arxiv: v3 [math.ra] 17 May 2017

Size: px
Start display at page:

Download "arxiv: v3 [math.ra] 17 May 2017"

Transcription

1 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS A. S. GORDIENKO arxv: v3 [math.ra] 7 May 207 Abstract. At frst glace the oto of a algebra wth a geeralzed H-acto may appear too geeral, however t eables to work wth algebras edowed wth varous kds of addtoal structures e.g. Hopf comodule algebras, graded algebras, algebras wth a acto of a semgroup by atedomorphsms. Ths approach proves to be especally frutful the theory of polyomal dettes. We show that f A s a fte dmesoal ot ecessarly assocatve algebra smple wth respect to a geeralzed H-acto over a feld of characterstc 0, the there exsts lm c H A R + where c H A s the sequece of = codmesos of polyomal H-dettes of A. I partcular, f A s a fte dmesoal ot ecessarly group graded graded-smple algebra, the there exsts lm c gr A R + where c gr A = s the sequece of codmesos of graded polyomal dettes of A. I addto, we study the free-forgetful adjuctos correspodg to ot ecessarly group gradgs ad geeralzed H-actos.. Itroducto Study of polyomal dettes algebras s a mportat aspect of study of algebras themselves. It turs out that the asymptotc behavour of umerc characterstcs of polyomal dettes of a algebra s tghtly related to the structure of the algebra [6, 28]. I 980s, S. A. Amtsur cojectured that f a assocatve algebra A over a feld of characterstc 0 satsfes a otrval polyomal detty, the there exsts a teger PI-expoet lm c A where c A s the codmeso sequece of ordary polyomal dettes of A. See the defto of c A Remark 3. below. The orgal Amtsur cojecture was proved by A. Gambruo ad M. V. Zacev [5] 999. Its aalog for fte dmesoal Le algebras was proved by M. V. Zacev [28] I 20 A. Gambruo, I. P. Shestakov ad M. V. Zacev proved the aalog of the cojecture for fte dmesoal Jorda ad alteratve algebras [4]. I geeral, the aalog of Amtsur s cojecture for arbtrary o-assocatve algebras ad eve for fte dmesoal Le algebras s wrog. rst, the codmeso growth ca be overexpoetal [27]. Secod, the expoet of the codmeso growth ca be o-teger [2, 24, 25]. Thrd, 204 M. V. Zacev costructed a example of a fte dmesoal oassocatve algebra A for whch lm c A = ad lm c A > [29]. Algebras edowed wth a addtoal structure, e.g. a gradg, a acto of a group, a Le algebra or a Hopf algebra, fd ther applcatos may areas of mathematcs ad physcs. Gradgs o smple Le ad assocatve algebras have bee studed extesvely [3, 4, 5, 9]. or algebras wth a addtoal structure, t s atural to cosder the correspodg polyomal dettes. E. Aljadeff, A. Gambruo, ad D. La Matta [, 2, ] proved that f a assocatve PIalgebra s graded by a fte group, the the graded PI-expoet exsts ad t s a teger. The same s true for fte dmesoal assocatve ad Le algebras graded by arbtrary 200 Mathematcs Subject Classfcato. Prmary 7A30; Secodary 6R0, 6R50, 6T05, 7A36, 7A50, 8A40, 20C30. Key words ad phrases. Polyomal detty, H-module algebra, geeralzed H-acto, codmeso, PIexpoet, o-assocatve algebra, gradg, semgroup, free-forgetful adjucto. Supported by ods Weteschappeljk Oderzoek Vlaadere post doctoral fellowshp Belgum.

2 2 A. S. GORDIENKO groups [2, Theorem 3], [20, Theorem ],.e. the graded aalog of Amtsur s cojecture holds for group graded algebras. If H s a fte dmesoal semsmple Hopf algebra, the the codmesos of polyomal H-dettes of ay fte dmesoal H-module assocatve or Le algebra satsfy the aalog of Amtsur s cojecture too [9, Theorem 3], [20, Theorem 7]. If a algebra s graded by a semgroup, the ts graded PI-expoet ca be o-teger eve f the algebra tself s fte dmesoal ad assocatve [22, Theorem 5] see also [23]. I order to embrace the cases whe a algebra s graded by a semgroup or a fte group, or a group s actg o a algebra ot oly by automorphsms, but by at-automorphsms too, t s useful to cosder so-called geeralzed H-actos where H s a arbtrary assocatve algebra wth. See the defto of a geeralzed H-acto Secto 2. The example costructed [22, Theorem 5] shows that for geeralzed H-actos the expoet of the H-codmeso growth ca be o-teger eve for fte dmesoal H-smple assocatve algebras. Therefore, the atural questo arses as to whether H-PI-expoet exsts at least the case whe the algebra s H-smple. I 202 A. Gambruo ad M. V. Zacev proved the exstece of the ordary PI-expoet for ay smple algebra ot ecessarly assocatve [7, Theorem 3]. Recetly D. Repovš ad M. V. Zacev proved the exstece of the graded PI-expoet for fte dmesoal gradedsmple algebras graded by commutatve semgroups [26, Theorem 2]. I the preset artcle we combe A. Gambruo ad M. V. Zacev s techques wth the techques of geeralzed H-actos ad show that for ay fte dmesoal H-smple algebra wth a geeralzed H-acto there exsts a H-PI-expoet Theorem 6.. Ths eables to prove see Corollary 6.2 the exstece of the graded PI-expoet for ay fte dmesoal graded-smple algebra graded a very geeral sese ot ecessary by a semgroup, see the precse defto of such a gradg Example 2.3. Note that the oto of a H-smple algebra s much wder tha the oto of a smple algebra sce, e.g., a H-smple assocatve or Le algebra s ot eve ecessarly semsmple. Oe of the mportat steps the proof of Theorem 6. s Theorem 5.5 where we show that H-colegths of a fte dmesoal algebra wth a geeralzed H-acto are polyomally bouded see Corollary 5.6 for the aalog the graded case. Polyomal H-dettes ad graded polyomal dettes are elemets of the algebras {X H} ad {X T -gr } defed Sectos 3 ad 4, respectvely. I fact, f H s a arbtrary utal assocatve algebra ad T s a arbtrary set, the ether {X H} s a algebra wth a geeralzed H-acto, or {X T -gr } s a T -graded algebra whch, however, does ot prevet studyg polyomal H-dettes algebras wth geeralzed H-actos ad graded polyomal dettes T -graded algebras at all. I Secto 7 we show that f we elarge the categores of algebras a proper way, the both {X H} ad {X T -gr } wll correspod to free-forgetful adjuctos. 2. Algebras wth a geeralzed H-acto Let H be a arbtrary assocatve algebra wth over a feld. We say that a ot ecessarly assocatve algebra A s a algebra wth a geeralzed H-acto f A s a left H- module ad for every h H there exst some k N ad some h, h, h, h H, k, such that k hab = h ah b + h bh a for all a, b A. 2. = Equvaletly, there exst lear maps, Θ: H H H ot ecessarly coassocatve such that hab = h ah 2 b + h [] bh [2] a for all a, b A. Here we use the otato h = h h 2 ad Θh = h [] h [2].

3 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 3 Example 2.. A algebra A over a feld s a left H-module algebra for some Hopf algebra H f A s edowed wth a structure of a left H-module such that hab = h ah 2 b for all h H, a, b A. Here we use Sweedler s otato h = h h 2 where s the comultplcato H ad the sg of the sum s omtted. If A s a H-module algebra, the A s a algebra wth a geeralzed H-acto. Example 2.2. Recall that f T s a semgroup, the the semgroup algebra T over a feld s the vector space wth the formal bass t t T ad the multplcato duced by the oe T. Let A be a assocatve algebra wth a acto of a semgroup T by edomorphsms ad at-edomorphsms. The A s a algebra wth a geeralzed T -acto. Example 2.3. Let A = t T At be a graded algebra for some set of dces T,.e. for every s, t T there exsts r T such that A s A t A r. Deote ths gradg by Γ. Note that Γ defes o T a partal operato wth the doma T 0 := {s, t A s A t 0} by s t = r. Cosder the algebra T of fuctos from T to. The T acts o A aturally: ha = hta for all a A t. Let h t s := { f s=t, 0 f s t. If the support of Γ s fte, T 0 s fte too ad we have supp Γ := {t T A t 0} h r ab = s,t T 0, r=s t h s ah t b. 2.2 Sce the expresso s lear a ad b, t s suffcet to check t oly for homogeeous a, b. Note that h t t T s a bass T. Aga by the learty we get 2. for every h T, ad A s a algebra wth a geeralzed T -acto. Let A be a algebra wth a geeralzed H-acto for some assocatve algebra H wth over a feld. We say that a subspace V A s varat uder the H-acto f HV = V,.e. V s a H-submodule. If A 2 0 ad A has o o-trval two-sded H-varat deals, we say that A s H-smple. 3. Polyomal H-dettes Let be a feld ad let Y be a set. Deote by {Y } the absolutely free o-assocatve algebra o the set Y,.e. the algebra of all o-assocatve polyomals varables from Y ad coeffcets from the feld. The {Y } = = {Y } where {Y } s the lear spa of all moomals of total degree. Let H be a assocatve algebra over wth. Cosder the algebra {Y H} := H {Y } = wth the multplcato u w u 2 w 2 := u u 2 w w 2 for all u H j, u 2 H k, w {Y } j, w 2 {Y } k. We use the otato y h y h 2 2 y h := h h 2 h y y 2 y the arragemets of brackets o y j ad o y h j j are the same. Here h h 2 h H, y, y 2,..., y Y. I addto, we detfy Y wth the subset {y H y Y } {Y H}. Note that f γ β β Λ s a bass H, the {Y H} s somorphc to the absolutely free o-assocatve algebra over wth free formal geerators y γ β, β Λ, y Y. We call {Y H} the absolutely free o-assocatve algebra o Y wth symbols from H. Below we cosder {X H} where X := {x, x 2, x 3,... }. The elemets of {X H} are called H-polyomals.

4 4 A. S. GORDIENKO Let A be a algebra over wth a geeralzed H-acto. Ay map ψ : X A has the uque homomorphc exteso ψ : {X H} A such that ψx h = hψx for all N ad h H. A H-polyomal f {X H} s a polyomal H-detty of A f ψf = 0 for all maps ψ : X A. I other words, fx, x 2,..., x s a H-detty of A f ad oly f fa, a 2,..., a = 0 for ay a A. I ths case we wrte f 0. The set Id H A of all polyomal H-dettes of A s a deal of {X H}. We deote by W H the space of all multlear o-assocatve H-polyomals x,..., x, N,.e. W H = x h σ xh 2 σ2 xh σ h H, σ S {X H}. We cosder all possble arragemets of brackets. The the umber c H A := dm W H W H Id H A s called the th codmeso of polyomal H-dettes or the th H- codmeso of A. If f W H, the ts mage W H W H IdH A s deoted by f. The lmt PIexp H A := lm c H A, f t exsts, s called the H-PI-expoet of A. Remark 3.. Every algebra A s a H-module algebra for H =. I ths case the H-acto s trval ad we get ordary polyomal dettes ad ther codmesos c A. Oe of the ma tools the vestgato of polyomal dettes s provded by the represetato theory of symmetrc groups. The symmetrc group S acts o the space W H by permutg the varables. If the characterstc of the base feld s zero, W H IdH A the rreducble S -modules are descrbed by parttos λ = λ,..., λ s ad ther Youg dagrams D λ. The character χ H W A of the S -module H s called the th W H IdH A cocharacter of polyomal H-dettes of A. We ca rewrte t as a sum χ H A = λ ma, H, λχλ of rreducble characters χλ. The umber l H A := λ ma, H, λ s called the th colegth of polyomal H-dettes of A. Let e Tλ = a Tλ b Tλ ad e T λ = b Tλ a Tλ where a Tλ = π R Tλ π ad b Tλ = σ C Tλ sg σσ, be the Youg symmetrzers correspodg to a Youg tableau T λ. The Mλ = S e Tλ = S e T λ s a rreducble S -module correspodg to a partto λ. We refer the reader to [6, 8, 6] for a accout of S -represetatos ad ther applcatos to polyomal dettes. Remark 3.2. Note that here we do ot cosder ay H-acto o {Y H} tself. However { H} ca be vewed as a free fuctor f we elarge the category of algebras wth a geeralzed H-actos properly see Secto 7.2. Remark 3.3. Suppose A s assocatve. Oe ca aalogously costruct the free assocatve algebra X H o X wth symbols from H see [9, Secto 3.] ad treat polyomal H-dettes as elemets of a deal Id H assoca of X H. However, the map x h x h, N, h H, duces a somorphsm {X H}/ Id H assoca = X H / Id H A of algebras W ad somorphsms H P W H IdH A = H of S P -modules where N ad P H H IdH assoc A s the S -module of assocatve H-polyomals multlear x, x 2,..., x. I partcular, the deftos of codmesos ad cocharacters do ot deped of whether we use {X H} or X H. Aalogous remarks ca be made the case whe A s a Le algebra see [20, Secto.3]. Let T be a set ad let be a feld. 4. Graded polyomal dettes

5 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 5 Cosder the absolutely free o-assocatve algebra {X T -gr } o the set X T -gr := t T X t, X t = {x t, x t 2,... } We say that f s a graded polyomal detty of a T -graded algebra A = t T At ad wrte f 0 f fa t,..., a ts s = 0 for all a t j j A tj, j s. The set Id T -gr A of graded polyomal dettes of A s a deal of {X T -gr }. Example 4.. Cosder the multplcatve semgroup T = Z 2 = { 0, } ad the T -gradg UT 2 = UT 2 0 UT 2 o the algebra UT 2 of upper tragular 2 2 matrces 0 0 over a feld defed by UT 2 0 = ad UT 0 2 =. We have 0 0 ad x y Id T -gr UT 2. [x 0, y 0 ] := x 0 y 0 y 0 x 0 Id T -gr UT 2 Let W T -gr := x t σ xt 2 σ2 xt σ t T, σ S {X T -gr } wth all possble arragemets of brackets, N. The umber c T -gr A := dm W T -gr W T -gr Id T -gr A s called the th codmeso of graded polyomal dettes or the th graded codmeso of A. W The symmetrc group S acts o the space T -gr by permutg the varables: W T -gr Id T -gr A σx t x t := x t σ xt σ for N, σ S, k, k. The character χ T -gr A of the S -module W T -gr s called the th cocharacter of graded polyomal dettes of A. If char = 0, W T -gr Id T -gr A we ca rewrte t as a sum χ T -gr A = λ ma, T -gr, λχλ of rreducble characters χλ. The umber l T -gr A := λ ma, T -gr, λ s called the th colegth of graded polyomal dettes of A. The proposto below provdes a relato betwee the ordary ad the graded codmesos. Proposto 4.2. Let A be a T -graded algebra over a feld for some set T ot ecessarly fte. The c A c T -gr A. If T s fte, the c T -gr A T c A for all N. Proof. Let t,..., t T. Deote by W t,...,t the vector space of multlear o-assocatve polyomals x t,..., x t. The W T -gr = t,...,t W T t,...,t. Let f,..., f ca be a W bass where f W IdA W. The for every moomal w = x σ x σ wth some arragemet of brackets, σ S, there exst α w, such that x σ x σ c A = α w, f x,..., x IdA.

6 6 A. S. GORDIENKO or every t,..., t T we have ad x t σ xt σ ca = α σ, f x t,..., x t Id T -gr A W T -gr W T -gr Id T -gr A = f x t,..., x t c A, t,..., t T. Ths mples the upper boud. I order to get the lower boud, for a gve -tuple t,..., t T we cosder the map W ϕ t,...,t : W T -gr where ϕ W T -gr Id T -gr A t,...,t f = f x t,..., x t for f = fx,..., x P. Note that fx,..., x 0 s a ordary polyomal detty f ad oly f f x t,..., x t 0 s a graded polyomal detty for every t,..., t T. I other words, W IdA = ker ϕ t,...,t. Sce W s a fte dmesoal vector space, there exsts a fte t,...,t T subset Λ T such that W IdA = ker ϕ t,...,t. Cosder the dagoal embeddg t,...,t Λ W W T -gr = t,...,t T W t,...,t where the mage of fx,..., x W equals t,...,t f Λ x t,..., x t. The our W choce of Λ mples that the duced map W IdA s a embeddg ad the W T -gr Id T -gr A lower boud follows. The lmt PIexp T -gr A := lm A f t exsts s called the graded PI-expoet of c T -gr A. I Example 2.3 we have show that each T -graded algebra A wth a fte support s a algebra wth a geeralzed T -acto. The lemma below shows that stead of studyg graded codmesos ad cocharacters of A we ca study codmesos ad cocharacters of ts polyomal T -dettes. Lemma 4.3. Let Γ: A = t T At be a gradg o a algebra A over a feld by a set T such that supp Γ s fte. The c T -gr A = c T A ad χ T -gr A = χ T A for all N. If, addto, char = 0, we have l T -gr A = l T A. Proof. Let ξ : {X T } {X T -gr } be the algebra homomorphsm defed by ξx h = htx t, N, h T. Suppose t supp Γ f Id T A. Cosder a arbtrary homomorphsm ψ : {X T -gr } A such that ψx t A t for all t T ad N. The the algebra homomorphsm ψξ : {X T } A satsfes the codto ψξx h = t supp Γ htψ x t = h t supp Γ W T -gr ψ x t = h ψξx.

7 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 7 Thus ψξf = 0 ad ξf Id T -gr A. Hece ξ Id T A ξ : {X T }/ Id T A {X T -gr }/ Id T -gr A the homomorphsm duced by ξ. Let η : {X T -gr } {X T } be the algebra homomorphsm defed by η x t = x ht Id T -gr A. Deote by for all N ad t T. Cosder a arbtrary graded polyomal detty f Id T -gr A. Let ψ : {X T } A be a homomorphsm satsfyg the codto ψx h = hψx for every N ad h T. The for ay N ad g, t T we have { 0 h g ψη x t f g t, = h g ψx ht = h g h t ψx = ψη x t f g = t. Thus ψη A t. Therefore, ψηf = 0 ad ηid T -gr A Id T A. Deote by x t η : {X T -gr }/ Id T -gr A {X T }/ Id T A the duced homomorphsm. Below we use the otato f = f + Id T A {X T }/ Id T A for f {X T } ad f = f + Id T -gr A {X T -gr }/ Id T -gr A for f {X T -gr }. Observe that x h for every h T ad N. Hece η ξ x h = η t supp Γ t supp Γ htx ht ht x t Id T A = t supp Γ ht x ht for every h T ad N. Thus η ξ = d {X T }/ Id T sce {X T }/ Id T A s A geerated by x h where h T ad N. Moreover ξ η x t ht t = ξ x = x for every t supp Γ ad N. Therefore, ξ η = d {X T -gr }/ Id T -gr A ad {XT -gr }/ Id T -gr A = {X T }/ Id T A as algebras. The restrcto of ξ provdes the somorphsm of the S -modules W T W T T -gr ad W. Hece Id T A W T -gr Id T -gr A c T A = dm W T W T = x h T -gr Id T A = dm W W T -gr Id T -gr A = ct -gr A ad χ T -gr A = χ T A for all N. If, addto, char = 0, we have l T -gr A = l T A. Remark 4.4. Aga, aalogously to Remark 3.3, the case whe A s a assocatve or Le algebra, oe ca use, respectvely, free assocatve or Le graded algebras, however the graded codmesos wll be the same. 5. Upper boud for H-colegths Throughout Sectos 5 ad 6 we assume that the characterstc of the base feld s 0. If A s a ordary algebra, the the ordary polyomal dettes ad cocharacters of A ca be defed as H-dettes ad H-cocharacters for H = : W := W, χ A := χ A, ma, λ := ma,, λ, IdA := Id A.

8 8 A. S. GORDIENKO I [3, Theorem ], A. Gambruo, S. P. Mshcheko, ad M. V. Zacev proved that l A = λ ma, λ dm A + dm A2 +dm A 5. for all N. It turs out that for H-codmesos of fte dmesoal algebras wth a geeralzed H-acto we have the same upper boud Theorem 5.5 below. Let A be a fte dmesoal algebra wth a geeralzed H-acto for some assocatve algebra H wth. Lemma 5.. Let C be a utal commutatve assocatve algebra over. Defe o A C the structure of a algebra wth a geeralzed H-acto by ha c := ha c for a A ad c C. The Id H A C = Id H A. Proof. Sce C s utal, A C cotas a H-varat subalgebra somorphc to A ad therefore Id H A C Id H A. The proof of the coverse cluso s completely aalogous to the case of assocatve algebras wthout a acto [6, Lemma.4.2]. Let a,..., a s be a bass A. x a umber k N. Deote by [ξ j s, j k] the utal algebra of commutatve assocatve polyomals the varables ξ j wth coeffcets from. The algebra A [ξ j s, j k] s aga a algebra wth a geeralzed H-acto va ha f := ha f for a A ad f [ξ j s, j k]. Deote by Ãk the tersecto of all H-varat subalgebras of A [ξ j s, j k] cotag the elemets ξ j := s = a ξ j where j k. Lemma 5.2. Let f = fx,..., x k {X H}. The f Id H A f ad oly f fξ,..., ξ k = 0 Ãk. Proof. Lemma 5. mples Id H A = Id H A [ξ j s, j k] Id H Ãk. I partcular, f Id H A mples fξ,..., ξ k = 0. Coversely, suppose fξ,..., ξ k = 0. We clam that fb,..., b k = 0 for all b j A. Ideed, b j = s = α ja for some α j. Cosder the homomorphsm ϕ: A [ξ j s, j k] A of algebras ad H-modules defed by a ξ j α j a for all a A. The ad f Id H A. fb,..., b k = fϕξ,..., ϕξ k = ϕfξ,..., ξ k = 0 Lemma 5.3. Deote by R k be the lear spa Ãk of all products h ξ h ξ where h j H ad j k for j. The dm R k dm A + k dm A for all N. Proof. The space R k A [ξ j s, j k] s a subspace of the lear spa of elemets a l ξ s j j where l s = dm A, s j Z +, s j =. The umber of s, j k s, j k such elemets does ot exceed dm A + k dm A, ad we get the upper boud. Now we show that all rreducble S -submodules, that occur the decomposto of W H wth ozero multplctes, correspod to Youg dagrams of heght less tha or W H Id H A equal to dm A. Lemma 5.4. Let λ, N. Suppose λ dm A+ > 0. The ma, H, λ = 0.

9 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 9 Proof. It s suffcet to prove that e T λ f Id H A for all f W H. x some bass of A. Sce polyomals are multlear, t s suffcet to substtute oly bass elemets. Note that e T λ = b Tλ a Tλ where b Tλ alterates the varables of each colum of T λ. Hece f we make a substtuto ad e T λ f does ot vash, ths mples that dfferet bass elemets are substtuted for the varables of each colum. But f λ dm A+ > 0, the the legth of the frst colum s greater tha dm A. Therefore, e T λ f Id H A. Now we ca prove the ma result of ths secto. Theorem 5.5. Let A be a fte dmesoal algebra wth a geeralzed H-acto for some assocatve algebra H wth over a feld of characterstc 0. The for all N. l H A dm A + dm A2 +dm A Proof. x for each partto { λ a Youg tableux T λ of the shape λ. The for λ, µ etλ f λ = µ, we have e Tλ S e Tµ = See e.g. [0, Lemma 4.23 ad Exercse 4.24]. 0 f λ µ. Hece the multplcty ma, H, λ of Mλ = S e Tλ equals dm e W H IdH A T. λ W H IdH A I other words, ma, H, λ equals the maxmal umber m of H-polyomals f,..., f m W H such that g = α e Tλ f +... α m e Tλ f m Id H A for some α l always mples α =... = α m = 0. Deote by k j s the umber the, jth box of T λ. The for a fxed each e Tλ f l s symmetrc the varables x k,..., x kλ. Applyg the learzato procedure see e.g. [6, Secto.3], we obta that g s a polyomal H-detty f ad oly f g s a polyomal H-detty, where g s obtaed from g by the substtuto x kj x for all ad j. Deote the umber of rows T λ by k. By Lemma 5.4, we may assume that k dm A. The H-polyomal g depeds o the varables x,..., x k ad Lemma 5.2 mples that g Id H A f ad oly f gξ,..., ξ k = 0 Ãk. Note that gξ,..., ξ k = α u + + α m u m where u l s the value of e Tλ f l uder the substtuto x kj ξ for k ad j λ. Hece all u R k ad f m > dm A + k dm A, the by Lemma 5.3 for ay choce of f the elemets u are learly depedat ad gξ,..., ξ k = α u + + α m u m = 0 for some otrval α. I partcular, α e Tλ f +... α m e Tλ f m Id H A ad ma, H, λ < m. Hece for ay λ we have ma, H, λ dm A + k dm A dm A + dm A2. Sce the umber of all parttos λ of heght ot greater tha dm A does ot exceed dm A, we get the upper boud. By Lemma 4.3 above, f a fte dmesoal algebra A s graded by a set T, the the colegths l T -gr A of graded polyomal dettes of A are equal to the T -colegths l T A. Thus we mmedately get the followg corollary of Theorem 5.5: Corollary 5.6. Let A be a fte dmesoal algebra over a feld of characterstc 0 graded by a set T. The l T -gr A dm A + dm A2 +dm A for all N. 6. Exstece of the H-PI-expoet for H-smple algebras I Theorem 6. below we prove that for every fte dmesoal H-smple algebra there exsts a H-PI-expoet. Let Φx,..., x s = x x for x,..., x s > 0. Sce lm x +0 x x =, we may assume that xxs s Φ s a cotuous fucto for x,..., x s 0. W H W H

10 0 A. S. GORDIENKO Theorem 6.. Let A be a fte dmesoal H-smple algebra for some assocatve algebra H wth over a feld of characterstc 0, dm A = s. Let λ da := lm Φ,..., λ s. The there exsts max λ, ma,h,λ 0 PIexp H A := lm c H A = da. Theorem 6. wll be proved below. Aga, combg Theorem 6. wth Lemma 4.3 we get: Corollary 6.2. Let A be a fte dmesoal algebra over a feld of characterstc 0 graded by a set T such that A does ot have o-trval graded deals. The there exsts PIexp T -gr A = lm A. c T -gr rst we prove that the H-codmeso sequece s o-decreasg for ay H-smple algebra. Lemma 6.3. Let A be a H-smple algebra for some assocatve algebra H wth over ay feld. The c H A c H +A for all N. Proof. x some N. Let f x,..., x,..., f c H Ax,..., x be such H- polyomals that ther mages form a bass W H. W H Id H A Suppose the H-polyomals f x,..., x x +,..., f c H Ax,..., x x + are learly depedet modulo Id H A. The there exst α,..., α c H A such that α f a,..., a a α c H Af c H Aa,..., a a + = 0 for all a A. Sce A s H-smple, AA = A, ad α f a,..., a + + α c H Af c H Aa,..., a = 0 for all a A. However, f x,..., x,..., f c H Ax,..., x are learly depedet modulo Id H A. Hece α = = α c H A = 0, f x,..., x x +,..., f c H Ax,..., x x + are learly depedet modulo Id H A, ad c H A c H +A. Next we prove the upper boud. Theorem 6.4. Let A be a fte dmesoal algebra wth a geeralzed H-acto for some assocatve algebra H wth over a feld of characterstc 0, dm A = s. The there exst C > 0 ad r R such that c H A C r max λ, ma,h,λ 0 λ Φ,..., λ s for all N. Proof. Let λ such that ma, H, λ 0. By the hook formula, dm Mλ =!,j h j where h j s the legth of the hook wth the edge, j the Youg dagram D λ. Hece dm Mλ! λ! λ s!. By the Strlg formula, for all suffcetly large we have e dm Mλ C r λ e λ λs e λs = C r C r λ λ Φ λs λ s λ,..., λ s 6.

11 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS for some C > 0 ad r R that do ot deped o λ. Together wth Theorem 5.5 ths yelds the theorem. Throughout the rest of the secto we work uder the assumptos of Theorem 6.. Suppose λ, µ m, S f = Mλ, ad Sm f2 = Mµ for some m, N, f W H ad f 2 Wm H. The the mage of the polyomal f x,..., x f 2 x +,..., x m+ geerates a S m+ -submodule of W H m+ W H m+ IdH A whch s a homomorphc mage of Mλ Mµ := Mλ Mµ S m+ := S m+ S S m Mλ Mµ. By the Lttlewood Rchardso rule, all rreducble compoets the decomposto of Mλ Mµ correspod to Youg dagrams D ν that are obtaed from D λ+µ by pushg some boxes dow. By our assumptos, the heght of D ν caot be greater tha s = dm A. Aother remark s that, the process of pushg boxes dow, the value of Φ s o-decreasg sce the fucto x x ξ x ξ x s creasg as x 0; ξ 2 for fxed 0 < ξ. Lemma 6.5. There exsts a costat N N such that for every ε > 0 there exst a umber ñ N, atural umbers < 2 < 3 <... such that + N + ñ, ad parttos λ, m A, H, λ 0 such that Φ λ,..., λ s da ε for all N. Proof. Note that sce A s H-smple, for every a, b A, a 0, b 0, there exst some a,..., a m, ã,..., ã m, b,..., b k, b,..., b k A, k, k, m, m Z +, h, h 2 H, such that a a m a hã ã m b b k b h 2 b b k 0 for some arragemets of brackets o the multplers. Sce A s fte dmesoal, we ca choose such elemets for each par a, b of bass elemets ad deote by N the maxmal k + k + m + m amog all pars of bass elemets. Thus we may assume that for arbtary a, b A, a 0, b 0, we have k + k + m + m N. µ Now we choose q N such that Φ,..., µs da ε/2 ad ma, H, µ 0 for some q q µ q. Recall that Φ s cotuous o [0; ] s ad therefore uformly cotuous o [0; ] s sce [0; ] s s a compact. Sce we ca take q arbtrarly large, we may assume also that µ + j= Φ d j q + µ 2, q + µ s,..., q + = µ q Φ + + j= d j q j= d j q j= d j, + µ 2 q j= d j q j= d j,..., + µ s q j= d j q j= d j da ε 6.2 for all N ad all 0 d N. Choose f Wq H \ Id H A such that S f = Mµ. Remarks made the begg of the proof mply that for some arragemets of brackets, some h, h 2 H, ad some k, k, m, m 0 such that d := k + k + m + m N, we have h f := y y k f h x,..., x q ỹ ỹ k z z m f 2 x,..., x q z z m / Id H A. Cosder the S q+k+ k-submodule M of W H q+k+ k W H q+k+ k IdH A y y k f h x,..., x q ỹ ỹ k. The M s a homomorphc mage of Mµ S k+ k := Mµ S k+ k S q+k+ k. geerated by the mage of

12 2 A. S. GORDIENKO Sce all parttos of k + k are obtaed from the row of legth k + k by pushg some boxes dow, by the Lttlewood Rchardso rule, all the parttos the decomposto of M are obtaed from µ +k + k, µ 2,..., µ s by pushg some boxes dow. The same argumets h ca be appled to z z m f 2 x,..., x q z z m. Let := 2q + d ad let λ be oe of the parttos correspodg to the rreducble compoets the decomposto of S f. remark before the lemma, we have Φ λ The by 6.2, the remarks above ad the,..., λ s s da ε. Aga, f 2 := y y k f h h x,..., x q ỹ ỹ k z z m f 2 x,..., x q z z m / Id H A for some arragemets of brackets, some h, h 2 H, ad some k, k, m, m 0, d 2 := k + k + m + m N maybe dfferet from those for f. Aga, we defe 2 := 3q + d + d 2. Deote by λ 2 oe of the parttos correspodg to the rreducble compoets the decomposto of S 2 f2. We cotue ths procedure ad prove the lemma. Proof of Theorem 6.. x some ε > 0. Cosder N ad λ from Lemma 6.5. We have c H A dm Mλ =!,j h j C r λ λ λ λ s!! + s! λ s + s! r s! C e λ λ λ s e λ ss λ! λ s = C r Φ λ s e λ,..., λ s for some C > 0 ad r 0 whch do ot deped o. Let. The < + for some N. Takg to accout Lemma 6.3 ad the fact that Φx, x 2,..., x s as 0 x,..., x s, we get c H A c H A C + N + ñ r Φ λ N ñ,..., λ s C + N + ñ r N ñ da ε Hece lm c H A da ε. Sce ε > 0 s arbtary, we get lm c H A da. Now Theorem 6.4 yelds lm c H A = da.. 7. ree-forgetful adjuctos correspodg to gradgs ad geeralzed H-actos I ths secto we aalyze the free costructos from Sectos 3 ad 4 from the categorcal pot of vew. Here we cosder the categores of ot ecessarly assocatve algebras, though the aalogous adjuctos, of course, exst the case of assocatve ad Le algebras too.

13 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS Gradgs. Let T be a set ad let be a feld. Deote by Vect T -gr the category where the objects are all T -graded vector spaces over,.e. vector spaces V wth a fxed decomposto V = t T V t, ad the sets Vect T -gr V, W of morphsms betwee V = t T V t ad W = t T W t cosst of all lear maps ϕ: V W such that ϕ V t W t for all t T. Deote by NAAlg T -pgr ot ecessarly assocatve partally T -graded algebras the category where the objects are all ot ecessarly assocatve algebras A over wth fxed subspaces t T At A the cluso ca be proper graded by T ad f A t T At ad B t T Bt are two such objects the, by the defto, the set NAAlg T -pgr A, B of morphsms A B cossts of all algebra homomorphsms ϕ: A B such that ϕa t B t for every t T. Deote by U : NAAlg T -pgr Vect T -gr the forgetful fuctor that assgs to each object A t T At the T -graded vector space t T At ad restrcts homomorphsms to the fxed subspaces. Let V = t T V t be a T -graded space. Let Y t be bases V t. Deote by KV the absolutely free o-assocatve algebra {Y } o the bass Y = t T Y t. I the bass varat form, KV = = all possble arragemets of brackets V V }{{} ad the multplcato s defed by vw = v w the arragemet of brackets both sdes s the same. We detfy V wth the correspodg subspace KV ad treat KV V = t T V t as a object of NAAlg T -pgr. or each ϕ Vect T -gr V, W there exsts a uque algebra homomorphsm Kϕ: KV KW such that Kϕ V = ϕ. Proposto U : NAAlg T -pgr 7.. The fuctor K : Vect T -gr NAAlg T -pgr Vect T -gr. s the left adjot to Proof. If V Vect T -gr ad A NAAlg T -pgr, the each morphsm KV A s uquely determed by ts restrcto to V. Hece we obta a atural bjecto NAAlg T -pgr KV, A Vect T -gr V, UA. Suppose ow that V = t T V t where V t are the vector spaces wth the formal bases. The KV ca be detfed wth {X T -gr } from Secto 4. Every T -graded algebra x t N A ca be treated as a object of NAAlg T -pgr where the subspace t T At cocdes wth A. I ths case we have a bjecto NAAlg T -pgr KV, A Vect T -gr V, UA whch meas that every map ψ : X T -gr A, such that ψ X t A t for each t T, ca be uquely exteded to a algebra homomorphsm ψ : KV A such that ψ X t A t Geeralzed H-actos. Let H be a utal assocatve algebra over a feld. Deote by H M the category of left H-modules ad by H NAAlgSubMod ot ecessarly assocatve algebras wth subspaces that are H-modules the category where the objects are all ot ecessarly assocatve algebras A over wth fxed subspaces A 0 A the cluso ca be proper, whch are left H-modules, ad for objects A A 0 ad B B 0 the set HNAAlgSubModA, B of morphsms cossts of all algebra homomorphsms ϕ: A B where ϕa 0 B 0 ad ϕ A0 s a homomorphsm of H-modules. Here we aga have a obvous forgetful fuctor U : H NAAlgSubMod H M where UA := A 0 ad Uϕ := ϕ A0.

14 4 A. S. GORDIENKO Let K be a fuctor H M H NAAlgSubMod that assgs to each left H-module V the absolutely free assocatve algebra KV := {Y } where Y s a bass V. I other words, KV = V } {{ V } = all possble arragemets of brackets ad the multplcato s defed by vw = v w the arragemet of brackets both sdes s the same. We detfy V wth the correspodg subspace KV ad treat KV V as a object of H NAAlgSubMod. or each ϕ Vect T -gr V, W there exsts a uque algebra homomorphsm Kϕ: KV KW such that Kϕ V = ϕ. Proposto 7.2. The fuctor K : H M H NAAlgSubMod s the left adjot to U : H NAAlgSubMod H M. Proof. If V H M ad A H NAAlgSubMod, the each morphsm KV A s uquely determed by ts restrcto to V. Hece we obta a atural bjecto HNAAlgSubModKV, A H MV, UA. Suppose ow that V s the free left H-module wth a formal H-bass Y. The KV ca be detfed wth {Y H} from Secto 3. Every algebra A wth a geeralzed H-acto ca be treated as a object of H NAAlgSubMod where the H-module A 0 cocdes wth A. I ths case we have a bjecto H NAAlgSubModKV, A H MV, UA whch meas that every map ψ : Y A ca be uquely exteded to a algebra homomorphsm ψ : KV A such that ψ hy = h ψ y for every y Y. Refereces [] Aljadeff, E., Gambruo, A., Multalteratg graded polyomals ad growth of polyomal dettes, Proc. Amer. Math. Soc., 4:9 203, [2] Aljadeff, E., Gambruo, A., La Matta, D., Graded polyomal dettes ad expoetal growth, J. ree agew. Math., , [3] Bahtur, Yu. A., Zacev, M. V. Group gradgs o matrx algebras. Caad. Math. Bull., 45:4 2002, [4] Bahtur, Yu. A., Sehgal, S. K., Zacev, M. V. Group gradgs o assocatve algebras. J. Algebra, , [5] Bahtur, Yu. A., Zacev, M. V., Sehgal, S. K. te-dmesoal smple graded algebras. Sbork: Mathematcs, 99:7 2008, [6] Bakhtur, Yu. A. Idetcal relatos Le algebras. VNU Scece Press, Utrecht, 987. [7] Berele, A. Cocharacter sequeces for algebras wth Hopf algebra actos. J. Algebra, , [8] Dresky, V. S. ree algebras ad PI-algebras: graduate course algebra. Sgapore, Sprger-Verlag, [9] Elduque, A., Kochetov, M. V. Gradgs o smple Le algebras. AMS Mathematcal Surveys ad Moographs Vol. 89, Provdece, R.I., 203. [0] ulto, W., Harrs, J. Represetato theory: a frst course. New York, Sprger-Verlag, 99. [] Gambruo, A., La Matta, D., Graded polyomal dettes ad codmesos: computg the expoetal growth, Adv. Math., , [2] Gambruo, A., Mshcheko, S. P., Zacev, M. V. Codmesos of algebras ad growth fuctos. Adv. Math., , [3] Gambruo, A., Mshcheko, S. P., Zacev, M. V. Algebras wth termedate growth of the codmesos. Adv. Appl. Math., [4] Gambruo, A., Shestakov, I.P., Zacev, M. V. te-dmesoal o-assocatve algebras ad codmeso growth. Adv. Appl. Math., 47 20, [5] Gambruo, A., Zacev, M. V. Expoetal codmeso growth of P.I. algebras: a exact estmate, Adv. Math., ,

15 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 5 [6] Gambruo, A., Zacev, M. V. Polyomal dettes ad asymptotc methods. AMS Mathematcal Surveys ad Moographs 22, Provdece, R.I., [7] Gambruo, A., Zacev, M. V. O codmeso growth of fte-dmesoal Le superalgebras. J. Lodo Math. Soc., 85:2 202, [8] Gordeko, A. S. Graded polyomal dettes, group actos, ad expoetal growth of Le algebras. J. Algebra, , [9] Gordeko, A. S. Amtsur s cojecture for assocatve algebras wth a geeralzed Hopf acto. J. Pure ad Appl. Alg., 27:8 203, [20] Gordeko, A. S. Amtsur s cojecture for polyomal H-dettes of H-module Le algebras. Tra. Amer. Math. Soc., 367: 205, [2] Gordeko, A. S. Co-stablty of radcals ad ts applcatos to PI-theory. Algebra Colloqum, 23:3 206, [22] Gordeko, A. S. Semgroup graded algebras ad codmeso growth of graded polyomal dettes. J. Algebra, , [23] Gordeko, A. S., Jasses, G., Jespers, E. Semgroup graded algebras ad graded PI-expoet. Israel J. Math. To appear. [24] Mshcheko, S. P., Zacev M. V. A example of a varety of Le algebras wth a fractoal expoet. J. Math. Sc. New York, 93:6 999, [25] Mshcheko, S.P., Verevk, A.B., Zatsev, M.V. A suffcet codto for cocdece of lower ad upper expoets of the varety of lear algebras. Mosc. Uv. Math. Bull., 66:2 20, [26] Repovš, D., Zacev, M. V. Idettes of graded smple algebras. Lear ad Multlear Algebra, 65: 207, [27] Volcheko, I. B. Varetes of Le algebras wth detty [[X, X 2, X 3 ], [X 4, X 5, X 6 ]] = 0 over a feld of characterstc zero. Sbrsk. Mat. Zh., 25:3 984, I Russa. [28] Zatsev, M. V. Itegralty of expoets of growth of dettes of fte-dmesoal Le algebras. Izv. Math., , [29] Zacev, M. V. O exstece of PI-expoets of codmeso growth. Electro. Res. Aouc. Math. Sc., 2 204, 3 9. Vrje Uverstet Brussel, Belgum E-mal address: alexey.gordeko@vub.ac.be

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Involution Codimensions of Finite Dimensional Algebras and Exponential Growth

Involution Codimensions of Finite Dimensional Algebras and Exponential Growth Joural of Algebra 222, 471484 1999 do:10.1006jabr.1999.8016, avalable ole at http:www.dealbrary.com o Ivoluto Codmesos of Fte Dmesoal Algebras ad Expoetal Growth A. Gambruo Dpartmeto d Matematca e Applcazo,

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

The Lie Algebra of Smooth Sections of a T-bundle

The Lie Algebra of Smooth Sections of a T-bundle IST Iteratoal Joural of Egeerg Scece, Vol 7, No3-4, 6, Page 8-85 The Le Algera of Smooth Sectos of a T-udle Nadafhah ad H R Salm oghaddam Astract: I ths artcle, we geeralze the cocept of the Le algera

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia JKAU: Sc., O vol. the Prmtve, pp. 55-62 Classes (49 of A.H. K (BU) / 999 A.D.) * 55 O the Prmtve Classes of K * (BU) KHALED S. FELALI Departmet of Mathematcal Sceces, Umm Al-Qura Uversty, Makkah Al-Mukarramah,

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Galois and Post Algebras of Compositions (Superpositions)

Galois and Post Algebras of Compositions (Superpositions) Pure ad Appled Mathematcs Joural 07; 6(): -9 http://www.scecepublshggroup.com/j/pamj do: 0.68/j.pamj.07060. IN: 6-9790 (Prt); IN: 6-98 (Ole) Galos ad Post Algebras of Compostos (uperpostos) Maydm Malkov

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

13. Dedekind Domains. 13. Dedekind Domains 117

13. Dedekind Domains. 13. Dedekind Domains 117 3. Dedekd Domas 7 3. Dedekd Domas I the last chapter we have maly studed -dmesoal regular local rgs,. e. geometrcally the local propertes of smooth pots o curves. We ow wat to patch these local results

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES Joural of Algebra Number Theory: Advaces ad Applcatos Volume 6 Number 6 Pages 5-7 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/.864/ataa_77 A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Some properties of symmetry classes of tensors

Some properties of symmetry classes of tensors The d Aual Meetg Mathematcs (AMM 07) Departmet of Mathematcs, Faculty of Scece Chag Ma Uversty, Chag Ma Thalad Some propertes of symmetry classes of tesors Kulathda Chmla, ad Kjt Rodtes Departmet of Mathematcs,

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection Theoretcal Mathematcs & Applcatos vol. 4 o. 4 04-7 ISS: 79-9687 prt 79-9709 ole Scepress Ltd 04 O Submafolds of a Almost r-paracotact emaa Mafold Edowed wth a Quarter Symmetrc Metrc Coecto Mob Ahmad Abdullah.

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

The Role of Root System in Classification of Symmetric Spaces

The Role of Root System in Classification of Symmetric Spaces Amerca Joural of Mathematcs ad Statstcs 2016, 6(5: 197-202 DOI: 10.5923/j.ajms.20160605.01 The Role of Root System Classfcato of Symmetrc Spaces M-Alam A. H. Ahmed 1,2 1 Departmet of Mathematcs, Faculty

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

arxiv: v2 [math.ag] 9 Jun 2015

arxiv: v2 [math.ag] 9 Jun 2015 THE EULER CHARATERISTIC OF THE GENERALIZED KUMMER SCHEME OF AN ABELIAN THREEFOLD Mart G. Gulbradse Adrea T. Rcolf arxv:1506.01229v2 [math.ag] 9 Ju 2015 Abstract Let X be a Abela threefold. We prove a formula,

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

TOPOLOGICALLY IRREDUCIBLE REPRESENTATIONS AND RADICALS IN BANACH ALGEBRAS

TOPOLOGICALLY IRREDUCIBLE REPRESENTATIONS AND RADICALS IN BANACH ALGEBRAS AND RADICALS IN BANACH ALGEBRAS P G DIXON [Receved 6 Jue 995 Revsed 7 August 995 ad 5 February 996] Itroducto The Jacobso radcal of a assocatve algebra s the tersecto of the kerels of the strctly rreducble

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje. Iteratoal Joural of Fuzzy Mathematcs ad Systems. ISSN 2248-9940 Volume 3, Number 5 (2013), pp. 375-379 Research Ida Publcatos http://www.rpublcato.com O L- Fuzzy Sets T. Rama Rao, Ch. Prabhakara Rao, Dawt

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

PERRON FROBENIUS THEOREM FOR NONNEGATIVE TENSORS K.C. CHANG, KELLY PEARSON, AND TAN ZHANG

PERRON FROBENIUS THEOREM FOR NONNEGATIVE TENSORS K.C. CHANG, KELLY PEARSON, AND TAN ZHANG PERRON FROBENIUS THEOREM FOR NONNEGATIVE TENSORS K.C. CHANG, KELLY PEARSON, AND TAN ZHANG Abstract. We geeralze the Perro Frobeus Theorem for oegatve matrces to the class of oegatve tesors. 1. Itroducto

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Packing of graphs with small product of sizes

Packing of graphs with small product of sizes Joural of Combatoral Theory, Seres B 98 (008) 4 45 www.elsever.com/locate/jctb Note Packg of graphs wth small product of szes Alexadr V. Kostochka a,b,,gexyu c, a Departmet of Mathematcs, Uversty of Illos,

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Lattices. Mathematical background

Lattices. Mathematical background Lattces Mathematcal backgroud Lattces : -dmesoal Eucldea space. That s, { T x } x x = (,, ) :,. T T If x= ( x,, x), y = ( y,, y), the xy, = xy (er product of xad y) x = /2 xx, (Eucldea legth or orm of

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

Irreducible Representations of Braid Groups via Quantized Enveloping Algebras

Irreducible Representations of Braid Groups via Quantized Enveloping Algebras JOURNAL OF ALGEBRA 183, 898912 1996 ARTICLE NO. 0243 Irreducble Represetatos of Brad Groups va Quatzed Evelopg Algebras Oh Kag Kwo School of Mathematcs ad Statstcs, Uersty of Sydey, Sydey NSW 2006, Australa

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

arxiv: v1 [math.qa] 19 Mar 2010

arxiv: v1 [math.qa] 19 Mar 2010 THE QUANTUM CASIMIR OPERATORS OF U q (gl ) AND THEIR EIGENVALUES arxv:10033729v1 [mathqa] 19 Mar 2010 JUNBO LI ABSTRACT We show that the quatum Casmr operators of the quatum lear group costructed early

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Department of Agricultural Economics. PhD Qualifier Examination. August 2011 Departmet of Agrcultural Ecoomcs PhD Qualfer Examato August 0 Istructos: The exam cossts of sx questos You must aswer all questos If you eed a assumpto to complete a questo, state the assumpto clearly

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE

ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE G. ANDROULAKIS, E. ODELL, TH. SCHLUMPRECHT, N. TOMCZAK-JAEGERMANN Abstract We study some questos cocerg the structure of the set of spreadg models

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS M.A./M.Sc. Mathematcs (Fal) MM-50 Drectorate of Dstace Educato Maharsh Dayaad Uversty ROHTAK 4 00 Copyrght 004, Maharsh Dayaad Uversty, ROHTAK All Rghts Reserved.

More information

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES Joural of lgebra, umber Theory: dvaces ad pplcatos Volume, umber, 9, Pages 99- O THE ELEMETRY YMMETRIC FUCTIO OF UM OF MTRICE R.. COT-TO Departmet of Mathematcs Uversty of Calfora ata Barbara, C 96 U...

More information

ON THE DEFINITION OF KAC-MOODY 2-CATEGORY

ON THE DEFINITION OF KAC-MOODY 2-CATEGORY ON THE DEFINITION OF KAC-MOODY 2-CATEGORY JONATHAN BRUNDAN Abstract. We show that the Kac-Moody 2-categores defed by Rouquer ad by Khovaov ad Lauda are the same. 1. Itroducto Assume that we are gve the

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

Fibonacci Identities as Binomial Sums

Fibonacci Identities as Binomial Sums It. J. Cotemp. Math. Sceces, Vol. 7, 1, o. 38, 1871-1876 Fboacc Idettes as Bomal Sums Mohammad K. Azara Departmet of Mathematcs, Uversty of Evasvlle 18 Lcol Aveue, Evasvlle, IN 477, USA E-mal: azara@evasvlle.edu

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Application of Generating Functions to the Theory of Success Runs

Application of Generating Functions to the Theory of Success Runs Aled Mathematcal Sceces, Vol. 10, 2016, o. 50, 2491-2495 HIKARI Ltd, www.m-hkar.com htt://dx.do.org/10.12988/ams.2016.66197 Alcato of Geeratg Fuctos to the Theory of Success Rus B.M. Bekker, O.A. Ivaov

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

arxiv:math/ v2 [math.gr] 26 Feb 2001

arxiv:math/ v2 [math.gr] 26 Feb 2001 arxv:math/0101070v2 [math.gr] 26 Feb 2001 O drft ad etropy growth for radom walks o groups Aa Erschler (Dyuba) e-mal: aad@math.tau.ac.l, erschler@pdm.ras.ru 1 Itroducto prelmary verso We cosder symmetrc

More information