROGRAMMING AND RELATED AREAS A. Lehrbiicher und Monographien I Textbooks and monographs E. M. L. BEALE R. BELLMAN R. BELLMAN, S. DREYFUS C. BERGE C. BERGE C. BERGE, A. GHOUILA-HOURI T. BONNE SEN, W. FENCHEL J. C. G. BOOT R. BOUDAREL, J. DELMAS, p.. GUICHET Mathematic'al Programming in Practice. Pitman, London, Dynamic Programming. Princeton University Press, Princeton, Applied Dynamic Programming. Princeton University Press, Princeton, Espaces topologiques, fonctions multivoques. Dunod. Paris, Topological Spaces (Translated from the French). Oliver and Boyd, Edinburgh, Programmes, jeux et reseaux de transport. Dunod, Paris, Theorie der konvexen Kerper. Springer, Berlin, Chelsea, New York, Quadratic Programming. North-Holland, Amsterdam, Commande optimale des processus. Tome 2: Programmation non lineaire et ses applications. Dunod, Paris, 1968.

6 M. J. BOX~ D. DAVIES~ W. H. SWANN J. BRACKEN~ G. P. McCORMICK E. BURGER M. CANON~ C. CULLUM~ E. POLAK A. CHARNES~ W.W. COOPER E. W. CHENEY L. COLLATZ~ W. WETTERLING J. M. DANSKIN G. B. DANTZIG J. B. DENNIS M. DRESHER R. J. DUFFIN~ E. L. PETERSON~ C. ZENER H. G. EGGLESTON Nonlinear Optimization Techniques. Oliver and Boyd. London. (to appear). Selected Applications of Nonlinear Programming. Wiley. New York~ Einftihrung in die Theorie der Spiele. Walter de Gruyter~ Berlin Discrete Optimal Control. McGraw-Hill~ New York (to appear). Management Models and Industrial Applications of Linear Programming; 2 Vols. Wiley~ New York~ Introduction to Approximation Theory. McGraw-Hill.. New York Optimierungsaufgaben. Springer.. Berlin The Theory of Max-Min. Spring er.. Berlin Linear Programming and Extensions. Princeton University Press. Princeton~ Mathematical Programming and Electrical Networks. Wiley. New York Games of Strategy: Theory and Applications. Prentice-Hall. Englewood Cliffs.. N. J Geometric Programming-Theory and Application. Wiley.. New York Convexity. Cambridge University Press. Cambridge

7 W. FENCHEL A. V. FIACCO~ G. P. McCORMICK L. R. FORD~ D. R. FULKERSON Convex Cones, Sets, and Functions (Lecture Notes). Department of Mathematics.. Princeton University~ Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley~ New York, Flows in Networks. Princeton University Press.. Princeton~ R. FRISCH Theorie et appli Maxima et minima - cations economiques. Dunod.. Paris D. GALE A. A. GOLDSTEIN G. HADLEY H. HANCOCK H. KAPPLER S. KARLIN S. KARLIN~ L. S. SHAPLEY M. A. KRASNOSELSKII~ Ya. B. RUTICKII The Theory of Linear Economic Models. McGraw-Hill, New York Constructive Real Analysis. Harper & Row.. New York, Nonlinear and Dynamic Programming. Addison-Wesley. Reading.. Mass Theory of Maxima and Minima. Dover, New York Gradientenverfahren der nichtlinearen Programmierung (G6ttinger Wirtschafts- und Sozialwissenschaftliche Studien.. Band 5). Verlag Otto Schwarz. G6ttingen Mathematical Methods and Theory in Games.. Programming.. and Economics; 2 Vols. Addison- Wesley. Cambridge~ Mass. ~ Geometry of Moment Spaces. Memoirs Amer. Math. Soc... no. 12; American Mathematical Society.. Providence, R. I Convex Functions and Orlicz Spaces. Noordhoff.. Groningen~ 1961.

8 H. P. KONZI~ W. KRELLE H. P. KONZI~ H. G. TZSCHACH~ C. A. ZEHNDER O. L. MANGASARIAN J. C. C. M~KINSEY Nichtlineare Programmierung. Springer.. Berlin Numerische Methoden der mathematischen Optimierung. B. G. Teubner.. Stuttgart Nonlinear Programming. McGraw-Hill.. New York (to appear). Introduction to the Theory of. Games. McGraw-Hill.. New York.. i952. J.~. RICE The Approximation of Functions.. Vol. 1. Addison-Wesley. Reading. Mass V. RILEY.. S. I. GASS R. T. ROCKAFELLAR R. T. ROCKAFELLAR T. L. SAATY.. J. BRAM S. VAJDA F. A. VALENTINE D.J. WILDE D.J. WILDE.. C. S. BEIGHTLER G. ZOUTENDIJK Linear Programming and Associated Technique s. The John Hopkins Press.. Baltimore Monotone Processes of Convex and Concave Type. Memoirs Amer. Math. Soc no. 77; American Mathematical Society~ Providence. R.I Convex Analysis. Princeton University Press.. Princeton (to appear). Nonlinear Mathematics. McGraw-Hill.. New York Mathematical Programming. Addison-Wesley.. Reading. Mass Convex Sets. McGraw-Hill.. New York Optimum Seeking Methods. Prentice-Hall.. Englewood Cliffs.. N. J Foundations of Optimization. Prentice-Hall.. Englewood Cliffs.. N. J., Methods of Feasible Directions. Elsevier. Amsterdam

9 S. I. ZUKHOVITSK1J~ L. I. A VDEEV A S. I. ZUKHOVITSKIY. L. L AVDEYEVA Lineinoe i vypukloe programmirovanie. Izdatelstvo Nauka.. Moskva Linear and Convex Programming (translated from the Russian). Saunders.. Philadelphia B. Sammelbande I Collective Volumes J. ABADIE (ed.) K.J. ARROW. L. HURWICZ. H. UZAWA (eds.) A. V. BALAKRISHNAN. L. W. NEUSTADT (eds.) R. BELLMAN (ed.) P. BROISE. P. HUARD. J. SENTENAC G. B, DANTZIG. A. F. VEINOTT (eds.) R. FORTET. J. ABADIE.. J. BERNADAT.. M. COUR TILLOT.. J. -M. GAUTHIER.. F. GENUYS.. P. HUARD.. G. MATTHYS R. L. GRAVES.. Ph. WOLFE (eds.) Nonlinear Programming. North-Holland.. Amsterdam Studies in Linear and Non-linear Programming. Stanford University Press.. Stanford Mathematical Theory of Control. Academic Press. New York Mathematical Optimization T,=chniques. UniVersity of California Press" Berkeley" Decomposition des programmes mathematiques (Monographies de recherche operationnelle.. 6). Dunod. Paris Mathematics of the Decision Sciences. Part Lectures in Applied Mathematics.. Vol American Mathematical Society.. Providence.. R Mathematique des programmes economiques (Monographies de recherche operationnelle.. 1). Dunod. Paris, Recent Advances in Mathematical Programming. McGraw-Hill.. New York

10 D. C. HANDSCOMB (ed.) L. V. KANTOROVICH (ed.) T. C. KOOPMANS (ed.) H. W. KUHN (ed.) H. W. KUHN~ A. W. TUCKER (eds.) A. LAVI~ T. P. VOGL (eds.) A. PREKQPA (ed.) Ph. WOLFE (ed.) Methods of Numerical Approximation. Pergamon Press. Oxford Matematicheskoe programmirovanie. Izdatelstvo Nauka~ Moskva~ Activity Analysis of Production and Allocation. Wiley~ New York Proceedings of the Sixth International Symposium on Mathematical Programming. Princeton~ (to appear). Linear Inequalities and Related Systems. Annals of Mathematics Studies.. no. 38; Princeton University Press~ Princeton~ Recent Advances in Optimization Techniques. Wiley. New York~ Colloquium on Applications of Mathematics to Economics.. Budapest Akademiai Kiad6. Budapest The RAND Symposium on Mathematical Programming (Abstracts). RAND-Report R-351. The RAND Corporation. Santa Monica. Calif

11 C. Aufsatze / Articles ABADIE (J.): Elements de programmation mathematique. Note HR Electricite de France~ Direction des Etudes et Recherches~ : Probl~mes d'optimisation~ I. II. Laboratoire de Calcul numerique.. Institut Blaise Pascal~ Paris~ --- : Programmation mathematique. Actes du 5~me Congr~s AFIRO (Lille 1966)~ pp Association Fran<;<aise d'informatique et de Recherche Operationelle~ Paris : On the Kuhn-Tucker theorem. [l\.badie~ 1967J, pp ~ CARPENTIER (J.): Generalisation de la methode du gradient reduit de Wolfe au cas de contraintes non line aires. Note HR 7.262/0. Electricite de France~ Direction des Etudes et Recherches~ ~ HENSGEN (C.): La methode du gradient reduit generalise. Rapport CAE/RT/2057. Compagnie Europeenne d'automatisme Electronique.. Paris~ ~ HUARD (P.) et al.: La programmation quadr ati que. Actes du 1er Congr~s AFCAL (Grenoble 1960).. pp Gauthier- Villars~ Paris~ ABLOW (C. M.).. BRIGHAM (G.): An analog solution of programming problems. Operations Res. l (1955) ABRHAM (J.): An approximate method for nonlinear programming (Czech). Casopis Pest. Mat. ~ (1958) : An approximate method for convex programming. Econometrica ~ (1961)~ : The multiplex method and its application to concave programming. Czechoslovak Math. J. 12 (1962)

12 : An approximate method for solving a continuous-time allocation problem. CORE Discussion Paper no Center for Operations Research and Econometrics, Universite Catholique de Louvain~ AGGARWAL (S. P.): A simplex technique for a particular convex programming problem. J. Canad. Operational Res. Soc. (CORS J.)! (1966)~ Stability of the solution to a linear fractional functional programming problem. Z. angew. Math. Mech. 46 (1966)~ : A note on quasiconvex programming. Metrika ~ (1968), : Standard error fractional functional programming. Istanbul Univ. Fen Fak. Mec. Sere A ~ (1965),45-51 (issued 1968). ---.; SW ARUP (K.): Fractional functionals programming with a quadratic constraint. Operations Res. 14 (1966), AGGERI (J. -C. l: Les fonctions convexes continues et Ie theor~me Krein-Milman. C. R. Acad. Sci. Paris sere A. 262 (1966), de --- ~ LESCARRET (C.): Fonctions convexes duales associees ~ un couple d' ensembles mutuellement polaires. C. R. Acad. Sci. Paris 260 (1965), AGMON (8): The relaxation method for linear inequalities. Canad. J. Math. ~ (1954), AKAIKE (ll): On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Statist. Math.!!. (1959)~ AKILOV (G. P.)~ KANTOROVICH (L. V.)~ RUBINSHTEIN (G. Sh.): Extremal states and extremal controls (Russian). Vestnik Leningrad. Univ. 22 (1967)~ no. 7, SIAM J. Control ~ (1967): (English transl.). -- ~ RUBINOV (A. M.): The method of successive approximations for determining the polynomial of best approximation (Russian). Dokl.Akad. Nauk SSSR 157 (1964), Soviet Math. Dokl. ~ (1964), (English transl.).

13 AKKEL (T.): A standard program for solution of a general nonlinear programming problem (Russian). Trudy VyCisl. Centra Tartu. Gos. Univ no. 2~ ALTMAN (M.): Stationary points in non-linear programming. Bull. Acad. Pol on. Sci. sere Sci. Math. Astronom. Phys. 12 (1964) : A feasible direction method for solving the nonlinear programming problem. Bull. Acad. Pol on. Sci. sere Sci. Math. Astronom. Phys. g (1964)~ : A generalized gradient method of minimizing a functional on a Banach space. Mathematica (Cluj) ~ (1966)~ : Generalized gradient methods of mlffimlzmg a functional. Bull. Acad. Polon. Sci. sere Sci. Math. Astronom. Phys. 14 (1966)~ : A generalized gradient method for the conditional minimum of a functional. Bull. Acad. Polon. Sci. sere Sci. Math. Astronom. Phys. 14 (1966)~ : A generalized gradient method with self-fixing step size for the conditional minimum of a functional. Bull. Acad. Polon. Sci. sere Sci. Math. Astronom. Phys. i5 (1967)~ : A generalized gradient method for the conditional extremum of a function. Bull. Acad. Polon. Sci. sere Sci. Math. Astronom. Phys. 15 (1967) : Bilinear Programming Bull. Acad. Polon. Sci. sere Sci. Math. Astronom. Phys. 16 (1968)~ ANDREEV (N. I.): A method of solution of certain problems in nonlinear programming (Russian). Izv. Akad. Nauk SSSR Tekhn. Kibernet no : Non-linear programming in the investigation of optimal automatic control systems. In: Proceedings of the International Federation of Automatic Control Congress (Basle 1963). Butterworth~ London~ 1964.

14 de ANGELIS (V.): Ricerca del mlffimo valoree di una funzione convessa separabile sottoposta a vincoli lineari. Giorn. 1st.!tal. Attuari 28 (1965) ARCANGELI (R.): Pseudo-solution de l'equation Ax = Y C. R. Acad. Sci. Paris.. sere A 263 (1966) ARIMOTO (S.): On a multistage nonli near programming problem. J. Math. Anal. Appl.!2. (1967) ARKIN (V.!.): On the infinite-dimensional analogue of a nonconvex programming problem (Russian). Kibernetika (Kiev) no ARMIJO (L.): Minimization of functions having Lipschitz continuous. first partial derivatives. Pacific J. Math. ~ (1966) ARROW( K. J.): Applications of control theory to economic growth. [Dantzig & Veinott ].. Part 2. pp DEBREU (G.): Existence of an equilibrium for a competitive economy. Econometrica ~ (1954) ENTHOVEN (A. C.): Quasi-concave programming. Econometrica 29 (1961) HURWICZ (L.): Reduction of constrained maxima to saddlepoint problems. Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability.. Vol. 5. pp University of California Press.. Berkeley : Gradient methods for constrained maxima. Operations Res. ~ (1957).. 258w : Gradient method for concave programming.. I: Local results. [Arrow. Hurwicz & Uzawa pp : Gradient methods for concave programming.. III: Further global results and applications to resource allocation. [Arrow.. Hurwicz & Uzawa ].. pp : Stability of the gradient process in n-person games. SIAM J. Appl. Math. ~ (1960)

15 ~ ~ UZAWA (H.): Constraint qualifications in maximization problems. Naval Res. Logist. Quart.!!. (1961)~ ~ SOLOW (R. M.): Gradient methods for constrained maxima~ with weakend assumptions. [Arrow~ Hurwicz & Uzawa~ pp ATTEIA (M.): Generalisation de la definition et des proprietes des «spline-functions». C. R. Acad. Sci. Paris 260 (1965) : Fonctions «spline» definies sur un ensemble convexe. Numer. Math. ~ (1968)~ AUMANN (R. J.)~ PERLES (M.): A variational problem arising in economics. J. Math. Anal. Appl.!,.!.(1965) AUSLENDER (A.): Algorithme de recherche des points stationnaires d'une fonctionnelle dans un espace vectoriel topologique. Application a un probleme de controle a evolution non lineaire. C. R. Acad. Sci. Paris ser. A. 266 (1968) : Methodes et tmoremes de dualite. C. R. Acad. Sci. Paris Ser. A 267 (1968) : Methodes generales pour la recherche des cols d'une fonction. C. R. Acad. Sci. Paris Ser. A 268 (1969) BRODEAU (F.): Convergence d'un algorithme de Frank et Wolfe applique a un probleme de c ontr Ole. Rev. Fran<;:aise Inform at. Recherche Operationnelle ~ (1968).. no BAKHTIN (I. A.): On an extremum problem (Russian). Z. VyCisl. Mat. i Mat. Fiz.4 (1964) USSR Comput. Math. and Math. Phys. 4 (1964).. no (English transl.) GORSTKO (A. B. ): On the solution of nonlinear extremum problems with linear constraints of specific type (Russian). [Kantorovich ].. pp KRASNO S ELSKIJ (M. A.)~ LEVIN (A. Ju. ): Finding the extremum of a function on a polyhedron (Russian). Z. Vycisl. Mat. i Mat. Fiz. 3 (l963)~ USSR Comput. Math. and Math. Phys. 3 (1963) (English transl.). -

16 BALAS (E.): Duality in discrete programming: IlL Nonlinear objective function and constraints. Management Sciences Research Report No Graduate School of Industrial Administration~ Carnegie-Mellon University~ Pittsburgh~ : Minimax et dualite en programmation discrme. Th~se Doct. ~ Universite de Paris~ BARANKIN (E. W.).. DORFMAN (R.): On quadratic programming. University of California Publications in Statistics~ Vol. 2.. pp University of California Pres.. Berkeley~ BARANOV (A. Ju. L KHOMENJUK (V. V.): Solution of the linear problem of minimization of a quadratic functional in Hilbert space (Russian). Avtomat. i Telemekh. 26 (1965L Automat. Remote Control ~ (1965)~ (English transl.). BARR (R. 0.): Computation of optimal controls by quadratic programming on convex reachable sets. Dissertation~ University of Michigan~ : Computation of optimal controls on convex reachable sets. [Balakrishnan & Neustadt~ 1967] ~ pp BARRA (J. R.)~ BENZAKEN (C. L BRODEAU (F.): Probl~mes numeriques en programmation dynamique deterministe. Rev. Fran<;aise Recherche Operationnelle ~ (1965). no. 34~ BAUMOL (W. J.)~ BUSHNELL (R. C.): Error produced by linearization in mathematical programming. Econometrica ~ (1967)~ BEALE (E. M. L.): On minimizing a convex function subject to linear inequalitie s. J. Roy. Statist. Soc. Ser. B..!2 (1955)~ : An algorithm for solving the transportation problem when the shipping cost over each route is convex. Naval Res. Logist. Quart. ~ (1959) : On quadratic programming. Naval Res. Logist. Quart. ~ (1959)~ : Note on "A comparison of two methods of quadratic programming". Operations Res. 14 (1966)~ 442-"443. : Numerical methods. [Abadie. 1967J ~ pp

17 BECKENBACH (E. F.): Convex functions. Bull. Amer. Math. Soc. 54 (1948) BECTOR (C. R.): Nonlinear indefinite functional programming with nonlinear constraints. Cahiers Centre Etudes Recherche Oper. ~ (1967)~ : Nonlinear fractional functional programming with nonlinear constraints. Z. angew. Math. Mech. 48 (1968)~ : Duality in fractional and indefinite programming. Z. angew. Math. Mech. 48 (1968)~ : Programming problems with convex fractional functions. Operations Res..!! (1968L : Indefinite cubic programming with standard errors in objective function. Unternehmensforschung g (1968)~ BEIGHTLER (C. S.)~ CRISP (R. M.)~ MEIER (W. L.): Optimization by geometric programming. J. Indust. Engrg. ~ (1968)~ ,.. WILDE (D. J.): Diagonalization of quadratic forms by Gauss elimination. Management Sci. g (1966)~ ; erratum~ ibid. g(1966)~ 908. BEJ AR ALAMO (J.): Mathematical theory of programming (Spanish). Mem. Real Acad. Ci. Exact. F!s~ Natur. Madrid ~~ no.2 (1967). BELENKIJ (V. Z.): Problems of mathematical programming having a minimum point (Russian). Dokl. Akad. Nauk SSSR 183 (l968)~ Soviet Math. Dokl. ~ (196 8)~ (English transl.). BELLMAN (R. E.): Dynamic programming and Lagrange multipliers. Proc. Nat. Acad. Sci. USA 42 (1956)~ : Dynamic programming and the numerical solution of variational problems. Operations Res. ~ (l957)~ ~ KAGIW ADA (H. H.). KALABA (R. E.): Quasilinearization~ boundary-value problems and linear programming. IEEE Trans. Automatic Control AC-10 (1965)~ 199.

18 ~ KARUSH (W.): On a new functional transform in analysis: The maximum transform Bull. Amer. Math. Soc. 22 (1961) : Mathematical programming and the maximum transform. SIAM J. Appl. Math. 1:.2. (l962)~ ~ : On the maximum transform. J. Math. Anal. Appl. ~ (l963)~ BELTRAMI (E. J.): A computational approach to necessary conditions in mathematical programming. ICC Bull. ~ (1967) On infinite - dimensional convex programs. J. Comput. System Sci. 1:. (1967) A constructive proof of the Kuhn-Tucker multiplier rule. J. Math. Anal. Appl. ~ (1969) BENDERS (J. F.): Partitioning in mathematical programming. Proefschrift~ Rijksuniversiteit te Utrecht~ : Partitioning procedures for solving mixed-variables programming problems. Numer. Math.! (1962) : Some aspects of mathematical optimization (Dutch). Euclides (Groningen) 43 (1968) BEN-ISRAEL (A.): A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. ~ (l966)~ : On iterative methods for solving nonlinear least squares problems over convex sets. Israel J. Math. ~ (1967), : CHARNES (A.).. KORTANEK (K. 0.): Duality and asymptotic solvability over cones. Bull. Amer. Math. Soc. ~ (1969) BENSOUSSAN (A.).. KENNETH (P.): Sur l'analogie entre les methodes de regularisation et de penalisation. Rev. Fran<;,:aise Inform at. Recherche Operationnelle ~(1968)~ no. 13~

19 BEREANU (B.): A property of convex functions with applications to nonlinear programming (Romanian). Com. Acad. R. P. Romtne..!! (1963) : A property of convex.. piecewise linear functions with applications to mathematical programming. Unternehmensforschung ~ (1965) BERGE (C.): Sur l'equivalence du probl~me de transport generalise et du probl~me des reseaux. C. R. Acad. Sci. Paris 251 (1960) BERKOVITZ (L. D.): Variational methods in problems of control and programming. J. Math. Anal. Appl.! (1961) BERMAN (G.): Minimization by successive approximation. SIAM J. Numer. Anal.! (1966) BERNADAT (J.): Programmes quadratiques. [Fortet et al ].. pp BERNHOLTZ (B.): A new derivation of the Kuhn-Tucker conditions. Operations Res. g (1964) , BESSIERE (F.).. SAUTTER (E. A.): Optimization and suboptimization: The method of extended models in the nonlinear case. Management Sci. ~ (1968) BIGG (M. D.): The minimization of a general function subject to a set of non-linear constraints. Proc. Cambridge Philos. Soc. ~ (1963) BIRKHOFF (G.): A variational principle for nonlinear networks. Quart. Appl. Math. 3..!. (1963) DIAZ (J. B.): Nonlinear network problems. Quart. Appl. Math..!! (1956)., BffiZAK (B.).. PSHENICHNYJ (B. N.): Minimization problems for nonsmooth functions (Russian). Kibernetika (Kiev) no BITTNER (L.): Das Austauschverfahren der linearen Tschebyscheff Approximation bei nicht erfilllter Haarscher Bedingung. Z. angew. Math. Mech..!!. (1961) : Ausgleichsaufgaben der Gestalt f [max l.(x).. min 1. (x») =Min! L Wiss. Z. Techn. Univ. Dresden.!.Q (1961)

20 : Eine Verallgemeinerung des Verfahrens des logarithmischen Potentials von Frisch fur nichtlineare Optimierungsprobleme. [Prekopa~ 1965]~ pp : Begrtindung des sogenannten diskreten Maximumprinzips. Z. Wahrscheinlichkeitstheorie verw. Gebiete.!.Q (1968) : Abschatzungen bei Variationsmethoden mit Hilfe von Dualitatssatzen. I. Numer. Math.!!. (1968) BOHNENBLUST (H. F.).. KARLIN (S.).. SHAPLEY (L. S.): Games with continuous.. convex pay- off. Contributions to the Theory of Games.. Vol. 1 (H. W. Kuhn & A. W. Tucker eds.).. pp Annals of Mathematics Studies~ no. 24; Princeton University Press~ Princeton~ BONSALL (F. F.): Dual extremum problems in the theory of functions. J. London Math. Soc. ~ (1956)~ de BOOR (C.).. LYNCH (R. E.): On splines and their minimum properties. J. Math. Mech. ~ (1966) BOOT (J. C. G.): Notes on quadratic programming: The Kuhn-Tucker and Theil- van de Panne conditions.. degeneracy and equality constraints. Management Sci. ~ (1961) : On trivial and binding constraints in programming problems. Management Sci. ~ (1962) : Binding constraint procedures of quadratic programming. Econometrica ~ (1963L : On sensitivity analysis in convex quadratic programming problems Operations Res.!!. (1963) BOX (M. J.): A new method of constrained optimization and a comparison with other methods. Computer J. ~ (1965)~ : A comparison of several current optimization methods.. and the use of transformations in constrained problems. Computer J. ~ (1966) BRAESS (D.): Ueber Dampfung bei Minim ali sierungsverfahren. Computing (Arch. elektron. Rechnen) 1:. (1966) BRAM (J.): The Lagrange multiplier theorem for max-min with several constraints. SIAM J. Appl. Math.!± (1966)

21 BRANS (J. P.)~ DROESBEKE (F.): Programmes quadratiques. Cahiers Centre Etudes Recherche Oper.2. (1965)" BRATTON (D.): The duality theorem in linear programming. Cowles Commission Discussion Paper Mathematics No Cowles Commission for Re~earch in Economics6 Yale University" BREGMAN (L. M.): The method of successive projections for finding a common point of convex sets (Russian). Dokl: Akad. Nauk SSSR 162.(1965), Soviet Math. Dokl. ~ (1965), "2 (English transl.). -- : Relaxation method for finding a common point of convex sets" and its application to optimization problems (Russian). Dokl. Akad. Nauk SSSR 171 (1966)" Soviet Math. Dokl. 2. (1966)~ (English trans!.). -- : A relaxation method of finding a common point of convex sets" and its application to the solution of problems in convex programming (Russian). Z. VyCisl. Mat. i Mat. Fiz. 2. (1967)" BRIOSCHI (F.), LOCATELLI (A. F.): Extremization of constrained multi variable function: Structural programming. IEEE Trans. Systems Sci. Cybernetics SSC-3 (1967)~ 105.:-111. BRPNDSTED (A.): Conjugate convex functions in topological vector spaces. Mat. -Fys. Medd. Danske Vid. Selsk. 346 no. 2(1964). -- ~ ROCKAFELLAR (R. T.): On the subdifferentiability of convex functions. Proc. Amer. Math. Soc. ~ (1965) BROOKS (S. H.): A comparison of maximum seeking methods. Operations Res. 2. (1959), BROOKS (R.). GEOFFRION (A.): Finding Everett's Lagrange multipliers by linear programming. Operations Res. ~ (1966), BROSOWSKI (B.): Ueber Tschebyscheffsche Approximationen mit linearen Neb enb edingung en. Math. Z. 88 (1965)" : Vber Tschebyscheffsche Approximation mit verallgemeinerten rationalen Funktionen. Math. z. 90 (1965)"

22 BROWN ( G. W.): Iterative solution of games by fictitious play. [Koopmans. 1961]. pp ; von NEUMANN (J.): Solutions of games by differential equations. Contributions to the Theory of Games. Vol. 1 (H. W. Kuhn & A. W. Tucker eds.). pp Armals of Mathematics Studies. no. 24; Princeton University Press. Princeton Also in: John von Neumann. Collected Works. Vol. 6. pp Pergamon Press. Oxford BROYDEN (C. G.): A class of methods for solving nonlinear simultaneous equations. Math. Compo ~ (1965) : Quasi-Newton methods and their application to function minimization. Math. Compo ~ (1967) : A new method of solving nonlinear simultaneous equations. Computer J. g (1969) BRYSON (A. E.). DENHAM (W. F.): A steepest ascent method for solving optimum programming problems. Trans. ASME Ser. E. J. Appl. Mech. ~ (1962) DREYFUS ( S. E.): Optimal programming problems with inequality constraints. 1. AIAA J..!. (1963) BUEHLER (R. J.). SHAH (B. V.). KEMPTHORNE (0.): Methods of parallel tangents. Optimization Techniques (J. W. Blakemore & S. H. Davis eds.). PP Chemical Engineering Progress Symposium Series. no. 50; American Institute of Chemical Engineers. New York ,,- BUr - TR9NG - LIEU: On a problem of convexity and its application to non-linear stochastic programming. J. Math. Anal. Appl..!!. (1964) : A study of some inequalities for nonlinear stochastic programming. [Abadie. 1967J. pp CARTON (D.): Quelques remarques concernant les fonctions quasiconvexes. Publ. Math. Debrecen.!.!. (1964) HUARD (P.): La methode des centres dans un espace topologique. Numer. Math.!!. (1966)

23 BULAVSKLJ (V. A.)~ RUBINSHTEIN (G. Sh.): Solution of convex programming problems with linear constraints by the method of successive improvement 'of an admissible vector (Russian). Dokl. Akad. Nauk SSSR 150 (l963)~ Soviet Math. Dokl.! (l963)~ (English transl.). BURGER (E.): On extrema with side conditions. Econometrica ~ (l955)~ BUTLER (T.): Lagrange multipliers and the goemetry of Hilbert space. SIAM J. Appl. Math. g (l964)~ ~ MARTIN (A. V.): On a method of Courant for minimizing functionals. J. Math. and Phys.!!. (1962)~ BUTZ (A. P.): Iterative saddle point techniques. SIAM J. Appl. Math. ~ (1967)~ CAMION (P.): Application d'une generalisation du lemme de Minty ~ un probleme d'injimum de fonction convexe. Cahiers Centre Etudes Recherche Oper. 7 (1965)~ ; erratum~ ibid. ~ (1966)~ CAMP (G. D.): Inequality-constrained stationary value problems. Operations Res. ~ (l955)~ CANDLER (W.)~ TOWNSLEY (R. J.): The maximization of a quadratic function of variables subject to linear inequalities. Management Sci.!.Q (1964)~ CANNON (R. J.): The numerical solution of the Dirichlet problem for Laplace's equation by linear programming. SIAM J. Appl. Math. g (1964)~ ~ CECCHI (M. M.): The numerical solution of some biharmonic problems by mathematical programming techniques. SIAM J. Numer. Anal. ~ (l966)~ ~ --- : Numerical experiments on the solution of some biharmonic problems by mathematical programming techniques. SIAM J. Numer. Anal.! (1967)~ CANON (M. D.): A new algorithm for bounded variable quadratic programming problems. Dissertation~ University of California~ Berkeley~ : Mathematical programming and discrete optimal control. IBM Research Report RC IBM Research Center~ Yorktown Heights N. Y. ~ 1968.

24 : Monoextremal representations of a class of minimax problems. Management Sci. ~ (1969)~ ~ CULLUM (C. D. ),: A tight upper bound on the rate of convergence of the Frank-Wolfe algorithm. SIAM J. Control ~ (1968)~ ~ --- : The determination of optimum separating hyperplanes. L A finite step procedure. IBM Research Report RC IBM Research Center~ Yorktown Heights~ N. Y. ~ ~ --- ~ POLAK (E.): Constrained minimization problems in finite-dimensional spaces. SIAM J. Control! (1966)~ ~ EATON (J. H.): A new algorithm for a class of quadratic programming problems~ with application to control. SIAM J. Control! (1966)~ CARPENTIER (J.)~ ABADIE (J.): Gemeralisation de la methode du gradient reduit de Wolfe au cas de contraintes non line aires. In: Proceedings of the 4th International Conference on Operational Research (Boston 1966). Wiley~ New York (to appear). CARROLL (C. W.): The created response surface technique for optimizing nonlinear restrained systems. Operations Res.!!. (1961)~ CAR TER (I. P. V.): Optimization techniques. Nordisk Tidskr. Informations-Behandling ~ (1963)~ CAUCHY (A.): Methode generale pour la resolution des syst~mes d'equations simultanees. C. R. Acad. Sci. Paris 25 (1847)~ Also in: OEuvres complmes d' Augustin Cauchy~ Tome X~ pp Gauthier-Villars. Paris~ 1901., CEA (J.): Les methodes de "descente" dans la theorie de l'optimisation. Rev. Franc;aise Informat. Recherche Operationnelle ~ (1968)~ no. 13~ CHADDA ( S. S.): A decomposition principle for fractional programming. Opsearch (India)! (l967)~ no. 3~ CHANDRA (S.): The capacitated transportation preblem in linear fractional functional programming. J. Operations Res. Soc. Japan.!.Q. (1967L

25 : Decomposition principle for linear fractional functional programs. Rev. Fran<;:aise Inform at. Recherche Operationnelle ~ (1968)" no. 10" CHARNES (A.): The geometry of convergence of simple perceptrons. J. Math. Anal. Appl. J.. (1963) : Some fundamental theorems of perceptron theory and their geometry. Computer and Information Sciences (J. T. Tou & R. H. Wilcox eds. L pp Spartan Books.. Washington CLOWER (R. W.).. KORTANEK (K.): Effective control through coherent decentralization with preemptive goals. Econometrica ~ (1967) COOPER (W. W.): Nonlinear power of adjacent extreme point methods of linear programming. Econometrica ~ (1957) : Nonlinear network flows and convex programming over incidence matrices. Naval Res. Logist. Quart. ~ (1958) : Programming with linear fractional functionals. Naval Res. Logist. Quart. ~ (1962) : Deterministic equivalents for optimizing and satisficing under chance constraints. Operations Res..!:l (1963) : Optimizing engineering designs under inequality constraints. Cahiers Centre Etudes Recherche Oper. ~ (1964) : A note on the 'fail-safe' properties of the "generalized Lagrange multiplier method". Operations Res. II (1965) : A convex approximant method for noneonvex extensions of geometric programming. Proc. Nat. Acad. Sci. USA ~ (1966) KOR T ANEK (K. 0.): Duality.. Haar programs.. and finite sequence spaces. Proc. Nat. Acad. Sci. USA 48 (1962) A duality theory for convex programs with convex constraints. Bull. Amer. Math. Soc. 68 (1962)

26 ~ ~ --- : Duality in semi-infinite programs and some works of Haar and Caratheodory. Management Sci. 9 (1963)~ ; erratum~ ibid. ~ (1963) ~ --- ~ --- : Duality in semi-infinite programming and some works of Haar and, Caratheodory. Proceedings of the 3rd International Conference on Operational Research (Oslo 1963)~ pp Dunod~ Paris~ ~ --- ~ --- : On representations of semi-infinite programs which have no duality gaps. Management Sci. ~ (1965) ~ --- ~ --- : Semi-infinite programming~ differentiability and geometric programming. II. Aplikace Mat.!! (1969)~ ~ --- ~ --- : On the theory of semi-infinite programming and a generalization of the Kuhn- Tucker saddle point theorem for arbitrary convex functions. Naval Res. Logist. Quart. ~ (1969)~ ~ FIACCO (A. V.)~ LITTLECHILD (S. C.): Convex approximants and decentralization: A SUMT approach. Systems Research Memorandum No The Technological Institute~ Northwestern University~ Evanston, ~ KIRBY (M.): Modular design~ generalized inverses and convex programming. Operations Res. ~ (1965)~ ~ KOR T ANEK (K. 0.): A generalization of a theorem of Edmund Eisenberg. Systems Research Memorandum No The Technological Institute~ Northwestern University. Evanston~ ~ : A note on the discrete maximum principle and distribution problems. J. Math. and Phys. 45 (1966)~ ~ LEMKE (C. E.): Minimization of non-linear separable convex functionals. Naval Res. Logist. Quart. 1:. (1954)~ CHAZAN (D.): A new proof of a min-max theorem. IBM Research Report RC IBM Research Center~ Heights~ N. Y Yorktown

27 : Profit functions and optimal control: an alternate description of the control problem. J. Math. Anal. Appl. ~ (1968) MIRANKER (W. L.): A non-gradient and parallel algorithm for unconstrained minimization. IBM Research Report RC IBM Research Center.. Yorktown.. Heights N. Y CHENERY (H. B.).. UZAWA (H.): Non-linear programming in economic development. [Arrow.. Hurwiez & Uzawa ].. pp CHENEY (E. W.).. GOLDSTEIN (A. A.): NeWton's method for convex programming and Tchebycheff approximation. Numer. Math..!.. (1959) : Proximity maps for convex sets. Proc. Amer. Math. Soc..!..Q (1959), : Tchebycheff approximation in locally convex spaces. Bull. Amer. Math. Soc. 68 (1962), : Tchebychefi approximation and related extremal problems. J. Math. Mech. 14 (1965) LOEB (H. L.): Two new algorithms for rational approximation. Numer. Math. ~ (1961), : On rational Chebyshev approximation. Numer. Math. i (1962) CHERRUAULT (Y. ): Une methode directe de minimisation et applications. Rev. Franc;aise Informat. Recherche Operationnelle ~ (1968).. no CHOW (W. M.): A note on the calculation of certain constrained maxima. Technometrics i (1962) CLIMESCU (A.): Algebraic programming. I. II.. III.. IV. Bul. Inst. Politehn. Iasi (N. S.) 8 (1962).. no (Romanian),; 8 (1962). no (French); 10 (1964). no (French). 11 (1965).. no (Romanian). COLLATZ (L.): Tschebyscheffsche Approximation. Randwertaufgaben und Optimierungsaufgaben. Wiss. Z. Hochsch. Architektur Bauwesen Weimar g (1965),

28 : Lineare Randwertaufgaben und Approximationen von Funktionen. Mathematica (Cluj).!.Q (1968) : Zur mimerischen Behandlung der rationalen Tschebyscheff Approximation bei mehreren unabhangigen Veranderlichen. Aplikace Mat. ~ (1968) COLVILLE (A. R.): A comparative study of nonlinear programming codes. Technical Report No IBM New York Scientific Center l New York l COROIU (R.): Simplex methods for solving quadratic programming problems. Econom. Comput. Econom. Cybernetics Stud. Res. (Bucharest) no COTTLE (R. W.): A theorem of Fritz John in mathematical programming. RAND-Report RM PRo The RAND Corp. 1 Santa Monica.. Calif : Formal self-duality in nonlinear programming. Report ORC pp Operations Research Center l University of California.. Berkeley : An infinite game with a convex-concave payoff kernel. Report ORC pp Operations Research Center.. University of California. Berkeley : Symmetric dual quadratic programs. Quart. Appl. Math. ~ (1963) : Note on a fundamental theorem in quadratic programming. SIAM J. Appl. Math. ~ (1964) : Nonlinear programs with positively bounded Jacobians. SIAM J. Appl. Math.!i (1966) : On the convexity of quadratic forms over convex sets. Operations Res. ~ (1967) : Comments on the note by Kortanek and Jeroslow. Operations Res. ~ (1967) : The principal pivoting method of quadratic programming. [Dantzig & Veinott l 1968] 1 Part 11 pp : On a problem in linear inequalities. J. London Math. Soc. 43 (1968)

29 DANTZIG (G. B.): Complementary pivot theory of mathematical programming. Linear Algebra and Appl.!. (1968) II : Complementary pivot theory of mathematical programming. [Dantzig & Veinott ].. Part 1.. pp II MOND (B.): Self-duality in mathematical programming. SIAM J. Appl. Math.!! (1966) CROCKETT (J. B.).. CHERNOFF (H.): Gradient methods of maximization. Pacific J. Math.E. (1955) CULLEN (D. E.): Solving nonlinear inequalties by relaxation.. with applications to nonlinear programming. Dissertation.. Washington University CURRY (H. B.): The method of steepest descent for nonlinear minimization problems. Quart. Appl. Math. ~ (1944L CURTIS (A. R.).. POWELL (M. J. D.): Necessary conditions for minimax approximation. Computer J. ~ (1965) : On the convergence of exchange algorithms for calculating minim ax-approximations. Computer J. ~ (1966) CURTIS (P. C.).. FRANK (W. L.): An algorithm for the determination of the polynomial of best minimax approximation to a function defined on a finite point set. J. Assoc. Comput. Mach. ~ (1959) DA CUNHA (N. 0.).. POLAK (E.): Constrained minimization under vector valued criteria in finite dimensional spaces. J. Math. Anal. Appl.!2. (1967) '" --- : Constrained minimization under vector-valued criteria in linear topological spaces. [Balakrishnan & Neustadt", 1967J.. pp DANIEL (J. W.): The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal.! (1967) DANSKIN(J. M.): Fictitious play for continuous games. Naval Res. Logist. Quart.!. (1954)

30 : The theory of min-max~ with applications. SIAM J. Appl. Math. 14 (l966)~ : Note on the sequential maximization technique. Operations Res. ~ (l967)~ : On suboptimization : an example. Operations Res. ~ (l968)~ DANTZIG (G. B.): A proof of the equivalence of the programming problem and the game problem. rkoopmans~ 1951] ~ pp : Maximization of a linear function of variables subject to linear inequalities. [Koopmans~ 1951J ~ pp : Note on B. Klein's IIDirect use of extremal principles in solving certain optimizing problems involving inequalities ll Operations Res. ± (1956)~ : General convex objective forms. Mathematical Methods in the Social Sciences~ S. Karlin & P. Suppes eds.)~ pp Stanford University Press~ Stanford~ (K. J. Arrow~ --- : Quadratic programming. A variant of the Wolfe-Markowitz algorithms. Report ORC Operations Research Center. University of California.. Berkeley : Optimization in Operations Research. Information Processing 1965 (Proceedings of IFIP Congress 65).. Vol. 1.. pp Spartan Books.. Washington D. C : Linear control processes and mathematical programming. SIAM J. Control 4 (1966) Also in: [Dantzig -& Veinott L Part 2.. pp : Application of generalized linear programming to control theory. [Ahadie~ 1967J.. pp COTTLE (R. W.): Positive (semi-) definite programming. rabadie ].. pp EISENBERG (E.)~ COTTLE(R. W.): Symmetric dual nonlinear programs. Pacific J. Math. ~ (1965)~

31 ~ FOLKMAN (J.)~ SHAPIRO (N.): On the continuity of the minimum set of a continuous function. J. Math. Anal. Appl.!1. (l967)~ ~ FORD (L. R.)~ FULKERSON (D. R.): A primal-dual algorithm for linear programs. [Kuhn & Tucker~ 1956] ~ pp ~ ORDEN (A.)~ WOLFE (Ph.): The generalized simplex method for minimizing a linear form under linear inequality restraints. Pacific J. Math. ~ (1955)~ ~ V AN SL YKE (R. M.): Generalized upper bounding techniques. J. Comput. System Sci.! (1967)~ ~ WALD (A.): On the fundamental lemma of Neyman and Pearson. Ann. Math. Statist. 22 (1951)~ ~ WOLFE (Ph.): Decomposition principle for linear programs. Operations Res. ~ (1960)~ ~ -- : The decomposition algorithm for linear programs. Econometrica ~ (1961L DAVID ON (W. C.): Var~able metric method for minimization. Atomic Energy Commission Report ANL Argonne National Laboratory~ Lemont~ ill. # : Variance algorithm for minimization. Computer J.!Q (1968L DAVIS (P. J.)~ WILSON (M. W.): Non-negative interpolation formulas for uniformly elliptic equations. IBM Research Report RC IBM Research Center# Yorktown Heights~ N. Y. ~ DAVYDOV (E. G.): Application of Stieltjes moments (Russian). Z. Vycisl. Mat. i Mat. Fiz. J.. (1967)~ DEBREU (G. E.): Definite and semidefinite quadratic forms. Econometrica 20 (l952)~ : Economic equilibrium. Mat hematical Systems Theory and Economics I (H. W. Kuhn & G. P. Szeg6 eds.)~ pp Springer~ Berlin~ DEJON (B.)~ NICKEL (K.): A never failing~ fast converging rootfinding algorithm. Constructive Aspects of the Fundamental Theorem of Algebra (B. Dejon & p. Henrici eds.)~ pp Wiley~ New York~ 1969.

32 DEMJ ANOV (V. F.): Solution of certain extremal problems (Russian). Avtomat. i Tel em ekh. 26 (1965)~ Automat. Remote Control 26 (1965)~ (English transl.). --- : Minimization of functions on convex bounded sets (Russian). Kibernetika (Kiev) 1965~ no Cybernetics 1:. (1965) no (English transl.). --- : On minimization of the maximal deviation (Russian). Vestnik Leningrad. Univ. ~ (1966)~ no. 7~ : On the solution of certain minimax problems. I~ II (Russian). Kibernetika (Kiev) 1966~ no. 6~ 58-66; 1967~ no : Successive approximations for finding saddle points (Russian). Dokl. Akad. Nauk SSSR 177 (1967) Soviet Math. Dokl. ~ (1967)~ (English transl.). --- : The investigation of saddle points (Russian). Vestnik Leningrad. Univ. ~ (1967). no : The directional derivative of a maximin function (Russian). Dokl. Akad. Nauk SSSR 179 (1968) : The use of second derivatives in the minimization of functions on bounded sets (Russian). Vestnik Leningrad. Univ. ~ (1968). no Algorithms for some minimax problems. J. Comput. System Sci. ~ (1968) , : Differentiation.., of the maximin function. I. II (Russian). Z. Vycisl. Mat. i Mat. Fiz.... (1968) ; ~ (1969), RUBINOV (A. M.): The minimization of a smooth convex functional on a convex set (Russian). Vestnik Leningrad. Univ. 19 (1964). no. 4~ SIAM J. Control ~ (1967) (English transl.) : On the problem of minimization of a smooth functional with convex constraints (Russian). Dokl. Akad. Nauk SSSR 160 (1965) Soviet Math. Dokl. ~ (1965) (English transl.).... : On necessary conditions for an extremum (Russian). Ekonom. i Mat. Metody ~ (1966)~ : Minimization of functionals in normed spaces. SIAM J. Control ~ (1968)

1. J. Abadie, Nonlinear Programming, North Holland Publishing Company, Amsterdam, (1967).

1. J. Abadie, Nonlinear Programming, North Holland Publishing Company, Amsterdam, (1967). 1. J. Abadie, Nonlinear Programming, North Holland Publishing Company, Amsterdam, (1967). 2. K. J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford, California, (1958).

More information

GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY FOR QUADRATICALLY CONSTRAINED QUADRATIC PRO GRAMS AND /^-CONSTRAINED /^-APPROXIMATION PROBLEMS 1

GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY FOR QUADRATICALLY CONSTRAINED QUADRATIC PRO GRAMS AND /^-CONSTRAINED /^-APPROXIMATION PROBLEMS 1 GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY FOR QUADRATICALLY CONSTRAINED QUADRATIC PRO GRAMS AND /^-CONSTRAINED /^-APPROXIMATION PROBLEMS 1 BY ELMOR L. PETERSON AND J. G. ECKER Communicated by L.

More information

Answers to problems. Chapter 1. Chapter (0, 0) (3.5,0) (0,4.5) (2, 3) 2.1(a) Last tableau. (b) Last tableau /2 -3/ /4 3/4 1/4 2.

Answers to problems. Chapter 1. Chapter (0, 0) (3.5,0) (0,4.5) (2, 3) 2.1(a) Last tableau. (b) Last tableau /2 -3/ /4 3/4 1/4 2. Answers to problems Chapter 1 1.1. (0, 0) (3.5,0) (0,4.5) (, 3) Chapter.1(a) Last tableau X4 X3 B /5 7/5 x -3/5 /5 Xl 4/5-1/5 8 3 Xl =,X =3,B=8 (b) Last tableau c Xl -19/ X3-3/ -7 3/4 1/4 4.5 5/4-1/4.5

More information

Math 5593 Linear Programming Week 1

Math 5593 Linear Programming Week 1 University of Colorado Denver, Fall 2013, Prof. Engau 1 Problem-Solving in Operations Research 2 Brief History of Linear Programming 3 Review of Basic Linear Algebra Linear Programming - The Story About

More information

Sharpening the Karush-John optimality conditions

Sharpening the Karush-John optimality conditions Sharpening the Karush-John optimality conditions Arnold Neumaier and Hermann Schichl Institut für Mathematik, Universität Wien Strudlhofgasse 4, A-1090 Wien, Austria email: Arnold.Neumaier@univie.ac.at,

More information

NUMERICAL COMPARISON OF LINE SEARCH CRITERIA IN NONLINEAR CONJUGATE GRADIENT ALGORITHMS

NUMERICAL COMPARISON OF LINE SEARCH CRITERIA IN NONLINEAR CONJUGATE GRADIENT ALGORITHMS NUMERICAL COMPARISON OF LINE SEARCH CRITERIA IN NONLINEAR CONJUGATE GRADIENT ALGORITHMS Adeleke O. J. Department of Computer and Information Science/Mathematics Covenat University, Ota. Nigeria. Aderemi

More information

Nonlinear Functional Analysis and its Applications

Nonlinear Functional Analysis and its Applications Eberhard Zeidler Nonlinear Functional Analysis and its Applications III: Variational Methods and Optimization Translated by Leo F. Boron With 111 Illustrations Ш Springer-Verlag New York Berlin Heidelberg

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

A Polyhedral Cone Counterexample

A Polyhedral Cone Counterexample Division of the Humanities and Social Sciences A Polyhedral Cone Counterexample KCB 9/20/2003 Revised 12/12/2003 Abstract This is an example of a pointed generating convex cone in R 4 with 5 extreme rays,

More information

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved. Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: topolog@auburn.edu ISSN: 0146-4124

More information

Symmetric and Asymmetric Duality

Symmetric and Asymmetric Duality journal of mathematical analysis and applications 220, 125 131 (1998) article no. AY975824 Symmetric and Asymmetric Duality Massimo Pappalardo Department of Mathematics, Via Buonarroti 2, 56127, Pisa,

More information

Linear programming: Theory

Linear programming: Theory Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analsis and Economic Theor Winter 2018 Topic 28: Linear programming: Theor 28.1 The saddlepoint theorem for linear programming The

More information

Anhang. Bibliographie zur Nichtlinearen Programmierung

Anhang. Bibliographie zur Nichtlinearen Programmierung Anhang Bibliographie zur Nichtlinearen Programmierung Bibliographie 333 A. Lehrbucher und Monographien ADBY (P.R.), DEMPSTER (M.A. H.) : Introduction to Optimization Methods. Chapman and Hall, London,

More information

Convergence rate estimates for the gradient differential inclusion

Convergence rate estimates for the gradient differential inclusion Convergence rate estimates for the gradient differential inclusion Osman Güler November 23 Abstract Let f : H R { } be a proper, lower semi continuous, convex function in a Hilbert space H. The gradient

More information

i. Bonic R. and Frampton J., Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71(1965),

i. Bonic R. and Frampton J., Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71(1965), References i. Bonic R. and Frampton J., Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71(1965), 393-395. 2. Cameron R. H. and Graves R., Additive functionals on a space of continuous

More information

Positive eigenfunctions for the p-laplace operator revisited

Positive eigenfunctions for the p-laplace operator revisited Positive eigenfunctions for the p-laplace operator revisited B. Kawohl & P. Lindqvist Sept. 2006 Abstract: We give a short proof that positive eigenfunctions for the p-laplacian are necessarily associated

More information

University of California, Davis Department of Agricultural and Resource Economics ARE 252 Lecture Notes 2 Quirino Paris

University of California, Davis Department of Agricultural and Resource Economics ARE 252 Lecture Notes 2 Quirino Paris University of California, Davis Department of Agricultural and Resource Economics ARE 5 Lecture Notes Quirino Paris Karush-Kuhn-Tucker conditions................................................. page Specification

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

[1] Aubin, J.-P.: Optima and equilibria: An introduction to nonlinear analysis. Berlin Heidelberg, 1993.

[1] Aubin, J.-P.: Optima and equilibria: An introduction to nonlinear analysis. Berlin Heidelberg, 1993. Literaturverzeichnis [1] Aubin, J.-P.: Optima and equilibria: An introduction to nonlinear analysis. Berlin Heidelberg, 1993. [2] Aubin, J.-P.; Ekeland, I.: Applied nonlinear analysis. New York, 1984.

More information

Appendix A Taylor Approximations and Definite Matrices

Appendix A Taylor Approximations and Definite Matrices Appendix A Taylor Approximations and Definite Matrices Taylor approximations provide an easy way to approximate a function as a polynomial, using the derivatives of the function. We know, from elementary

More information

A. Gheondea 1 LIST OF PUBLICATIONS

A. Gheondea 1 LIST OF PUBLICATIONS A. Gheondea 1 Preprints LIST OF PUBLICATIONS [1] P. Cojuhari, A. Gheondea: Closed embeddings, operator ranges, and Dirac operators, Complex Analysis Operator Theory (to appear). Articles in Refereed Journals

More information

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization MATHEMATICS OF OPERATIONS RESEARCH Vol. 29, No. 3, August 2004, pp. 479 491 issn 0364-765X eissn 1526-5471 04 2903 0479 informs doi 10.1287/moor.1040.0103 2004 INFORMS Some Properties of the Augmented

More information

Summary Notes on Maximization

Summary Notes on Maximization Division of the Humanities and Social Sciences Summary Notes on Maximization KC Border Fall 2005 1 Classical Lagrange Multiplier Theorem 1 Definition A point x is a constrained local maximizer of f subject

More information

Generalized Monotonicities and Its Applications to the System of General Variational Inequalities

Generalized Monotonicities and Its Applications to the System of General Variational Inequalities Generalized Monotonicities and Its Applications to the System of General Variational Inequalities Khushbu 1, Zubair Khan 2 Research Scholar, Department of Mathematics, Integral University, Lucknow, Uttar

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

UNCLASSIFIED. .n ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED. .n ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED UNCLASSIFIED.n 260610 ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are

More information

ON GEOMETRIC METHODS IN WORKS BY V.I.ARNOLD AND V.V. KOZLOV 1

ON GEOMETRIC METHODS IN WORKS BY V.I.ARNOLD AND V.V. KOZLOV 1 ON GEOMETRIC METHODS IN WORKS BY V.I.ARNOLD AND V.V. KOZLOV 1 A.D.Bruno Keldysh Institute of Applied Mathematics, Moscow, Russia arxiv:1401.6320v1 [math.ca] 24 Jan 2014 We give a survey of geometric methods

More information

ON THE PARAMETRIC LCP: A HISTORICAL PERSPECTIVE

ON THE PARAMETRIC LCP: A HISTORICAL PERSPECTIVE ON THE PARAMETRIC LCP: A HISTORICAL PERSPECTIVE Richard W. Cottle Department of Management Science and Engineering Stanford University ICCP 2014 Humboldt University Berlin August, 2014 1 / 55 The year

More information

ARTIN S CONJECTURE AND SYSTEMS OF DIAGONAL EQUATIONS

ARTIN S CONJECTURE AND SYSTEMS OF DIAGONAL EQUATIONS ARTIN S CONJECTURE AND SYSTEMS OF DIAGONAL EQUATIONS TREVOR D. WOOLEY Abstract. We show that Artin s conjecture concerning p-adic solubility of Diophantine equations fails for infinitely many systems of

More information

The Nearest Doubly Stochastic Matrix to a Real Matrix with the same First Moment

The Nearest Doubly Stochastic Matrix to a Real Matrix with the same First Moment he Nearest Doubly Stochastic Matrix to a Real Matrix with the same First Moment William Glunt 1, homas L. Hayden 2 and Robert Reams 2 1 Department of Mathematics and Computer Science, Austin Peay State

More information

A Dykstra-like algorithm for two monotone operators

A Dykstra-like algorithm for two monotone operators A Dykstra-like algorithm for two monotone operators Heinz H. Bauschke and Patrick L. Combettes Abstract Dykstra s algorithm employs the projectors onto two closed convex sets in a Hilbert space to construct

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

A convergence result for an Outer Approximation Scheme

A convergence result for an Outer Approximation Scheme A convergence result for an Outer Approximation Scheme R. S. Burachik Engenharia de Sistemas e Computação, COPPE-UFRJ, CP 68511, Rio de Janeiro, RJ, CEP 21941-972, Brazil regi@cos.ufrj.br J. O. Lopes Departamento

More information

Constrained maxima and Lagrangean saddlepoints

Constrained maxima and Lagrangean saddlepoints Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 10: Constrained maxima and Lagrangean saddlepoints 10.1 An alternative As an application

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Literature on Bregman divergences

Literature on Bregman divergences Literature on Bregman divergences Lecture series at Univ. Hawai i at Mānoa Peter Harremoës February 26, 2016 Information divergence was introduced by Kullback and Leibler [25] and later Kullback started

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

Second-order cone programming formulation for two player zero-sum game with chance constraints

Second-order cone programming formulation for two player zero-sum game with chance constraints Second-order cone programming formulation for two player zero-sum game with chance constraints Vikas Vikram Singh a, Abdel Lisser a a Laboratoire de Recherche en Informatique Université Paris Sud, 91405

More information

NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY

NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY J. Korean Math. Soc. 48 (011), No. 1, pp. 13 1 DOI 10.4134/JKMS.011.48.1.013 NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY Tilak Raj Gulati and Shiv Kumar Gupta Abstract. In this

More information

CONVEX OPTIMIZATION VIA LINEARIZATION. Miguel A. Goberna. Universidad de Alicante. Iberian Conference on Optimization Coimbra, November, 2006

CONVEX OPTIMIZATION VIA LINEARIZATION. Miguel A. Goberna. Universidad de Alicante. Iberian Conference on Optimization Coimbra, November, 2006 CONVEX OPTIMIZATION VIA LINEARIZATION Miguel A. Goberna Universidad de Alicante Iberian Conference on Optimization Coimbra, 16-18 November, 2006 Notation X denotes a l.c. Hausdorff t.v.s and X its topological

More information

A DUALITY ALGORITHM FOR THE OBSTACLE PROBLEM

A DUALITY ALGORITHM FOR THE OBSTACLE PROBLEM Ann. Acad. Rom. Sci. Ser. Math. Appl. ISSN 2066-6594 Vol. 5, No. -2 / 203 A DUALITY ALGORITHM FOR THE OBSTACLE PROBLEM Diana Merluşcă Abstract We consider the obstacle problem in Sobolev spaces, of order

More information

NEW MAXIMUM THEOREMS WITH STRICT QUASI-CONCAVITY. Won Kyu Kim and Ju Han Yoon. 1. Introduction

NEW MAXIMUM THEOREMS WITH STRICT QUASI-CONCAVITY. Won Kyu Kim and Ju Han Yoon. 1. Introduction Bull. Korean Math. Soc. 38 (2001), No. 3, pp. 565 573 NEW MAXIMUM THEOREMS WITH STRICT QUASI-CONCAVITY Won Kyu Kim and Ju Han Yoon Abstract. In this paper, we first prove the strict quasi-concavity of

More information

UNCLASSIFIED AD NUMBER LIMITATION CHANGES

UNCLASSIFIED AD NUMBER LIMITATION CHANGES TO: UNCLASSIFIED AD NUMBER AD237455 LIMITATION CHANGES Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational

More information

GYULA FARKAS WOULD ALSO FEEL PROUD

GYULA FARKAS WOULD ALSO FEEL PROUD GYULA FARKAS WOULD ALSO FEEL PROUD PABLO GUERRERO-GARCÍA a, ÁNGEL SANTOS-PALOMO a a Department of Applied Mathematics, University of Málaga, 29071 Málaga, Spain (Received 26 September 2003; In final form

More information

On convergence rate of the Douglas-Rachford operator splitting method

On convergence rate of the Douglas-Rachford operator splitting method On convergence rate of the Douglas-Rachford operator splitting method Bingsheng He and Xiaoming Yuan 2 Abstract. This note provides a simple proof on a O(/k) convergence rate for the Douglas- Rachford

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

On the Iteration Complexity of Some Projection Methods for Monotone Linear Variational Inequalities

On the Iteration Complexity of Some Projection Methods for Monotone Linear Variational Inequalities On the Iteration Complexity of Some Projection Methods for Monotone Linear Variational Inequalities Caihua Chen Xiaoling Fu Bingsheng He Xiaoming Yuan January 13, 2015 Abstract. Projection type methods

More information

A Dykstra-like algorithm for two monotone operators

A Dykstra-like algorithm for two monotone operators A Dykstra-like algorithm for two monotone operators Heinz H. Bauschke and Patrick L. Combettes December 28, 2007 --- version 1.04 Abstract Dykstra s algorithm employs the projectors onto two closed convex

More information

SOME ELEMENTARY GENERAL PRINCIPLES OF CONVEX ANALYSIS. A. Granas M. Lassonde. 1. Introduction

SOME ELEMENTARY GENERAL PRINCIPLES OF CONVEX ANALYSIS. A. Granas M. Lassonde. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 5, 1995, 23 37 SOME ELEMENTARY GENERAL PRINCIPLES OF CONVEX ANALYSIS A. Granas M. Lassonde Dedicated, with admiration,

More information

Cubic regularization of Newton s method for convex problems with constraints

Cubic regularization of Newton s method for convex problems with constraints CORE DISCUSSION PAPER 006/39 Cubic regularization of Newton s method for convex problems with constraints Yu. Nesterov March 31, 006 Abstract In this paper we derive efficiency estimates of the regularized

More information

Some Notes on Approximate Optimality Conditions in Scalar and Vector Optimization Problems

Some Notes on Approximate Optimality Conditions in Scalar and Vector Optimization Problems ISSN: 2281-1346 Department of Economics and Management DEM Working Paper Series Some Notes on Approximate Optimality Conditions in Scalar and Vector Optimization Problems Giorgio Giorgi (Università di

More information

SEMISTOCHASTIC DECOMPOSITION SCHEME IN MATHEMATICAL PROGRAMMING AND GAME THEORY

SEMISTOCHASTIC DECOMPOSITION SCHEME IN MATHEMATICAL PROGRAMMING AND GAME THEORY KYBERNETIKA- VOLUME 27 (1991), NUMBER 6 SEMISTOCHASTIC DECOMPOSITION SCHEME IN MATHEMATICAL PROGRAMMING AND GAME THEORY TRAN QUOC CHIEN This work deals with the optimization problem sup inf S(x, y), which

More information

COMPARISON PRINCIPLES FOR CONSTRAINED SUBHARMONICS PH.D. COURSE - SPRING 2019 UNIVERSITÀ DI MILANO

COMPARISON PRINCIPLES FOR CONSTRAINED SUBHARMONICS PH.D. COURSE - SPRING 2019 UNIVERSITÀ DI MILANO COMPARISON PRINCIPLES FOR CONSTRAINED SUBHARMONICS PH.D. COURSE - SPRING 2019 UNIVERSITÀ DI MILANO KEVIN R. PAYNE 1. Introduction Constant coefficient differential inequalities and inclusions, constraint

More information

Publications: Journal Articles

Publications: Journal Articles Publications: Over 80 total publications and presentations, including over 46 refereed journal articles, 6 books, over 25 papers, refereed and published in conference proceedings, one submitted work, and

More information

Part IB Optimisation

Part IB Optimisation Part IB Optimisation Theorems Based on lectures by F. A. Fischer Notes taken by Dexter Chua Easter 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

A Remark on the Regularity of Solutions of Maxwell s Equations on Lipschitz Domains

A Remark on the Regularity of Solutions of Maxwell s Equations on Lipschitz Domains A Remark on the Regularity of Solutions of Maxwell s Equations on Lipschitz Domains Martin Costabel Abstract Let u be a vector field on a bounded Lipschitz domain in R 3, and let u together with its divergence

More information

SIMILAR MARKOV CHAINS

SIMILAR MARKOV CHAINS SIMILAR MARKOV CHAINS by Phil Pollett The University of Queensland MAIN REFERENCES Convergence of Markov transition probabilities and their spectral properties 1. Vere-Jones, D. Geometric ergodicity in

More information

On constraint qualifications with generalized convexity and optimality conditions

On constraint qualifications with generalized convexity and optimality conditions On constraint qualifications with generalized convexity and optimality conditions Manh-Hung Nguyen, Do Van Luu To cite this version: Manh-Hung Nguyen, Do Van Luu. On constraint qualifications with generalized

More information

The Knaster problem and the geometry of high-dimensional cubes

The Knaster problem and the geometry of high-dimensional cubes The Knaster problem and the geometry of high-dimensional cubes B. S. Kashin (Moscow) S. J. Szarek (Paris & Cleveland) Abstract We study questions of the following type: Given positive semi-definite matrix

More information

A DUALITY THEOREM FOR NON-LINEAR PROGRAMMING* PHILIP WOLFE. The RAND Corporation

A DUALITY THEOREM FOR NON-LINEAR PROGRAMMING* PHILIP WOLFE. The RAND Corporation 239 A DUALITY THEOREM FOR N-LINEAR PROGRAMMING* BY PHILIP WOLFE The RAND Corporation Summary. A dual problem is formulated for the mathematical programming problem of minimizing a convex function under

More information

Inverse Problems and Optimal Design in Electricity and Magnetism

Inverse Problems and Optimal Design in Electricity and Magnetism Inverse Problems and Optimal Design in Electricity and Magnetism P. Neittaanmäki Department of Mathematics, University of Jyväskylä M. Rudnicki Institute of Electrical Engineering, Warsaw and A. Savini

More information

NUMERICAL MATHEMATICS AND COMPUTING

NUMERICAL MATHEMATICS AND COMPUTING NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific

More information

Tobias Holck Colding: Publications. 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint.

Tobias Holck Colding: Publications. 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint. Tobias Holck Colding: Publications 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint. 2. T.H. Colding and W.P. Minicozzi II, Analytical properties for degenerate equations,

More information

Subdifferentiability and the Duality Gap

Subdifferentiability and the Duality Gap Subdifferentiability and the Duality Gap Neil E. Gretsky (neg@math.ucr.edu) Department of Mathematics, University of California, Riverside Joseph M. Ostroy (ostroy@econ.ucla.edu) Department of Economics,

More information

AN INTRODUCTION TO EXTREME POINTS AND APPLICATIONS IN ISOMETRIC BANACH SPACE THEORY

AN INTRODUCTION TO EXTREME POINTS AND APPLICATIONS IN ISOMETRIC BANACH SPACE THEORY AN INTRODUCTION TO EXTREME POINTS AND APPLICATIONS IN ISOMETRIC BANACH SPACE THEORY AUDREY CURNOCK Abstract. This technical paper is the looking at extreme point structure from an isometric view point,

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

arxiv:math/ v1 [math.rt] 9 Oct 2004

arxiv:math/ v1 [math.rt] 9 Oct 2004 On compression of Bruhat Tits buildings Yurii A. Neretin arxiv:math/0410242v1 [math.rt] 9 Oct 2004 Consider an affine Bruhat-Tits building Lat n of the type A n 1 and the complex distance in Lat n, i.e.,

More information

GENERALIZED CONVEXITY AND OPTIMALITY CONDITIONS IN SCALAR AND VECTOR OPTIMIZATION

GENERALIZED CONVEXITY AND OPTIMALITY CONDITIONS IN SCALAR AND VECTOR OPTIMIZATION Chapter 4 GENERALIZED CONVEXITY AND OPTIMALITY CONDITIONS IN SCALAR AND VECTOR OPTIMIZATION Alberto Cambini Department of Statistics and Applied Mathematics University of Pisa, Via Cosmo Ridolfi 10 56124

More information

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE Journal of Applied Analysis Vol. 6, No. 1 (2000), pp. 139 148 A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE A. W. A. TAHA Received

More information

Some Contributions to Convex Infinite-Dimensional Optimization Duality

Some Contributions to Convex Infinite-Dimensional Optimization Duality Some Contributions to Convex Infinite-Dimensional Optimization Duality Marco A. López Alicante University King s College London Strand Campus June 2014 Introduction Consider the convex infinite programming

More information

Review: Stability of Bases and Frames of Reproducing Kernels in Model Spaces

Review: Stability of Bases and Frames of Reproducing Kernels in Model Spaces Claremont Colleges Scholarship @ Claremont Pomona Faculty Publications and Research Pomona Faculty Scholarship 1-1-2006 Review: Stability of Bases and Frames of Reproducing Kernels in Model Spaces Stephan

More information

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE Fixed Point Theory, Volume 6, No. 1, 2005, 59-69 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.htm WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE YASUNORI KIMURA Department

More information

Mathematics Camp for Economists. Rice University Summer 2016

Mathematics Camp for Economists. Rice University Summer 2016 Mathematics Camp for Economists Rice University Summer 2016 Logistics Instructor: TA: Schedule: Time: Location: Office Hours: Metin Uyanık, muyanik1@jhu.edu Atara Oliver, sao5@rice.edu July 1 - July 29,

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

J. Duncan, C.M. McGregor, Carleman s inequality, Amer. Math. Monthly 110 (2003), no. 5,

J. Duncan, C.M. McGregor, Carleman s inequality, Amer. Math. Monthly 110 (2003), no. 5, Publications Primitivity theorems for convolution algebras on McAlister monoids, Math. Proc. R. Ir. Acad. 114A (2014), 1 15. Finiteness and recognizability problems for substitution maps on two symbols,

More information

On Estimates of Biharmonic Functions on Lipschitz and Convex Domains

On Estimates of Biharmonic Functions on Lipschitz and Convex Domains The Journal of Geometric Analysis Volume 16, Number 4, 2006 On Estimates of Biharmonic Functions on Lipschitz and Convex Domains By Zhongwei Shen ABSTRACT. Using Maz ya type integral identities with power

More information

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA BULL. AUSRAL. MAH. SOC. VOL. 24 (1981), 357-366. 9C3 INVEX FUNCIONS AND CONSRAINED LOCAL MINIMA B.D. CRAVEN If a certain weakening of convexity holds for the objective and all constraint functions in a

More information

CONSTRAINED OPTIMALITY CRITERIA

CONSTRAINED OPTIMALITY CRITERIA 5 CONSTRAINED OPTIMALITY CRITERIA In Chapters 2 and 3, we discussed the necessary and sufficient optimality criteria for unconstrained optimization problems. But most engineering problems involve optimization

More information

Optimization: Insights and Applications. Jan Brinkhuis Vladimir Tikhomirov PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Optimization: Insights and Applications. Jan Brinkhuis Vladimir Tikhomirov PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Optimization: Insights and Applications Jan Brinkhuis Vladimir Tikhomirov PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Contents Preface 0.1 Optimization: insights and applications xiii 0.2 Lunch, dinner,

More information

PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS WITH A RANDOM TECHNOLOGY MATRIX

PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS WITH A RANDOM TECHNOLOGY MATRIX Math. Operationsforsch. u. Statist. 5 974, Heft 2. pp. 09 6. PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS WITH A RANDOM TECHNOLOGY MATRIX András Prékopa Technological University of Budapest and Computer

More information

Application of Harmonic Convexity to Multiobjective Non-linear Programming Problems

Application of Harmonic Convexity to Multiobjective Non-linear Programming Problems International Journal of Computational Science and Mathematics ISSN 0974-3189 Volume 2, Number 3 (2010), pp 255--266 International Research Publication House http://wwwirphousecom Application of Harmonic

More information

Absolute Value Programming

Absolute Value Programming O. L. Mangasarian Absolute Value Programming Abstract. We investigate equations, inequalities and mathematical programs involving absolute values of variables such as the equation Ax + B x = b, where A

More information

Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions. Marc Lassonde Université des Antilles et de la Guyane

Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions. Marc Lassonde Université des Antilles et de la Guyane Conference ADGO 2013 October 16, 2013 Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions Marc Lassonde Université des Antilles et de la Guyane Playa Blanca, Tongoy, Chile SUBDIFFERENTIAL

More information

Singular Value Decomposition

Singular Value Decomposition The Bulletin of Society for Mathematical Services and Standards Online: 2014-09-01 ISSN: 2277-8020, Vol. 11, pp 13-20 doi:10.18052/www.scipress.com/bsmass.11.13 2014 SciPress Ltd., Switzerland Singular

More information

Tobias Holck Colding: Publications

Tobias Holck Colding: Publications Tobias Holck Colding: Publications [1] T.H. Colding and W.P. Minicozzi II, The singular set of mean curvature flow with generic singularities, submitted 2014. [2] T.H. Colding and W.P. Minicozzi II, Lojasiewicz

More information

This research was partially supported by the Faculty Research and Development Fund of the University of North Carolina at Wilmington

This research was partially supported by the Faculty Research and Development Fund of the University of North Carolina at Wilmington LARGE SCALE GEOMETRIC PROGRAMMING: AN APPLICATION IN CODING THEORY Yaw O. Chang and John K. Karlof Mathematical Sciences Department The University of North Carolina at Wilmington This research was partially

More information

Numerical Analysis of Electromagnetic Fields

Numerical Analysis of Electromagnetic Fields Pei-bai Zhou Numerical Analysis of Electromagnetic Fields With 157 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Part 1 Universal Concepts

More information

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS Xiaofei Fan-Orzechowski Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony

More information

IBM Almaden Research Center,650 Harry Road Sun Jose, Calijornia and School of Mathematical Sciences Tel Aviv University Tel Aviv, Israel

IBM Almaden Research Center,650 Harry Road Sun Jose, Calijornia and School of Mathematical Sciences Tel Aviv University Tel Aviv, Israel and Nimrod Megiddo IBM Almaden Research Center,650 Harry Road Sun Jose, Calijornia 95120-6099 and School of Mathematical Sciences Tel Aviv University Tel Aviv, Israel Submitted by Richard Tapia ABSTRACT

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

CONSTRAINED NONLINEAR PROGRAMMING

CONSTRAINED NONLINEAR PROGRAMMING 149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

MAIN ARTICLES. In present paper we consider the Neumann problem for the operator equation

MAIN ARTICLES. In present paper we consider the Neumann problem for the operator equation Volume 14, 2010 1 MAIN ARTICLES THE NEUMANN PROBLEM FOR A DEGENERATE DIFFERENTIAL OPERATOR EQUATION Liparit Tepoyan Yerevan State University, Faculty of mathematics and mechanics Abstract. We consider

More information

SOR- and Jacobi-type Iterative Methods for Solving l 1 -l 2 Problems by Way of Fenchel Duality 1

SOR- and Jacobi-type Iterative Methods for Solving l 1 -l 2 Problems by Way of Fenchel Duality 1 Techincal Report 2010-011 SOR- and Jacobi-type Iterative Methods for Solving l 1 -l 2 Problems by Way of Fenchel Duality 1 Masao Fukushima 2 July 17 2010 Abstract We present an SOR-type algorithm and a

More information

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology March 2016 1 / 27 Constrained

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Bicolorings and Equitable Bicolorings of Matrices

Bicolorings and Equitable Bicolorings of Matrices Bicolorings and Equitable Bicolorings of Matrices Michele Conforti Gérard Cornuéjols Giacomo Zambelli dedicated to Manfred Padberg Abstract Two classical theorems of Ghouila-Houri and Berge characterize

More information

AN EXTREMUM PROPERTY OF SUMS OF EIGENVALUES' HELMUT WIELANDT

AN EXTREMUM PROPERTY OF SUMS OF EIGENVALUES' HELMUT WIELANDT AN EXTREMUM PROPERTY OF SUMS OF EIGENVALUES' HELMUT WIELANDT We present in this note a maximum-minimum characterization of sums like at+^+aa where a^ ^a are the eigenvalues of a hermitian nxn matrix. The

More information

AN EXTREMUM PROPERTY OF SUMS OF EIGENVALUES' HELMUT WIELANDT

AN EXTREMUM PROPERTY OF SUMS OF EIGENVALUES' HELMUT WIELANDT AN EXTREMUM PROPERTY OF SUMS OF EIGENVALUES' HELMUT WIELANDT We present in this note a maximum-minimum characterization of sums like at+^+aa where a^ ^a are the eigenvalues of a hermitian nxn matrix. The

More information