Bianchi Type V String Cosmological Model with Variable Deceleration Parameter

Size: px
Start display at page:

Download "Bianchi Type V String Cosmological Model with Variable Deceleration Parameter"

Transcription

1 September 013 Volume 4 Issue 8 pp Banch Type V Strng Cosmologcal Model wth Varable Deceleraton Parameter Kanka Das * &Tazmn Sultana Department of Mathematcs, Gauhat Unversty, Guwahat , Assam, Inda Artcle Abstract We consder n ths paper a four dmensonal Banch Type-V strng cosmologcal model. The exact solutons of Ensten s feld equatons have been obtaned by consderng tme dependent deceleraton parameter and by choosng the scale factor a( t) [snh( t)], where n s a postve constant. The physcal behavor of the Unverse s studed and t s observed that our model s evolvng from deceleratng phase to acceleratng phase. Also t s found that cosmc strngs do not exst n Banch type-v cosmology. Keywords: Cosmc Strng, Banch type-v unverse, Deceleraton Parameter, Cosmology. 1. Introducton Recently, Consderable work has been done n strng cosmology. Ensten s theory of gravty has been the subect of ntense study for ts success n explanng the observed accelerated expanson of the unverse at late tmes. Banch type cosmologcal models are mportant because these are homogeneous and ansotropc. The orgn of the unverse s one of the greatest cosmologcal mysteres even today. The exact physcal stuaton at early stage of the formaton of our unverse s stll unknown. The concept of strng theory was developed to descrbe events of the early stage of the evoluton of the unverse. The present day observatons of the unverse ndcate the exstence of a large scale network of strngs n the early unverse (Kbble 1976, 1980). In recent years there has been a lot of nterest n the study of cosmc strngs. Cosmc strngs have receved consderable attenton as they are beleved to have served n the structure formaton n the early stages of the unverse. Kbble (1976) showed that cosmc strngs may have been created durng phase transtons n the early era and they act as a source of gravtatonal feld (Leteler 1983).The study of cosmc strngs n relatvstc framework was ntated by Stachel (1990) and Leteler (1979). Kror et.al (1990, 1994), Ra Bal and Shuch Dave (001), Bhattacharee and Baruah (001), Rahaman et.al.(003), Reddy (003) are some of the authors who have studed varous aspects of strng cosmologes n general relatvstc theory as well as alternatve theores of gravtaton. Kror et al. (1994) have shown that n the * Correspondence Author: Kanka Das, Department of Mathematcs, Gauhat Unversty, Inda. E-mal: daskanka@gmal.com ISSN:

2 September 013 Volume 4 Issue 8 pp context of general relatvty cosmc strngs do not occur n Banch type V cosmology. Also Adhav et al. (009) have obtaned the same fndngs as Kroretal.about Banch type V cosmology. We present, n ths paper, an exact soluton of Banch type V strng cosmologcal model by assumng a specal type of scale factor and a varable deceleraton parameter. It s observed that cosmc strng do not occur n Banch type V model and the unverse showng a transton from an early deceleratng phase to a recent acceleratng phase. Ths paper s organzed as: In secton, the metrc and the feld equatons are presented. In secton 3, we deal wth an exact soluton of the feld equatons wth cloud of strngs. Secton 4, descrbes some physcal and geometrcal propertes of the models. Fnally conclusons are presented n secton 5.. The Metrc and the Feld Equatons The lne element for the spatally homogeneous and ansotropc Banch-V space-tme s gven by ds dt A dx e x B dy C dz. (1) where A( t), B( t) and C (t) are the scale factors n dfferent spatal drectons and s a constant. We defne 1/3 a (ABC) Hubble s parameter read as as the average scale factor of the space-tme (1) so that the average a H. () a where the overhead dot denotes dervatves wth respect to cosmc tme t. The energy momentum tensor flud s taken as T for a cloud of massve strngs and the dstrbuton of perfect T pv v pg x x. (3) where s the sotropc pressure; s the proper energy densty for a cloud of strngs wth partcle attached to them; s the strng tenson densty, v (0,0,0,1) s the four velocty of the partcles and s a unt space-lke vector representng the drecton of the strng. The vectors and satsfy the condtons ISSN:

3 September 013 Volume 4 Issue 8 pp v v x x 1, v 0. (4) x Choosng x parallel to x we have 1 x ( A,0,0,0). (5) If the partcle densty of the confguraton s denoted by, then p (6) The Ensten s feld equatons (n gravtatonal unts c 1,8 G 1) are as follows R 1 g R T, (7) The Ensten s feld equatons (7) for the lne-element (1) lead to the followng system of equatons B C BC B C BC A A C AC A C AC A A B AB A B AB A p, (8) p, (9) p, (10) A B AB AC BC 3, (11) AC BC A A B C 0. (1) A B C The energy conservaton equaton T 0leads to, A B C A p 0. (13) A B C A ISSN:

4 September 013 Volume 4 Issue 8 pp whch s obtaned from the feld equaton. The dot (.) denotes ordnary dfferentatng wth respect to t. 3. Soluton of Feld Equatons Integratng Equaton (1) and takng the constant of ntegraton as unty n B or C, wthout loss of generalty, we obtan A BC (14) Subtractng Equaton (9) from Equaton (10) and takng the second ntegral, we get the followng relaton where and are constants of ntegraton. B dt d1 exp k1 C (15) ABC Equatons (8)-(1) are fve ndependent equatons n sx unknowns complete determnaton of the system, we need one extra condton. A, B, C, p, and. For the Followng Pradhan et.al (01), we assume the law of varaton of scale factor as ncreasng functon of tme a (snh( t)) where n s a postve constant and s an arbtrary constant. Now the spatal volume V of the model s read as V (16) 3 3/ n a (snh( t)) (17) Equatons (14), (16) and (17) lead to (snh( t)) (18) A( t) Insertng equaton (18) nto (14) and (15), we get k1 dt B snh( t) d1 exp (19) 3/ n snh( t) ISSN:

5 September 013 Volume 4 Issue 8 pp k 1 dt C snh( t) exp (0) 3/ n d1 snh( t) 4. Some Physcal and Geometrcal Propertes The sotropc pressure are gven by, proper energy densty, strng tenson and partcle densty p / n k1 6 / n p snh( t) 3 coth( t) cosech( t) snh( t) (1) n n 4 k1 6/ n / n 3 coth( t) snh( t) 3 snh( t) () n 4 0 p (3) (4) Equaton (3) shows that cosmc strngs do not occur n Banch type-v space-tme wth average scale factor a (snh( t)). The average Hubble s parameter (H), expanson scalar ( ) ansotropy parameter ( A m ) and shear scalar( )of the model are gven by H a coth( t) (5) a n 3H 3 coth( t) (6) n ISSN:

6 September 013 Volume 4 Issue 8 pp A m 1 9H 1 n 6 A B A B k 1 B C B C 6 / n tanh( t) snh( t) C A C A 797 (7) The value of DP (q) s found to be 1 6 / n 3 Am H k1 snh t (8) 4 a q ah 1 tanh( t) 1 n (9) We observe that q 0 for n 1 and q 0 for n 1. Thus t s evdent that for 0 n 1, our model s n acceleratng phase but for n 1, our model s evolvng from deceleratng phase to acceleratng phase. Fg.1 The plot of DP (q) vs. tme (t) Fgure 1, shows the varaton of the deceleraton parameter q aganst tme t whch gves the behavor of q for dfferent values ofn. ISSN:

7 September 013 Volume 4 Issue 8 pp Fg. The plot of ansotropc parameter Am vs. tme (t) Fgure shows the varaton of parameter Am versus cosmc tme. It shows that Am decreases wth tme and tends to zero for suffcently large tmes. Thus the ansotropc behavor of the unverse des out at later tmes and the observed sotropy of the unverse can be derved by the model at the present epoch. Fg.3 The plot of proper energy densty vs. tme t Fgure 3 shows the varaton of proper densty versus cosmc tme. It shows that the unverse starts wth fnte values of proper energy densty. ISSN:

8 September 013 Volume 4 Issue 8 pp Fg.4 The energy condtons vs. tme t From Fgure 4, we can conclude that Therefore, the weak energy condton (WEC) as well as the domnant energy condton (DEC) are satsfed n our model. We can also observed that at ntal tme and at later tme whch n turn mply that the strong energy condton (SEC) volates n the present model on later tme. The volaton of SEC gves ant-gravtatonal effect. Due to ths effect, the unverse gets erk and the transton from the earler decelerated phase to the present acceleratng phase take place (Caldwell et al.006), hence the present model s turnng out as a sutable model for descrbng the late tme acceleraton of the unverse. It s observed that the above set of solutons satsfy the energy conservaton equaton (13) dentcally. Thus, the above solutons are exact solutons of Ensten s feld equatons (8)-(1). From equatons (17) and (6), we can conclude that the spatal volume s zero at and the expanson scalar s nfnte, whch shows that the unverse starts evolvng wth zero volume at whch s bg bang scenaro. From equatons (18)-(0), we see that the spatal scale factors are zero at the ntal epoch and hence the model has a pont type sngularty (MacCallum, 1971). All the physcal quanttes sotropc pressure, proper energy densty, Hubble s parameter and shear scalar dverge at. Thus we may conclude that the model represents an expandng unverse, whch starts wth a bg bang and approaches to sotropy at present epoch. ISSN:

9 September 013 Volume 4 Issue 8 pp Conclusons In ths paper, we have obtaned an exact soluton of Ensten s feld equatons for the ansotropc Banch type-v space-tme wth varable deceleraton parameter (DP). Interestngly, cosmc strngs do not occur n ths Banch type-v cosmologcal model. Also the DP yeld two phases of the unverse. Intally snce the sgn of the DP s postve that yelds the deceleratng phase of the unverse. At later tmes, the DP becomes negatve whch descrbes the present phase of acceleratng unverse. The physcal propertes are satsfed. Acknowledgments: The authors express ther profound grattude to Prof.K.D.Kror for hs constant encouragement and advce. Also the authors acknowledge the fnancal support of UGC, New Delh and the Department of Mathematcs, Gauhat Unversty for provdng all facltes for dong ths work. References Kbble, T. W. B.: J. Phys. A 9, 1387 (1976) Leteler, P. S.: Phys. Rev. D 8, 414 (1983) Stachel, J.: Phys. Rev. D 8, 171 (1990) Leteler, P. S.: Phys. Rev. D 0, 194 (1979) Kror, K.D., Choudhury, T. Mahanta, C. R.: Gen. Relatvty gravt., 13 (1990) Kror, K.D., Choudhury, T. Mahanta, C. R.: Gen. Relatvty gravt. 6, 65 (1994) Bal, R., Dave, S.: Pramana, J. Phys. 56, 4 (001) Bhattacharee, R., Baruah, K. K.: Indan J. Pure Appl. Math. 3, 47 (001) Rahaman, F., Chakravorty, S., das, S., Hossan, M., Bera, J.: Pramana, J. Phys. 60, 453 (003) Reddy, D. R. K.: Astrophys. Space Sc. 86, 359 ( Adhav, K. S., Nmkar, A. S.,Dawande, M. V., Ugale, M. A., Rom. Journ. Phys. Vol54, Nos.1-, 07-1 (009) Caldwell, R. R., Komp, W., Parker, L., &Vanezella, D. A. T.006, Phys. Rev. D, 73, (006) Pradhan, A., Jaswal, R., Jotana, K., Khare, R. K.: Astrophys Space Sc. 337, 401 (01) MacCallum, M. A. H.: Commun. Math. Phys. 0, 57 (1971) ISSN:

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

BULK VISCOUS BIANCHI TYPE IX STRING DUST COSMOLOGICAL MODEL WITH TIME DEPENDENT TERM SWATI PARIKH Department of Mathematics and Statistics,

BULK VISCOUS BIANCHI TYPE IX STRING DUST COSMOLOGICAL MODEL WITH TIME DEPENDENT TERM SWATI PARIKH Department of Mathematics and Statistics, UL VISCOUS INCHI YPE IX SRING DUS COSMOLOGICL MODEL WIH IME DEPENDEN ERM SWI PRIH Department of Mathematcs and Statstcs, Unversty College of Scence, MLSU, Udapur, 3300, Inda UL YGI Department of Mathematcs

More information

Bianchi Type I Magnetized Cosmological Model in Bimetric Theory of Gravitation

Bianchi Type I Magnetized Cosmological Model in Bimetric Theory of Gravitation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-966 Vol. 05 Issue (December 00) pp. 563 57 (Prevously Vol. 05 Issue 0 pp. 660 67) Applcatons and Appled Mathematcs: An Internatonal Journal (AAM)

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 48 Number 2 August 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 48 Number 2 August 2017 Internatonal Journal of Mathematcs Trends and Technoloy (IJMTT) Volume 8 Number Auust 7 Ansotropc Cosmolocal Model of Cosmc Strn wth Bulk Vscosty n Lyra Geometry.N.Patra P.G. Department of Mathematcs,

More information

Locally Rotationally Symmetric Bianchi Type I Massive String Cosmological Models with Bulk Viscosity and Decaying Vacuum Energy Density

Locally Rotationally Symmetric Bianchi Type I Massive String Cosmological Models with Bulk Viscosity and Decaying Vacuum Energy Density Advances n Astrophyscs, Vol., No., August 06 Locally otatonally Symmetrc Banch Type I Massve Strng Cosmologcal Models wth Bulk Vscosty and Decayng Vacuum Energy Densty aj Bal * and Swat Sngh States Professor

More information

A Comparative Study between Einstein s Theory and Rosen s Bimetric Theory through Perfect Fluid Cosmological Model

A Comparative Study between Einstein s Theory and Rosen s Bimetric Theory through Perfect Fluid Cosmological Model Internatonal Journal of dvanced Research n Physcal Scence (IJRPS) Volume, Issue 5, May 05, PP -9 ISSN 9-787 (Prnt) & ISSN 9-788 (Onlne) www. arcjournals. org omparatve Study between Ensten s Theory and

More information

Holographic Dark Energy in LRS Bianchi Type-II Space Time

Holographic Dark Energy in LRS Bianchi Type-II Space Time Internatonal Journal Of Matheatcs And Statstcs Inventon (IJMSI E-ISSN: 767 P-ISSN: - 759 Www.Ijs.Org Volue Issue 09 Septeber. 0 PP-8-6 Holographc Dark Energy n LS Banch Type-II Space Te Gtuan Sara esearch

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

The Symmetries of Kibble s Gauge Theory of Gravitational Field, Conservation Laws of Energy-Momentum Tensor Density and the

The Symmetries of Kibble s Gauge Theory of Gravitational Field, Conservation Laws of Energy-Momentum Tensor Density and the The Symmetres of Kbble s Gauge Theory of Gravtatonal Feld, Conservaton aws of Energy-Momentum Tensor Densty and the Problems about Orgn of Matter Feld Fangpe Chen School of Physcs and Opto-electronc Technology,Dalan

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Kaluza-Klein Inflationary Universe in General Relativity

Kaluza-Klein Inflationary Universe in General Relativity November 0 Vol. Issue. 88-834 dhav, K. S., Kaluza-Klen Inflatonary Unverse n General Relatvty 88 rtcle Kaluza-Klen Inflatonary Unverse n General Relatvty Kshor. S. dhav * Deartment of Mathematcs, Sant

More information

Accelerating Cosmologies in Lovelock Gravity with Dilaton

Accelerating Cosmologies in Lovelock Gravity with Dilaton 37 The Open Astronomy Journal 00 3 37-48 Acceleratng Cosmologes n Lovelock Gravty wth Dlaton Open Access Ilya V Krnos* and Andrey N Makarenko Tomsk State Unversty 634050 Tomsk Lenn prosp 36 Russa Tomsk

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Bianchi Type-II Cosmological Model in Presence of Bulk Stress with Varying- in General Relativity

Bianchi Type-II Cosmological Model in Presence of Bulk Stress with Varying- in General Relativity ISSN (Onlne): 2319-7064 Index Coperncus Value (2013): 6.14 Impact Factor (2013): 4.438 Banch Type-II Cosmologcal Model n Presence of Bulk Stress wth Varyng- n General Relatvty V. G. Mete 1, V.D.Elkar 2

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD SIMUATION OF WAVE POPAGATION IN AN HETEOGENEOUS EASTIC OD ogéro M Saldanha da Gama Unversdade do Estado do o de Janero ua Sào Francsco Xaver 54, sala 5 A 559-9, o de Janero, Brasl e-mal: rsgama@domancombr

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

More information

Lecture Notes 7: The Unruh Effect

Lecture Notes 7: The Unruh Effect Quantum Feld Theory for Leg Spnners 17/1/11 Lecture Notes 7: The Unruh Effect Lecturer: Prakash Panangaden Scrbe: Shane Mansfeld 1 Defnng the Vacuum Recall from the last lecture that choosng a complex

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

(1985), Reddy and venkateswarlu (1988) are some of the authors who have investigated various aspects of the four di-

(1985), Reddy and venkateswarlu (1988) are some of the authors who have investigated various aspects of the four di- Internatonal Journal of Scentfc & Engneerng Research, Volume 5, Issue 3, March-14 99 Wet dark flud Cosmologcal Model n Lyra s Manfold.S.Nmkar, M.R.Ugale.M.Pund bstract : In ths aer, we have obtaned feld

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Classical Mechanics ( Particles and Biparticles )

Classical Mechanics ( Particles and Biparticles ) Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

A Magnetic Tilted Homogeneous Cosmological. Model with Disordered Radiations

A Magnetic Tilted Homogeneous Cosmological. Model with Disordered Radiations dv. Studes Theor. Phys., Vol., 008, no. 19, 909-918 Magnetc Tlted omogeneous osmologcal Model wth Dsordered Radatons Ghanshyam Sngh Rathore Department of Mathematcs and Statstcs, Unversty ollege of Scence,

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

One Dimension Again. Chapter Fourteen

One Dimension Again. Chapter Fourteen hapter Fourteen One Dmenson Agan 4 Scalar Lne Integrals Now we agan consder the dea of the ntegral n one dmenson When we were ntroduced to the ntegral back n elementary school, we consdered only functons

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Three views of mechanics

Three views of mechanics Three vews of mechancs John Hubbard, n L. Gross s course February 1, 211 1 Introducton A mechancal system s manfold wth a Remannan metrc K : T M R called knetc energy and a functon V : M R called potental

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

Errors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation

Errors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation Errors n Nobel Prze for Physcs (7) Improper Schrodnger Equaton and Drac Equaton u Yuhua (CNOOC Research Insttute, E-mal:fuyh945@sna.com) Abstract: One of the reasons for 933 Nobel Prze for physcs s for

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Modelli Clamfim Equazioni differenziali 7 ottobre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 7 ottobre 2013 professor Danele Rtell danele.rtell@unbo.t 1/18? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Hypersurface-Homogeneous Universe with Λ in f(r,t) Gravity by Hybrid Expansion Law

Hypersurface-Homogeneous Universe with Λ in f(r,t) Gravity by Hybrid Expansion Law 4 Theoretcal Physcs, Vol., No., March 7 https://dx.do.org/.66/tp.7.6 Hypersurface-Hoogeneous Unverse wth Λ n f(r,t) Gravty by Hybrd Expanson Law A.Y.Shakh, K.S.Wankhade * Departent of Matheatcs, Indra

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim Causal Damonds M. Aghl, L. Bombell, B. Plgrm Introducton The correcton to volume of a causal nterval due to curvature of spacetme has been done by Myrhem [] and recently by Gbbons & Solodukhn [] and later

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Quantum eld theory in curved spacetime. Introduction on ination. Dennis Sauter. Seminar coordinator. Dr. Javier Rubio

Quantum eld theory in curved spacetime. Introduction on ination. Dennis Sauter. Seminar coordinator. Dr. Javier Rubio Quantum eld theory n curved spacetme Introducton on naton Denns Sauter Semnar coordnator Dr. Javer Rubo CONTENTS Contents 1 Introducton 1 2 Problems n standard cosmology 2 2.1 Horzon problem..........................

More information

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2 Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of

More information