10. Euler's equation (differential momentum equation)

Size: px
Start display at page:

Download "10. Euler's equation (differential momentum equation)"

Transcription

1 3 Ele's eqaion (iffeenial momenm eqaion) Inisci flo: µ eslan of foces mass acceleaion Inisci flo: foces case b he esse an fiel of foce In iecion: ) ( a o a If (), ) ( a a () If cons he nknon aiables ae:,,, Benolli eqaion Inisci flo: µ V IV III II I a s s o s s a s a) Since f f f s a ineal II

2 4 b) If - au ineal IV (U U ) c) In case of sea flo ( ) ineal I ) ineal III, if - saic fli - o oenial flo - s lies in he lane eemine b an o ecos - s ineaion alon seamlines - s o ineaion alon oe lines e) If cons ineal V, if (), ineal V ( ) In case of inisci, sea flo of incomessible fli ( cons ), if - au an ineaion alon seamlines: U U The Benolli's sm cons alon seamlines Saic, namic an oal esse U U In sanaion oin, so namic esse saic esse oal, sanaion esse Benolli eqaion in case of inisci, sea flo of incomessible fli, iseain he fiel of foce: he oal esse is consan alon seamlines 3 Ele eqaion in seamise ("naal") co-oinae-ssem Sea flo of inisci (µ ) fli e cooinae is anen o he seamline, n is nomal o i an coss he cene of cae, b binomal cooinae eenicla o e an n

3 5 In e iecion Foce acin on iffeenial fli aicle of ee lenh b, n an e (mass: iecion: Fe b n e b n b n e e e, hee e he e comonen of he fiel of foce Since he flo is sea onl conecie acceleaion eiss, an bne e b n b n e e e e e e e n b a con e m bne ) in e In n iecion m cenieal foce is neee o moe m mass ih eloci alon a seamline of a ais of cae : ebn be n be ebn n n n In b iecion b b In nomal co-oinae iecion, iseain : n Conseqences: a) if he seamlines ae aallel saih lines ( ) he esse oesn' chane eenicla o he seamlines, b) if he seamlines ae ce he esse chanes eenicla o he seamlines: i inceases oas fom he cene of cae n

4 6 aino 4 oain ank Foce oe in absole ssem, [ / s] anla eloci,? 3 iffeen as of solion: a) co-oain co-oinae ssem: hosaics b) absole ssem Benolli eqaion; c) absole ssem, Ele eqaion in seamise ("naal") co-oinaessem a) ( ) U U s a s os s as b) I II III IV V Sea flo, ineal I, ineal II ( )/, ineal III since o, an no seamline connecs oins O an Since s ineal IV, cons ineal / V ( ) ( ) os an ( o) / / o, o an s ecos ae eenicla o each-ohe, an fhemoe an : ( ) c) n n, n (seamlines ae concenic cicles), n s,

5 7 5 Measemen of flo ae b sin Veni mee h [m] f(q )? an M ensi of ae an mec U U U-be manomee: h H) (m h) (H H m )h ( H h m H conini eqaion: / ( / ) h 4 H Flo ae: h K 4 q π 6 Unsea ischae of ae fom a ank

6 s I a s II s In oin s U, H s os III s IV V 8 a s, In oin, he eloci is () ' s hee / acceleaion eco / is inicae b a, / he same iecion a a s ' as al s, / an s oin a L H In case of sea flo ( ) s L s H s s s s L s L ah τ s L s h hee s H s τ 7 Floain of boies Bo olme: V, esse isibion is chaaceie b a, Pesse foce: F a V F V In aiaional fiel boan foce eih of he olme islacemen The boan foce eco cosses he cene of islace olme

7 9 The bo is floain if he aeae ensi is eqal o less han he ensi of fli Sabili of floain bo: sbmaines an shis If he cene of ai S is loe han he cene of islace olme K, a momen M aises, eceasin he anle of eflecion If S cene of ai is aboe he cene of islace olme K a momen is aisin o a ceain anle of eflecion eceasin he anle of eflecion eflecion he osiion, manie of eih an manie of boan foce oes no chane The line of alicaion of boan foce islaces s a conseqence of he eflecion a eeshae a of he bo () emees fom he ae an he B a of bo sinks So a cole of foces aise, islacin he boan foce eco The ne line of alicaion cosses he smme lane in oin M (meacene) If S is ne meacene M he shi is in sable eqilibim sae 8 aial-flo fan, Ele eqaion fo bines s: inle, k: scion nole, j: imelle, l: blaes, cs: casin, n: ole, : shaf, m: elecic moo, M: momen, : anla eloci Task: incease of oal esse of as:

8 i o i o aailable efomance: q P, hee q [k/m 3 ] is he flo ae Benolli eqaion in elaie cooinae-ssem (sea flo of incomessible an inisci fli) beeen oins an of he same seamline: V IV III II I a s s os s ) U a(u c Co c,, U U c s s, Since, if o o o Since o ( ) s s os Finall: ( ), ) ( i If i

9 9 Theoems fo oici: Thomson' an Helmhol' heoems Thomson' heoem (inisci fli) Ciclaion: Γ Γ s Temoal chane of ciclaion alon close fli line s? G au an cons o (), b sin Ele eqaion: G s In flo of incomessible an inisci fli in oenial fiel of foce no oici aises If licaions: Sain an soin oe (oe shein), makin eloci isibion nifom, flo in ae eseoi G Γ s o G (o ) (o ) Helmhol' I heoem µ o D ϑ ( ) ϑ D /< /<

10 Fli oe line: o s, fli oe sface: o Since s, a floin oe sface emains G oe sface To oe shees inesec each ohe alon a oe line floin oe line, hich can be eae as line of inesecion of o floin oe sfaces, consiss of he same fli aicles Conseqence: The oe in smoke in o in clo of smoke emein fom a chimne esees he smoke Helmhol' II heoem Floin oe be S s s s s S S S o s, S o o is consan oe all coss secions alon a oe be an i oes no chane emoall Conseqences: he oe be is eihe a close line (a in) o ens a he bona of he flo fiel o

11 3 Ince oe, i oe of finie aifoil Flih of il-ooses in V shae Voe in b afe oenin he sink Tonao Pesse measemens Sface ension F LC C [N/m] sface ension coefficien Fo ae ai combinaion C 5[N / m] ( α )ss Csα Cs C, In case of shees C /, an bbbles: 4C / If C 3 C C3 >, fli eans on he sface of fli (e oil on ae C 3 3 α s C s C cos s

12 4 cosα (C 3 C ) / C3 C 3 > C α < 9, α > 9 (mec) Ha C 3 > C C3, he fli eans oe he sface of soli bo eolem es o of oen bole Cailla ise C3 / C3 cos α / m C3 m cos α In case of mec cailla o Measemen of esse Manomees (fo measin esse iffeences) Micomanomees: U-be manomee - ( m - ) h, "inese" U-be manomee - ( - a ) h, incline be manomee LH/sinα, elaie eo: e s/l ( s/h) sinα, ben be manomee (e cons): Be-micomanomee Pesse as

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics ME3560 Flid Mechanics Fall 08 ME 3560 Flid Mechanics Analsis of Flid Flo Analsis of Flid Flo ME3560 Flid Mechanics Fall 08 6. Flid Elemen Kinemaics In geneal a flid paicle can ndego anslaion, linea defomaion

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN D. Keffe - ChE 40: Hea Tansfe and Fluid Flow Deamen of Chemical Enee Uniesi of Tennessee Pof. Daid Keffe Couse Lecue Noes SIXTEEN SECTION.6 DIFFERENTIL EQUTIONS OF CONTINUITY SECTION.7 DIFFERENTIL EQUTIONS

More information

Vorticity equation 2. Why did Charney call it PV?

Vorticity equation 2. Why did Charney call it PV? Vorici eqaion Wh i Charne call i PV? The Vorici Eqaion Wan o nersan he rocesses ha roce changes in orici. So erie an eression ha incles he ime eriaie o orici: Sm o orces in irecion Recall ha he momenm

More information

2-d Motion: Constant Acceleration

2-d Motion: Constant Acceleration -d Moion: Consan Acceleaion Kinemaic Equaions o Moion (eco Fom Acceleaion eco (consan eloci eco (uncion o Posiion eco (uncion o The eloci eco and posiion eco ae a uncion o he ime. eloci eco a ime. Posiion

More information

M E FLUID MECHANICS II

M E FLUID MECHANICS II Name: Sden No.: M E 335.3 FLUID MECHANICS II Depamen o Mechanical Enineein Uniesi o Saskachean Final Eam Monda, Apil, 003, 9:00 a.m. :00 p.m. Insco: oesso Daid Smne LEASE READ CAREFULLY: This eam has 7

More information

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson Convecive Hea Tansfe (6) Foced Convecion (8) Main Andesson Agenda Convecive hea ansfe Conini eq. Convecive dc flow (inodcion o ch. 8) Convecive hea ansfe Convecive hea ansfe Convecive hea ansfe f flid

More information

ME 321: FLUID MECHANICS-I

ME 321: FLUID MECHANICS-I 8/7/18 ME 31: FLUID MECHANICS-I Dr. A.B.M. Toiqe Hasan Proessor Dearmen o Mechanical Engineering Bangladesh Uniersi o Engineering & Technolog BUET, Dhaka Lecre-13 8/7/18 Dierenial Analsis o Flid Moion

More information

CSE590B Lecture 4 More about P 1

CSE590B Lecture 4 More about P 1 SE590 Lece 4 Moe abo P 1 Tansfoming Tansfomaions James. linn Jimlinn.om h://coses.cs.washingon.ed/coses/cse590b/13a/ Peviosly On SE590b Tansfomaions M M w w w w w The ncion w w w w w w 0 w w 0 w 0 w The

More information

CSE Winter School 2012

CSE Winter School 2012 0--4 CSE Wine School 0 FUNDAMENTALS OF FLUID MECHANICS Inodcion Some Chaaceisics of Flids Analsis of Flid Behaios Flid Popeies iscosi Chaaceisics of Flids Wha s a Flid? Wha s diffeence beeen a solid and

More information

Relative and Circular Motion

Relative and Circular Motion Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

More information

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf Objecie F s w Tnsfome Moionl To be ble o fin nsfome. moionl nsfome n moionl. 331 1 331 Mwell s quion: ic Fiel D: Guss lw :KV : Guss lw H: Ampee s w Poin Fom Inegl Fom D D Q sufce loop H sufce H I enclose

More information

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson Convecive Hea Tansfe (6) Foced Convecion (8) Main Andesson Agenda Convecive hea ansfe Conini eq. Convecive dc flow (inodcion o ch. 8) Convecive hea ansfe Convecive hea ansfe Convecive hea ansfe f flid

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Finie Diffeence Mehod fo Odinay Diffeenial Eqaions Afe eading his chape, yo shold be able o. Undesand wha he finie diffeence mehod is and how o se i o solve poblems. Wha is he finie diffeence

More information

Coupled Mass Transport and Reaction in LPCVD Reactors

Coupled Mass Transport and Reaction in LPCVD Reactors ople Ma Tanpo an eaion in LPV eao ile A in B e.g., SiH 4 in H Sepaae eao ino o egion, inaafe & annla b - oniniy Eqn: : onveion-iffion iffion-eaion Eqn Ampion! ile peie i in majo aie ga e.g., H isih 4!

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information

ME 425: Aerodynamics

ME 425: Aerodynamics 3/4/18 ME 45: Aerodnamics Dr. A.B.M. Toiqe Hasan Proessor Deparmen o Mechanical Engineering Bangladesh Uniersi o Engineering & Technolog BUET Dhaka Lecre-6 3/4/18 Fndamenals so Aerodnamics eacher.be.ac.bd/oiqehasan/

More information

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION FINITE DIFFERENCE ROCH TO WVE GUIDE MODES COMUTTION Ing.lessando Fani Elecomagneic Gou Deamen of Elecical and Eleconic Engineeing Univesiy of Cagliai iazza d mi, 93 Cagliai, Ialy SUMMRY Inoducion Finie

More information

Kinematics in two Dimensions

Kinematics in two Dimensions Lecure 5 Chaper 4 Phsics I Kinemaics in wo Dimensions Course websie: hp://facul.uml.edu/andri_danlo/teachin/phsicsi PHYS.141 Lecure 5 Danlo Deparmen of Phsics and Applied Phsics Toda we are oin o discuss:

More information

Integration of the constitutive equation

Integration of the constitutive equation Inegaion of he consiive eqaion REMAINDER ON NUMERICAL INTEGRATION Analyical inegaion f ( x( ), x ( )) x x x f () Exac/close-fom solion (no always possible) Nmeical inegaion. i. N T i N [, T ] [ i, i ]

More information

EN221 - Fall HW # 7 Solutions

EN221 - Fall HW # 7 Solutions EN221 - Fall2008 - HW # 7 Soluions Pof. Vivek Shenoy 1.) Show ha he fomulae φ v ( φ + φ L)v (1) u v ( u + u L)v (2) can be pu ino he alenaive foms φ φ v v + φv na (3) u u v v + u(v n)a (4) (a) Using v

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Wind Tunnel Experiment MAE 171A/175A. Objective:

Wind Tunnel Experiment MAE 171A/175A. Objective: Wind Tunnel Exeiment MAE 7A/75A Objective: Measue te Aeodynamic Foces and Moments of a Clak Y-4 Aifoil Unde Subsonic Flo Conditions Measuement Tecniques Pessue Distibution on Aifoil Dag fom Momentum Loss

More information

PHYS PRACTICE EXAM 2

PHYS PRACTICE EXAM 2 PHYS 1800 PRACTICE EXAM Pa I Muliple Choice Quesions [ ps each] Diecions: Cicle he one alenaive ha bes complees he saemen o answes he quesion. Unless ohewise saed, assume ideal condiions (no ai esisance,

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

A Level Exam-style Practice Paper

A Level Exam-style Practice Paper A Leel Exam-style Pactice Pape a i The peiod is gien by the time lapse between high tide and low tide which is.5 hous. ii The amplitude is gien by half the total displacement and so is 5 m. b The safe

More information

Overview. Overview Page 1 of 8

Overview. Overview Page 1 of 8 COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIORNIA DECEMBER 2001 COMPOSITE BEAM DESIGN AISC-LRD93 Tecnical Noe Compac and Noncompac Requiemens Tis Tecnical Noe descibes o e pogam cecks e AISC-LRD93 specificaion

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

Fundamental Vehicle Loads & Their Estimation

Fundamental Vehicle Loads & Their Estimation Fundaenal Vehicle Loads & Thei Esiaion The silified loads can only be alied in he eliinay design sage when he absence of es o siulaion daa They should always be qualified and udaed as oe infoaion becoes

More information

Time-Space Model of Business Fluctuations

Time-Space Model of Business Fluctuations Time-Sace Moel of Business Flucuaions Aleei Kouglov*, Mahemaical Cene 9 Cown Hill Place, Suie 3, Eobicoke, Onaio M8Y 4C5, Canaa Email: Aleei.Kouglov@SiconVieo.com * This aicle eesens he esonal view of

More information

2 shear strain / L for small angle

2 shear strain / L for small angle Sac quaons F F M al Sess omal sess foce coss-seconal aea eage Shea Sess shea sess shea foce coss-seconal aea llowable Sess Faco of Safe F. S San falue Shea San falue san change n lengh ognal lengh Hooke

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

3.3 Properties of Vortex Structures

3.3 Properties of Vortex Structures .0 - Maine Hydodynamics, Sping 005 Lecte 8.0 - Maine Hydodynamics Lecte 8 In Lecte 8, paagaph 3.3 we discss some popeties of otex stctes. In paagaph 3.4 we dedce the Benolli eqation fo ideal, steady flow.

More information

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Sharif University of Technology - CEDRA By: Professor Ali Meghdari Shaif Univesiy of echnology - CEDRA By: Pofesso Ali Meghai Pupose: o exen he Enegy appoach in eiving euaions of oion i.e. Lagange s Meho fo Mechanical Syses. opics: Genealize Cooinaes Lagangian Euaion

More information

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates,

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates, MAE B Homewok Solution #6 Winte Quate, 7 Poblem a Expecting a elocity change of oe oe a aial istance, the conition necessay fo the ow to be ominate by iscous foces oe inetial foces is O( y ) O( ) = =

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation Lectre 5 Differential Analsis of Flid Flo Naier-Stockes eqation Differential analsis of Flid Flo The aim: to rodce differential eqation describing the motion of flid in detail Flid Element Kinematics An

More information

Chapter 7. Interference

Chapter 7. Interference Chape 7 Inefeence Pa I Geneal Consideaions Pinciple of Supeposiion Pinciple of Supeposiion When wo o moe opical waves mee in he same locaion, hey follow supeposiion pinciple Mos opical sensos deec opical

More information

ROTOR SUPPORTED. J. Tůma, J. Škuta, R. Klečka VSB Technical University of Ostrava J. Šimek TECHLAB Praha

ROTOR SUPPORTED. J. Tůma, J. Škuta, R. Klečka VSB Technical University of Ostrava J. Šimek TECHLAB Praha 9h CONFERENCE on Acive noise and vibaion conol mehods KRAKOW-ZAKOPANE, POLAND Ma 4-7, 9 A 3D MODEL OF THE RIGID ROTOR SUPPORTED BY JOURNAL BEARINGS J. Tůma, J. Ška, R. Klečka VSB Technical Univesi of Osava

More information

3D Coordinate Systems. 3D Geometric Transformation Chapt. 5 in FVD, Chapt. 11 in Hearn & Baker. Right-handed coordinate system:

3D Coordinate Systems. 3D Geometric Transformation Chapt. 5 in FVD, Chapt. 11 in Hearn & Baker. Right-handed coordinate system: 3D Geomeric ransformaion Chap. 5 in FVD, Chap. in Hearn & Baker 3D Coordinae Ssems Righ-handed coordinae ssem: Lef-handed coordinae ssem: 2 Reminder: Vecor rodc U V UV VU sin ˆ V nu V U V U ˆ ˆ ˆ 3D oin

More information

Electric Potential. Outline. Potential Energy per Unit Charge. Potential Difference. Potential Energy Difference. Quiz Thursday on Chapters 23, 24.

Electric Potential. Outline. Potential Energy per Unit Charge. Potential Difference. Potential Energy Difference. Quiz Thursday on Chapters 23, 24. lectic otential Quiz Thusay on Chaptes 3, 4. Outline otential as enegy pe unit chage. Thi fom of Coulomb s Law. elations between fiel an potential. otential negy pe Unit Chage Just as the fiel is efine

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

MATHEMATICS PAPER 121/2 K.C.S.E QUESTIONS SECTION 1 ( 52 MARKS) 3. Simplify as far as possible, leaving your answer in the form of surd

MATHEMATICS PAPER 121/2 K.C.S.E QUESTIONS SECTION 1 ( 52 MARKS) 3. Simplify as far as possible, leaving your answer in the form of surd f MATHEMATICS PAPER 2/2 K.C.S.E. 998 QUESTIONS CTION ( 52 MARKS) Answe he enie queion in his cion /5. U logaihms o evaluae 55.9 (262.77) e F 2. Simplify he epeson - 2 + 3 Hence solve he equaion - - 2 +

More information

Method of Moment Area Equations

Method of Moment Area Equations Noe proided b JRR Page-1 Noe proided b JRR Page- Inrodcion ehod of omen rea qaions Perform deformaion analsis of flere-dominaed srcres eams Frames asic ssmpions (on.) No aial deformaion (aiall rigid members)

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenCouseWae http://ocw.mit.eu 6.013/ESD.013J Electomagnetics an Applications, Fall 005 Please use the following citation fomat: Makus Zahn, Eich Ippen, an Davi Staelin, 6.013/ESD.013J Electomagnetics

More information

Projection of geometric models

Projection of geometric models ojecion of geomeic moels Copigh@, YZU Opimal Design Laboao. All ighs eseve. Las upae: Yeh-Liang Hsu (-9-). Noe: his is he couse maeial fo ME55 Geomeic moeling an compue gaphics, Yuan Ze Univesi. a of his

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodnamics Dr. A.B.M. Toiqe Hasan Proessor Deparmen o Mechanical Engineering Bangladesh Uniersi o Engineering & Technolog BUET, Dhaka Lecre-7 Fndamenals so Aerodnamics oiqehasan.be.ac.bd oiqehasan@me.be.ac.bd

More information

Physics 232 Exam I Feb. 13, 2006

Physics 232 Exam I Feb. 13, 2006 Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

More information

Static equilibrium requires a balance of forces and a balance of moments.

Static equilibrium requires a balance of forces and a balance of moments. Static Equilibium Static equilibium equies a balance of foces and a balance of moments. ΣF 0 ΣF 0 ΣF 0 ΣM 0 ΣM 0 ΣM 0 Eample 1: painte stands on a ladde that leans against the wall of a house at an angle

More information

( ) c(d p ) = 0 c(d p ) < c(d p ) 0. H y(d p )

( ) c(d p ) = 0 c(d p ) < c(d p ) 0. H y(d p ) 8.7 Gavimeic Seling in a Room Conside a oom of volume V, heigh, and hoizonal coss-secional aea A as shown in Figue 8.18, which illusaes boh models. c(d ) = 0 c(d ) < c(d ) 0 y(d ) (a) c(d ) = c(d ) 0 (b)

More information

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract 866 Uni Naions Plaza i 566 Nw Yo NY 7 Phon: + 3 355 Fa: + 4 668 info@gach.com www.gach.com Eoan an Amican oions wih a singl amn of ivins Abo fomla Roll Gs & Whal Ma Ioff Absac Th aicl ovis a ivaion of

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

Identification and Design of Closed loop Hydraulic system with 4/3 Servo valve

Identification and Design of Closed loop Hydraulic system with 4/3 Servo valve In. J. Av. Res. ci. Technol. Volume 4, Issue 7, 05,.46-467. Inenaional Jounal of Avance Reseach in cience an Technology jounal homeage: www.ijas.com IN 39 783 (Pin) IN 30 6 (Online) Ienificaion an Design

More information

Review of the H-O model. Problem 1. Assume that the production functions in the standard H-O model are the following:

Review of the H-O model. Problem 1. Assume that the production functions in the standard H-O model are the following: Revie of the H-O model Poblem 1 Assume that the poduction functions in the standad H-O model ae the folloing: f 1 L 1 1 ) L 1/ 1 1/ 1 f L ) L 1/3 /3 In addition e assume that the consume pefeences ae given

More information

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T. Che 5. Dieeil Geome o Sces 5. Sce i meic om I 3D sce c be eeseed b. Elici om z =. Imlici om z = 3. Veco om = o moe geel =z deedig o wo mees. Emle. he shee o dis hs he geoghicl om =coscoscossisi Emle. he

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

ME 304 FLUID MECHANICS II

ME 304 FLUID MECHANICS II ME 304 LUID MECHNICS II Pof. D. Haşme Tükoğlu Çankaya Uniesiy aculy of Engineeing Mechanical Engineeing Depamen Sping, 07 y du dy y n du k dy y du k dy n du du dy dy ME304 The undamenal Laws Epeience hae

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Angular Momentum About Spin Axis

Angular Momentum About Spin Axis Angla Momentm Angla Momentm Abot Spin Axis Ω AM (pe nit mass) = velocity moment am M =( + ) = a cos φ Thin-shell appoximation: take distance fom any point in atmosphee to planet s baycente eqal to constant

More information

Solution to Theoretical Question 2. A Piezoelectric Crystal Resonator under an Alternating Voltage Part A

Solution to Theoretical Question 2. A Piezoelectric Crystal Resonator under an Alternating Voltage Part A Solion o eoreical Qesion A Piezoelecric Crysal Resonaor ner an Alernaing olage Par A a Refer o Figre A e lef face of e ro oves a isance v wile e ressre wave ravels a isance wi / ρ e srain a e lef face

More information

Hyperbolic Heat Equation as Mathematical Model for Steel Quenching of L-shape and T-shape Samples, Direct and Inverse Problems

Hyperbolic Heat Equation as Mathematical Model for Steel Quenching of L-shape and T-shape Samples, Direct and Inverse Problems SEAS RANSACIONS o HEA MASS RANSER Bos M Be As Bs Hpeo He Eo s Me Moe o See Qe o L-spe -spe Spes De Iese Poes ABIA BOBINSKA o Pss Mes es o L Ze See 8 L R LAIA e@o MARARIA BIKE ANDRIS BIKIS Ise o Mes Cope

More information

Recall from last week:

Recall from last week: Recall fom last week: Length of a cuve '( t) dt b Ac length s( t) a a Ac length paametization ( s) with '( s) 1 '( t) Unit tangent vecto T '(s) '( t) dt Cuvatue: s ds T t t t t t 3 t ds u du '( t) dt Pincipal

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

INTERMEDIATE FLUID MECHANICS

INTERMEDIATE FLUID MECHANICS INTERMEDIATE FLID MECHANICS Lecre 1: Inrodcion Benoi Cshman-Roisin Thaer School of Engineering Darmoh College Definiion of a Flid As opposed o a solid a flid is a sbsance ha canno resis a shear force iho

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

dx dt V x V t V y a Dt Acceleration field z dz dt V dt V v y V u t a Dt

dx dt V x V t V y a Dt Acceleration field z dz dt V dt V v y V u t a Dt FUNDAMENTALS OF Chate 6 Flo Analsis FLUID MECHANICS Using Diffeential Methods MAIN TOPICS I. Flid Element Motion II. Conseation of Mass (Continit eqation) and Conseation of Linea Momentm (Naie-Stokes Eqation)

More information

A PATRA CONFERINŢĂ A HIDROENERGETICIENILOR DIN ROMÂNIA,

A PATRA CONFERINŢĂ A HIDROENERGETICIENILOR DIN ROMÂNIA, A PATRA ONFERINŢĂ A HIDROENERGETIIENILOR DIN ROMÂNIA, Do Pael MODELLING OF SEDIMENTATION PROESS IN LONGITUDINAL HORIZONTAL TANK MODELAREA PROESELOR DE SEPARARE A FAZELOR ÎN DEANTOARE LONGITUDINALE Da ROBESU,

More information

Chapter 5. Long Waves

Chapter 5. Long Waves ape 5. Lo Waes Wae e s o compaed ae dep: < < L π Fom ea ae eo o s s ; amos ozoa moo z p s ; dosac pesse Dep-aeaed coseao o mass

More information

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11)

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11) Mon. Tue. We. ab i..4-.6, (.) ngula Momentum Pincile & Toque.7 -.9, (.) Motion With & Without Toque Rotation Coue Eval.0 Quantization, Quiz RE.c EP RE. RE.e Mon. Review fo inal (-) HW: P 9, 57, 64, 74,

More information

Moment. F r F r d. Magnitude of moment depends on magnitude of F and the length d

Moment. F r F r d. Magnitude of moment depends on magnitude of F and the length d Moment Tanslation Tanslation + Rotation This otation tenency is known as moment M of foce (toque) xis of otation may be any line which neithe intesects no paallel to the line of action of foce Magnitue

More information

KCET 2015 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY 12 th MAY, 2015) MATHEMATICS ALLEN Y (0, 14) (4) 14x + 5y ³ 70 y ³ 14and x - y ³ 5 (2) (3) (4)

KCET 2015 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY 12 th MAY, 2015) MATHEMATICS ALLEN Y (0, 14) (4) 14x + 5y ³ 70 y ³ 14and x - y ³ 5 (2) (3) (4) KET 0 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY th MAY, 0). If a and b ae the oots of a + b = 0, then a +b is equal to a b () a b a b () a + b Ans:. If the nd and th tems of G.P. ae and esectively, then

More information

Mass-Spring Systems Surface Reconstruction

Mass-Spring Systems Surface Reconstruction Mass-Spng Syses Physally-Based Modelng: Mass-Spng Syses M. Ale O. Vasles Mass-Spng Syses Mass-Spng Syses Snake pleenaon: Snake pleenaon: Iage Poessng / Sae Reonson: Iage poessng/ Sae Reonson: Mass-Spng

More information

Integral Control via Bias Estimation

Integral Control via Bias Estimation 1 Integal Contol via Bias stimation Consie the sstem ẋ = A + B +, R n, R p, R m = C +, R q whee is an nknown constant vecto. It is possible to view as a step istbance: (t) = 0 1(t). (If in fact (t) vaies

More information

APPLICATION OF A Z-TRANSFORMS METHOD FOR INVESTIGATION OF MARKOV G-NETWORKS

APPLICATION OF A Z-TRANSFORMS METHOD FOR INVESTIGATION OF MARKOV G-NETWORKS Joa of Aed Mahema ad Comaoa Meha 4 3( 6-73 APPLCATON OF A Z-TRANSFORMS METHOD FOR NVESTGATON OF MARKOV G-NETWORKS Mha Maay Vo Nameo e of Mahema Ceohowa Uey of Tehoogy Cęohowa Poad Fay of Mahema ad Come

More information

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis. Insucos: Fiel/che/Deweile PYSICS DEPATENT PY 48 Em ch 5, 5 Nme pin, ls fis: Signue: On m hono, I he neihe gien no eceie unuhoie i on his eminion. YOU TEST NUBE IS TE 5-DIGIT NUBE AT TE TOP OF EAC PAGE.

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

MODELLING OF ROTATIONAL FLUID WITH AN ACCELERATED VERTICAL PLATE EMBEDDED IN A DARCIAN POROUS REGIME

MODELLING OF ROTATIONAL FLUID WITH AN ACCELERATED VERTICAL PLATE EMBEDDED IN A DARCIAN POROUS REGIME MODELLING OF ROAIONAL FLUID WIH AN AELERAED VERIAL PLAE EMEDDED IN A DARIAN POROUS REGIME. Sahin AHMED. HEA RANSFER AND FLUID MEHANIS RESEARH DEPARMEN OF MAHEMAIS GOALPARA OLLEGE GOALPARA- 78 ASSAM INDIA

More information

Physics 232 Exam I Feb. 14, 2005

Physics 232 Exam I Feb. 14, 2005 Phsics I Fe., 5 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio wih gul eloci o dissec. gie is i ie i is oud o e 8 c o he igh o he equiliiu posiio d oig o he le wih eloci o.5 sec..

More information

Superposition. Section 8.5.3

Superposition. Section 8.5.3 Supeposition Section 8.5.3 Simple Potential Flows Most complex potential (invicid, iotational) flows can be modeled using a combination of simple potential flows The simple flows used ae: Unifom flows

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t I n t e r n a t i o n a l E l e c t r o n i c J o ue rlne am l e not fa r y E d u c a t i o n, 2 0 1 4, 1 37-2 ( 16 ). H o w R e a d i n g V o l u m e A f f e c t s b o t h R e a d i n g F l u e n c y

More information

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Rliisi Dnis n lonis in Unifol l n in Unifol Roin s-th Gnl ssions fo h loni 4-Vo Ponil in Sfi Unisi of Clifoni 387 So Hll UC Bkl Clifoni US s@ll.n

More information

RTT relates between the system approach with finite control volume approach for a system property:

RTT relates between the system approach with finite control volume approach for a system property: 8//8 ME 3: FLUI MECHANI-I r. A.B.M. Tofiqe Hasan Professor eparmen of Mecanical Enineerin Banlades Universiy of Enineerin & Tecnoloy (BUET, aka Lecre- 8//8 Flid ynamics eacer.be.ac.bd/ofiqeasan/ bd/ofiqeasan/

More information

Projection of geometric models

Projection of geometric models ojecion of geomeic moels Eie: Yeh-Liang Hsu (998-9-2); ecommene: Yeh-Liang Hsu (2-9-26); las upae: Yeh-Liang Hsu (29--3). Noe: This is he couse maeial fo ME55 Geomeic moeling an compue gaphics, Yuan Ze

More information

PHYS 172: Modern Mechanics. Summer r p. Lecture 9 Motion Along a Curve Read Ch 5

PHYS 172: Modern Mechanics. Summer r p. Lecture 9 Motion Along a Curve Read Ch 5 PHYS 172: Moden Mechanics Summe 2010 Δ sys = F net Δt ΔE = W + Q sys su su ΔL sys = τ net Δt Lectue 9 Motion Along a Cuve Read Ch 5 Statics Static means that something doesn t change in time. What do

More information

b) The array factor of a N-element uniform array can be written

b) The array factor of a N-element uniform array can be written to Eam in Antenna Theo Time: 18 Mach 010, at 8.00 13.00. Location: Polacksbacken, Skivsal You ma bing: Laboato epots, pocket calculato, English ictiona, Råe- Westegen: Beta, Noling-Östeman: Phsics Hanbook,

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Industriestrasse 1-3, Herzogenaurach, Germany c State Key Laboratory of Chemical Engineering, East China University of Science and Technology

Industriestrasse 1-3, Herzogenaurach, Germany c State Key Laboratory of Chemical Engineering, East China University of Science and Technology HEFAT 9 Inenaional Confeence on Hea Tansfe Flid Mecanics and Temodynamics 6 8 Jly Mala CFD modellin of ily vis olyme in film flow on a veically oaional disk aially immesed in liqid fo synesis of loyeyleneeala

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Application of Model Based Predictive Control with Kalman Filter to Natural Circulation Water Tube Boiler

Application of Model Based Predictive Control with Kalman Filter to Natural Circulation Water Tube Boiler CCAS5 Jne -5 KEX Geonggi-Do Koea Alicaion of Model Baed Pedicie Conol ih Kalan File o aal Ciclaion Wae be Boile ae-shin Ki and Oh-K Kon De of Elecical Eng nha Uni 5 Yonghn-dong a-g ncheon -75 Koea el:

More information

BENDING OF BEAM. Compressed layer. Elongated. layer. Un-strained. layer. NA= Neutral Axis. Compression. Unchanged. Elongation. Two Dimensional View

BENDING OF BEAM. Compressed layer. Elongated. layer. Un-strained. layer. NA= Neutral Axis. Compression. Unchanged. Elongation. Two Dimensional View BNDING OF BA Compessed laye N Compession longation Un-stained laye Unchanged longated laye NA Neutal Axis Two Dimensional View A When a beam is loaded unde pue moment, it can be shown that the beam will

More information

Camera Models class 8

Camera Models class 8 Camea Models class 8 Mulile View Geomey Com 29-89 Mac ollefeys Mulile View Geomey couse schedule (subjec o change) Jan. 7, 9 Ino & moivaion ojecive 2D Geomey Jan. 4, 6 (no class) ojecive 2D Geomey Jan.

More information

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path.

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path. PROJECTILE MOTION A pojectile is any object that has been thown though the ai. A foce must necessaily set the object in motion initially but, while it is moing though the ai, no foce othe than gaity acts

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information