The Interaction of Wings in Different Flight Modes of a Dragonfly

Size: px
Start display at page:

Download "The Interaction of Wings in Different Flight Modes of a Dragonfly"

Transcription

1 The Interaction of Wings in Different Flight Modes of a Dragonfly Csaba Hefler 1, Huihe Qiu 1,*, Wei Shyy 1 1: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China * Correspondent author: meqiu@ust.hk Abstract Flow fields around the wings of a live dragonfly (Pantala Flavenscens) have been studied using different visualization techniques. Flapping flight and tandem wing configuration are of particular interests for applications on micro air vehicles aimed to achieve similar flight agility as that of a dragonfly. High speed video recordings were used to determine core values of the flapping exhibited by the tethered specimen. These frames were also used to confirm wing alignment on PIV frames. A novel smoke visualization technique has been used to obtain base data for comparison with in phase flapping PIV results. The tethered dragonfly exhibited different flapping patterns which resulted in four distinct flow field structures; however, some were achieved by different flapping modes. In phase flapping is particularly interesting as it is considered a flight mode of the dragonfly when extra thrust are needed for maneuvering or take off. In some cases out of phase flapping generated two separate air streams that supposedly give more stability to the emerging dragonfly. This kind of flow structure has not been comprehensively studied yet. Experiments have been done in still air so the results are not affected by a mainstream flow like in the case of wind tunnel experiments. The general description of the flow fields found is discussed and some points were compared with earlier studies to support the development of tandem wing micro air vehicles. 1. Introduction Micro Aerial Vehicles (MAVs) conceptually limited to the size of less than 15cm, capable of stable flight in urban (often gusty) environments with acceptable payload capability and mission time, are the focus of many academic works (Shyy et al., 2008). Military and civil applications such as reconnaissance or hazardous sites explorations can directly save lives, indicating the importance of these research efforts. Flapping wing locomotion has promising features to be considered in the targeted size region for MAVs. One of the reasons for this is the low Reynolds number effect. In a low Reynolds number region, where MAVs and natural flyers operate, viscous forces and unsteady aerodynamics must be considered as they account for a number of unique phenomena. At such conditions traditional designs are disadvantaged over a flexible flapping wing which can extract additional aerodynamic forces through unique unsteady flow mechanisms (Shyy et al., 2008; Shyy et al., 2010). Bio inspired designs offer a viable solution for MAVs. Among natural flyers, dragonflies have unique features and flight capabilities. They possess 2 pairs of wings which they can move separately; this gives flexibility to adopt flapping kinematics to the environmental conditions. The interaction between the fore and hind wing is a particularly interesting topic. The phase difference highly affects the force production of tandem configuration, and whilst the highest force peaks are achieved when the wings are flapping in phase, the efficiency increases if the hind wing leads with a certain phase difference (Lian et al., 2013). Talking about forward flight or hovering, different authors found different phases to account for the highest efficiency (Wang and Russel, 2007; Sun and Huang, 2007; Usherwood and Lehmann, 2008). Downwash and shed trailing edge vortex (TEV) of the forewing negatively affects force generation of the hind wing negatively as stated in recent works (Sun and Lan, 2004; Maybury and Lehmann, 2004). Downwash inevitably lowers the effective angle of attack of the down stroking hind wing, thus negatively effecting hind wing leading edge vortex (LEV) formation, however shed vortexes if meeting with the hind wing in an optimal setup, can be beneficial for force production of the hind wing, by promoting LEV formation. This positive effect is experimentally studied (Maybury and - 1 -

2 Lehmann, 2004; Rival et al., 2011) however, simplified flapping kinematics were used in the first study, and large wing spacing in the latter, which could result in different results from a real dragonfly. It is in our interest to see whether downwash and vortex shedding is a prominent feature of wing wake interaction of a live dragonfly under near takeoff or hovering conditions. Vortex shedding on the other hand is affected by the forward flight speed and the flapping kinematics of the forewing. Downwash is present during almost the whole course of the hind wing down stroke; however at which instant a shed vortex is interacting with the hind wing can be an important aspect of wing wake interaction. In this study, experiments in still air were conducted, where vortex shedding is not affected by mainstream flow, as in experiments carried out in wind tunnel (Tsuyuki et al., 2006; Thomas et al., 2004). Supposedly, dragonflies can consciously adopt their flapping kinematics for optimal wing-wake interaction according to the global flow conditions. This assumption stands for normal cruising flight, where flight efficiency is of major importance. A recent experimental study (Usherwood and Lehmann, 2008) shows that although interaction is detrimental for lift generation, it has a positive effect on flight energetics. Flow visualization experiments on live dragonflies were performed to confirm whether the flow field shows a similar form for controlled experiments and numerical simulations with those of simplified flapping kinematics and wing shapes. Our visualization experiments also revealed other flow phenomena supposedly characteristic of four winged flight. At flight initiation, sometimes two separate flow streams are present which may improve stability for the dragonfly at takeoff. Global flow conditions of a dragonfly at takeoff, with in phase flapping is not well documented yet; however, it can be an important aspect for the practical design of MAVs. In this paper some finding are also presented related to this flight mode. It is anticipated that these results give useful additional data for the understanding and characterization of tandem wing flapping flight to aid the design of highly agile micro air vehicles. 2. Experimental Setup and Methodology In our experiments the flow fields around dragonflies commonly known as wandering gliders (Pantala Flavenscens) were studied. It is a very common species (not protected) in Hong Kong. Its availability makes it our primary subject; however it is worth mentioning that this species is well known for its supreme gliding skills. This species is a medium sized dragonfly with a wingspan of mm, and body length of about 50 mm. The dragonflies were used within a few hours after capture; allowing sufficient time for the specimen to adapt to the lower temperature in the laboratory. The Dragonfly was glued to a transparent glass plate with transparent epoxy glue at its thorax. The 1.1 mm thick glass with narrowing sides towards the dragonfly abdomen was rigid enough to eliminate vibrations and its transparency ensured minimal glare. Our primary tool for measuring the flow field around the flapping dragonfly wings was a particle image velocimetry (PIV) setup (Fig. 1). The flow field measurement was done in a closed air reservoir measuring 1200x800x1000 mm (LxWxH). The distance between the dragonfly and the front wall was 500 mm; side wall was 400 mm; bottom wall was 60 mm. The other walls were farther from the measurement window. The light sheet was set at half span of the right side wing. The flow was seeded by a 4 nozzle aerosol generator of working pressure 6 bar (LaVision, Item number: ). Extra virgin olive oil was used for seeding particle generation. The generated particle sizes averaged approximately 0.3 µm, which proved to reflect enough light for the receiving camera (Kodak Megaplus ES 1.0 TH). After seeding the air reservoir we waited 20 minutes for the flow to be of from disturbances. The system uses a double pulsed Nd:YAG laser of maximum output power 200mJ (Newwave Gemini 200), with a maximum 15 Hz pulse frequency in single frame mode. For our measurements a 532 nm laser with pulse width of 6 ns was used to illuminate the flow field. 80% of the maximum laser power gave adequate light for the measurement. Pulse interval of the two lasers was set to 100 µs in cross correlation mode. The final interrogation window of 32x32 pixel was used for the cross correlation, with an overlap of 50%. Images were captured using a 1 million pixel camera. The camera has an active area of 9.1 mm*9.2 mm on CCD with pixel size 9 µm*9 µm, resulting in a maximum resolution of 1008*

3 pixel. It has a triggered double exposure mode which is well suited for PIV experiments because of the short time between successive exposures. The lens used in the experiments is 50 mm focal length Nikkon AFD. One drawback of this setup is that its frequency did not make it possible to sample the air flow at multiple positions of the same flapping cycle as the dragonfly flaps its wings with a frequency of about 30 Hz. The resulting vector field was cleared by setting an adequate correlation peak ratio, and median filtering. Fig. 1 Pictures of the PIV setup (please note that the dragonfly was placed farther from the front wall in the actual experiment). The reflected light on the wings caused strong glare which caused errors in the vector calculations, so it was removed with a combined mask on each recorded frame. This results zero velocity around those areas after the cross-correlation. High speed video recording and smoke visualization experiments have been done on live dragonflies to gain supporting data on tethered flapping behavior and flapping kinematics of the dragonfly species. High speed recording with 1000 fps, helped determine the average flapping frequency, amplitude, stroke plane angle and phase difference between the hind wing and forewing. High speed video frames were also used to confirm the position of each wing on the PIV frames when it was questionable. An illustration of this can be seen in Fig. 2. To the best of our knowledge, there was no experimental data available for a live dragonfly flapping in phase in still air. Thus to support our findings smoke visualization experiments were conducted under similar conditions. A dragonfly was vertically tethered in a closed reservoir and a dry ice generated smoke curtain flowed over the wings from a narrow gap on the top of the box. The flow evolution was recorded by high speed camera set for 500 fps. The velocity of the falling smoke was approximately 0.2 m/s which simulated close to hovering conditions for this experiment

4 Fig. 2 Comparison of high speed video image with PIV image for estimating the flapping phase difference; In this case the forewing is starting its down stroke while the hind wing has passed its mid down stroke phase. 3. Results and Discussion The research aim at this stage is to give a general overview of the flow field around the dragonfly wings for different flapping modes, to be extended by flapping kinematics measurement for the basis of a more complete numerical simulation in follow up studies. The PIV setup was capable of taking randomly timed snapshots of the flapping dragonfly. The experimental results are categorized according to forewing and hind wing phasing as in phase flapping and out of phase flapping. In-phase flapping generates higher lift forces required for takeoff (Alexander, 1984), so it is assumed that those frames are picturing the flow field of the first few flapping cycles of a dragonfly trying to take off. Out of phase flapping is energetically less demanding (Alexander, 1984; Maybury and Lehmann, 2004; Usherwood and Lehmann, 2008), and often occurs for emerging and forward flight. This categorization is too general considering the flight capabilities of a dragonfly, and the flow structures of our results. Accordingly our results were also categorized according to the flow orientation generated by the flapping wings. If the stream is vertical or close to vertical we refer to that as vertical takeoff flight mode; if it is aligned approximately 45 o to the horizontal plane we refer to that as emerging flight mode, and if the stream is nearly horizontal we refer to that as forward flight mode. It is worth pointing out that the dragonflies in our experiments were capable of generating these different flow orientations with in phase flapping as well as out of phase flapping. According to the high speed recording of the tethered dragonfly the forewing and hind wing phase difference continuously changes through the recorded cycles (between degrees), with hind wing leading. The values for the out of phase flapping on PIV images were in the same range. The flapping frequency is averaging 29.5 Hz through the recorded cycles (Fig. 3 shows an example of this) and is expected to be close to the values the dragonfly exhibits through the PIV measurements. The flapping amplitude is 60.9 o for the forewing and o for the hind wing on average (only full strokes considered). Note that these values are calculated not from the wingtips but at the endpoints of the pterostigma on the wings that could be easily identified on the - 4 -

5 individual frames. The stroke plane angle for the forewing was between o and o for the hind wing using the body horizontal axis as reference. Reynolds number according to the forewing chord at mid span (9.4mm), and wingtip velocity is in the range of Similar values were observed on the PIV frames. These values are close to the values found for other dragonfly species (Azuma and Watanabe, 1988; Wakeling and Ellington, 1997). Fig. 3 Stroke angle time histories extracted from high speed video recording. Angle is given relative to the wing root, which in this setup is on the same horizontal line for both wings. (Note: the uncertainties near the 4 th and 5 th hind wing down stroke are caused by frames where the position of the pterostigma couldn t be identified clearly). Smoke visualization experiments showed the presence of a forewing leading edge vortex and a hind wing trailing edge starting vortex for a first down stroke with in phase flapping (Fig. 4). A hind wing LEV was also apparent, however, only for the first down stroke. The TEV shed with a direction along a line of angle 45 o from the body axis at the border of the generated stream. The LEV on the forewing and hind wing stayed attached until the start of the supination. The second down stroke, also in phase flapping, showed similar phenomena but the shedding of the TEV changed direction; it shed along the body axis of the dragonfly. No hind wing LEV was apparent for the second down stroke. The generated airflow was directed downwards with approximately 45 o alignment to the body axis. The flow direction and the vortex positions were in agreement of those apparent on the PIV measurements for in phase flapping. One of the most interesting phenomena of our experiments was a flow field that consisted of two separated airflows one oriented downwards while the other was more towards the body axis of the dragonfly (Fig. 5). According to our best knowledge this phenomena have not previously been recorded. There are two hypotheses explaining this unusual phenomenon. First the dragonfly can flap their wings individually, with different angular velocity and stroke kinematics. There is a possibility that the two separate streams originate from the forewing and the hind wing respectively. This could be a convenient explanation for streams, not parallel (Fig. 5). Another possibility is that the hind wing actually separates the flow generated by the forewing. This seems reasonable for parallel running flow channels (Fig. 6). Very similar hind wing positioning on both frames seems to support this observation. This can be another example of how the hind wing interacts with the forewing wake, for a more stable emerging flight. Fig. 6 shows two frames which are from separate flapping cycles, but show close similarities as if they would be captured from the same cycle with a short time difference. It is worth mentioning that this phenomenon was found only for out of phase flapping

6 Fig. 4 Vortex development and shedding at the first down stroke of an in phase flapping dragonfly. Forward flight flow field can be seen in (Fig. 7). The forewing is in its upstroke whilst the hind wing is at its upmost position. Horizontally directed flow was found only in the case of out of phase flapping. Clearly the wake of the forewing reaches the hind wing upper surface at an acute angle which generates negative lift. Negative vertical force for the up stroking hind wing in the case of forward flight was also found for a number of tested cases in recent studies (Wang and Sun, 2005; Broering and Lian, 2012). Forewing vortexes are not apparent as expected for the upstroke, when the wing plane is oriented almost vertically to reduce drag

7 Fig. 5 Out of phase flapping generates two separate flow streams (not parallel). The forewing has passed its mid upstroke, while the hind wing is at its upmost position. In phase flapping generated downwards oriented flow (Fig. 8) in half of the cases and 45 o downwards oriented flow (Fig. 9) in the other half of the eight identified cases. However there is a difference of 45 o between these directions that is achieved with a seemingly small change in the stroke plane angle. At this point it seems that the dragonfly has the means to conveniently direct the generated flow and thus the resulting lift and thrust forces between these two extremes; however it is not proven if in phase flapping would be used to generate horizontal flow for thrust enhancement in the forward direction. In the case of in phase flapping, the flow field is apparently smooth and uniform, suggesting that the two wings function almost as a single wing, without any major wing wake interaction. Out of phase flapping is considered the preferred flight mode for normal cruising and moderate maneuvering moves dragonflies (Alexander, 1984). Besides, the special cases mentioned earlier with out of phase flapping, the dragonfly generated 45 o directed flow in a majority of the recorded cases (emerging flight Fig. 10) with only one case where the dragonfly used this mode for vertical takeoff (Fig 11). Hind wing TEV and forewing LEV formation were observed in most of the recorded cases. The position of the shed TEV was above the top side of the hind wing, and in every recorded case only one could be identified. Forewing TEV could not be identified clearly on any of the recorded cases, neither do forewing shed LEV appears near to the hind wing. It seems that forewing wake and hind wing interaction for these conditions is limited to the downwash effect (detrimental for lift generation (Sun and Lan, 2004; Maybury and Lehmann, 2004)). Results suggest that out of phase flapping can be generally used by the dragonfly for takeoff, cruising or emerging flight. However the number of occurrences shows that it is not the preferred mode for vertical takeoff

8 Fig. 6 Two frames showing out of phase flapping to generate separate flow streams (parallel). A starting TEV above the hind wing and signs of forewing LEV are also visible on these frames. The forewing is in its mid down stroke position in the first frame and at the end of its down stroke in the second frame, while the hind wing is starting its upstroke in the first frame and around at mid upstroke in the second frame

9 Fig. 7 Out of phase flapping in forward flight mode where a shed upstroke TEV of the hind wing can be seen at the lower part of the wake. Fig. 8 In phase flapping generates a vertically directed flow stream where a very definite hind wing TEV and signs of a forewing LEV are also observable

10 Fig. 9 In phase flapping generates 45 o directed flow stream where signs of forewing LEV are also observable. Fig. 10 Out of phase flapping generates 45 o directed flow stream where a very definite hind wing TEV is also observable. Here the forewing is near at the end of its down stroke, while the hind wing supinates before the start of up stroking. 4. Conclusion Experiments were conducted using high speed visualization and PIV techniques on tethered, live dragonflies for measuring the flow fields around their flapping wings. The experimental conditions were close to dragonflies in takeoff and hovering conditions. Therefore, our experiments were not overly dominated by the free stream velocity often seen in wind tunnel

11 experiments. Fig. 11 Out of phase flapping generates a vertical flow stream. Here the forewing is starting its down stroke while the hind wing has passed its mid down stroke phase. Vertically oriented and well focused flow stream were observed by the flapping dragonfly under both inphase and out of phase flapping (Fig 8 and 11). This suggests that vertical take off as well as howering in still air can be exectuted by both wing phasing as the dragonfly body is horizontally positioned and the stroke plane angle is backwards tilted. Quantitative measurements of the flow field of the hovering dragonfly for 90 degrees out of phase (hind wing leads) and in phase flapping exhibited by a dragonfly hovering with horizontal body alignment and tilted stroke plane angles were conducted. Experimental results by using live dragonfly flapping in still air to quantitatively describe the flow field of a hovering dragonfly has not been done according to our best knowledge. The wake in our measurements are free from shed vortexes (fig 8 and 11), which is different from that of reported by Wang and Russel (2007), despite of the higher Reynolds number exhibited by a live dragonfly. This suggest that fine adjustment of the flapping kinematics executed by the live specimen help to extract additional force and produce a fine wake structure without excess swirl. It is found that in phase flapping can generate a well-focused stream, directed vertically or at an angle of 45 o. By the number of occurrences (90% of the identified cases) we can conclude that it is the preferred mode to generate downward momentum for vertical takeoff. In case of in phase flapping, the two wings seemingly functions as one large wing, which apparently generates one distinct TEV starting vortex and one LEV on the forewing. Seemingly there is no interaction of the wings in this case. Another observation in the experiments is that a dragonfly is capable of generating two separate flow streams, in an out of phase flapping mode. This supposedly adds extra stability for the dragonfly when it changes from taking off to forward flight. Acknowledgements

12 The work described in this paper was supported by the Hong Kong University of Science & Technology and Hong Kong Ph.D. Fellowship Scheme from the Research Grants Council (RGC) of the Hong Kong Special Administration Region, China. References [1] Alexander D, Unusual phase relationships between forewings and hindwings in flying dragonflies. Journal of Experimental Biology, 109 (1984), pp [2] Azuma A, Watanabe T, Flight performance of a dragonfly. Journal of Experimental Biology, 137 (1) (1988), pp [3] Broering T M, Lian Y -S, The effect of phase angle and wing spacing on tandem flapping wings. Acta Mechanica Sinica, 28 (6) (2012), pp [4] Lian Y, Broering T, Hord K, Prater R, The characterization of tandem and corrugated wings. Progress in Aerospace Sciences, 65 (2013), pp [5] Maybury W, Lehmann F O, The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Journal of Experimental Biology, 207 (2004), pp [6] Rival D, Schönweitz D, Tropea C, Vortex interaction of tandem pitching and plunging plates: a two-dimensional model of hovering dragonfly-like flight. Bioinspiration & Biomimetics, 6 (1) (2011), p [7] Shyy W, Aono H, Chimakurthi S K, Trizila P, Kang C -K, Cesnik C E S, Liu H, Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 46 (2010), pp [8] Shyy W, Lian Y, Tang J, Viieru D, Liu H, Aerodynamics of low Reynolds number flyers. Cambridge University Press (2008) [9] Sun M, Huang H, Dragonfly forewing hindwing interaction at various flight speeds and wing phasing. AIAA Journal, 45 (2) (2007), pp [10] Sun M, Lan S L, A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. Journal of Experimental Biology, 207 (11) (2004), pp [11] Thomas A L R, Taylor G K, Srygley R B, Nudds R L, Bomphrey R J, Dragonfly flight: freeflight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 207 (24) (2004), pp [12] Tsuyuki K, Sudo S, Tani J, Morphology of insect wings and airflow produced by flapping insects. Journal of Intelligent Materials Systems and Structures, 17 (2006), pp [13] Usherwood J R, Lehmann F O, Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of the Royal Society Interface, 5 (28) (2008), pp [14] Wakeling J, Ellington C, Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight Journal of Experimental Biology, 200 (3) (1997), pp [15] Wang Z J, Russell D, Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Physical Review Letters, 99 (14) (2007), p [16] Wang J K, Sun M, A computational study of the aerodynamics and forewing hindwing interaction of a model dragonfly in forward flight. Journal of Experimental Biology, 208 (19) (2005), pp

An Experimental Investigation on the Wake Flow Characteristics of Tandem Flapping Wings

An Experimental Investigation on the Wake Flow Characteristics of Tandem Flapping Wings 6th AIAA Theoretical Fluid Mechanics Conference 27-30 June 2011, Honolulu, Hawaii AIAA 2011-3120 An Experimental Investigation on the Wake Flow Characteristics of Tandem Flapping Wings Anand Gopa Kumar

More information

Two-Dimensional Aerodynamic Models of Insect Flight for Robotic Flapping Wing Mechanisms of Maximum Efficiency

Two-Dimensional Aerodynamic Models of Insect Flight for Robotic Flapping Wing Mechanisms of Maximum Efficiency Journal of Bionic Engineering 5 (2008) 1 11 Two-Dimensional Aerodynamic Models of Insect Flight for Robotic Flapping Wing Mechanisms of Maximum Efficiency Thien-Tong Nguyen 1, Doyoung Byun 2 1. Department

More information

Computational Analysis of Hovering Hummingbird Flight

Computational Analysis of Hovering Hummingbird Flight Computational Analysis of Hovering Hummingbird Flight Zongxian Liang 1 and Haibo Dong 2 Department of Mechanical & Materials Engineering, Wright State University, Dayton, OH 45435 Mingjun Wei 3 Department

More information

SENSITIVITY ANALYSIS OF THE FACTORS AFFECTING FORCE GENERATION BY WING FLAPPING MOTION

SENSITIVITY ANALYSIS OF THE FACTORS AFFECTING FORCE GENERATION BY WING FLAPPING MOTION Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition IMECE2013 November 15-21, 2013, San Diego, California, USA IMECE2013-65472 SENSITIVITY ANALYSIS OF THE FACTORS

More information

Computational Analysis of Hovering Hummingbird Flight

Computational Analysis of Hovering Hummingbird Flight 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-555 Computational Analysis of Hovering Hummingbird Flight Zongxian

More information

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 7-9, 00 PIV 0 Paper 096 THE EFFECT OF SAMPLE SIZE, TURBULECE ITESITY AD THE VELOCITY FIELD O THE EXPERIMETAL ACCURACY

More information

Smart wing rotation and ingenious leading edge vortex control modulate the unconventional forces during insects flights

Smart wing rotation and ingenious leading edge vortex control modulate the unconventional forces during insects flights Smart wing rotation and ingenious leading edge vortex control modulate the unconventional forces during insects flights Yang Xiang, Haotian Hang, and Hong Liu J.C.Wu Center for Aerodynamics, School of

More information

Modeling of Instantaneous Passive Pitch of Flexible Flapping Wings

Modeling of Instantaneous Passive Pitch of Flexible Flapping Wings Fluid Dynamics and Co-located Conferences June 24-27, 2013, San Diego, CA 43rd Fluid Dynamics Conference AIAA 2013-2469 Modeling of Instantaneous Passive Pitch of Flexible Flapping Wings Chang-kwon Kang

More information

An experimental study of the vortex structures in the wake of a piezoelectric flapping plate for Nano Air Vehicle applications

An experimental study of the vortex structures in the wake of a piezoelectric flapping plate for Nano Air Vehicle applications Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 9 An experimental study of the vortex structures in the wake of a piezoelectric flapping plate for Nano Air Vehicle

More information

An Experimental Investigation on the Asymmetric Wake Formation of an Oscillating Airfoil

An Experimental Investigation on the Asymmetric Wake Formation of an Oscillating Airfoil 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 07-10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas AIAA 2013-0794 An Experimental Investigation

More information

On the Aerodynamic Performance of Dragonfly Wing Section in Gliding Mode

On the Aerodynamic Performance of Dragonfly Wing Section in Gliding Mode Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 3 (2013), pp. 227-234 Research India Publications http://www.ripublication.com/aasa.htm On the Aerodynamic Performance of

More information

Near-Hover Dynamics and Attitude Stabilization of an Insect Model

Near-Hover Dynamics and Attitude Stabilization of an Insect Model 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 WeA1.4 Near-Hover Dynamics and Attitude Stabilization of an Insect Model B. Cheng and X. Deng Abstract In this paper,

More information

Vortex Dynamics in Near Wake of a Hovering Hawkmoth

Vortex Dynamics in Near Wake of a Hovering Hawkmoth 46th AIAA Aerospace Sciences Meeting and Exhibit 7-1 January 28, Reno, Nevada AIAA 28-583 Vortex Dynamics in Near Wake of a Hovering Hawkmoth Hikaru Aono 1 Graduate School of Science and Technology, Chiba

More information

Analysis of a Hinge-Connected Flapping Plate with an Implemented Torsional Spring Model

Analysis of a Hinge-Connected Flapping Plate with an Implemented Torsional Spring Model Analysis of a Hinge-Connected Flapping Plate with an Implemented Torsional Spring Model Zach Gaston 1, Hui Wan 2 and Haibo Dong 3 Department of Mechanical & Materials Engineering, Wright State University,

More information

Title: Aerodynamics characteristics of butterfly flight through measurement of threedimensional unsteady velocity field using TR-PIV system

Title: Aerodynamics characteristics of butterfly flight through measurement of threedimensional unsteady velocity field using TR-PIV system Title: Aerodynamics characteristics of butterfly flight through measurement of threedimensional unsteady velocity field using TR-PIV system REF: AOARD-09-4102 Contract No. FA23860914102 PI: Debopam Das

More information

APPLICATION OF ARTIFICIAL NEURAL NETWORK IN MODELING OF ENTOMOPTER DYNAMICS

APPLICATION OF ARTIFICIAL NEURAL NETWORK IN MODELING OF ENTOMOPTER DYNAMICS APPLICATION OF ARTIFICIAL NEURAL NETWORK IN MODELING OF ENTOMOPTER DYNAMICS Paweł Czekałowski*, Krzysztof Sibilski**, Andrzej Żyluk** *Wroclaw University of Technology, **Air Force Institute of Technology

More information

A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight

A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight Acta Mech Sinica (2005) 21, 218 227 DOI 10.1007/s10409-005-0032-z RESEARCH PAPER Yongliang Yu Binggang Tong A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight

More information

RESEARCH ARTICLE Aerodynamic effects of corrugation in flapping insect wings in hovering flight

RESEARCH ARTICLE Aerodynamic effects of corrugation in flapping insect wings in hovering flight 3 The Journal of Experimental iology, 3-. Published by The Company of iologists Ltd doi:./jeb.6375 RESERCH RTIE erodynamic effects of corrugation in flapping insect wings in hovering flight Xue Guang Meng*,

More information

PIV and force measurements on the flapping-wing MAV DelFly II

PIV and force measurements on the flapping-wing MAV DelFly II Master of Science Thesis PIV and force measurements on the flapping-wing MAV DelFly II An aerodynamic and aeroelastic investigation into vortex development M.A. Groen 2 December 21 Ad Faculty of Aerospace

More information

Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency I. H. Tuncer, M. Kay

Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency I. H. Tuncer, M. Kay Czech Technical University in Prague Acta Polytechnica Vol. 44 No. 1/2004 Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency I. H. Tuncer, M. Kay A numerical optimization algorithm

More information

Computational Aerodynamics of Low Reynolds Number Plunging, Pitching and Flexible Wings for MAV Applications

Computational Aerodynamics of Low Reynolds Number Plunging, Pitching and Flexible Wings for MAV Applications 46th AIAA Aerospace Sciences Meeting and Exhibit 7-10 January 2008, Reno, Nevada AIAA 2008-523 Computational Aerodynamics of Low Reynolds Number Plunging, Pitching and Flexible Wings for MAV Applications

More information

Effect of Pivot Point on Aerodynamic Force and Vortical Structure of Pitching Flat Plate Wings

Effect of Pivot Point on Aerodynamic Force and Vortical Structure of Pitching Flat Plate Wings 5st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 7 - January 23, Grapevine (Dallas/Ft. Worth Region), Texas AIAA 23-792 Effect of Pivot Point on Aerodynamic

More information

Open Access Experimental Research and Analysis of Vortex Excited Vibration Suppression of Spiral Stripe Strake

Open Access Experimental Research and Analysis of Vortex Excited Vibration Suppression of Spiral Stripe Strake Send Orders for Reprints to reprints@benthamscience.ae The Open Mechanical Engineering Journal, 2014, 8, 941-947 941 Open Access Experimental Research and Analysis of Vortex Excited Vibration Suppression

More information

Unsteady flow over flexible wings at different low Reynolds numbers

Unsteady flow over flexible wings at different low Reynolds numbers EPJ Web of Conferences 114, 02030 (2016) DOI: 10.1051/ epjconf/ 2016114 02030 C Owned by the authors, published by EDP Sciences, 2016 Unsteady flow over flexible wings at different low Reynolds numbers

More information

NUMERICAL SIMULATION OF SELF-PROPELLED FLYING OF A THREE-DIMENSIONAL BIRD WITH FLAPPING WINGS

NUMERICAL SIMULATION OF SELF-PROPELLED FLYING OF A THREE-DIMENSIONAL BIRD WITH FLAPPING WINGS NUMERICAL SIMULATION OF SELF-PROPELLED FLYING OF A THREE-DIMENSIONAL BIRD WITH FLAPPING WINGS WU Chui-Jie, ZHU Lin-Lin State Key Laboratory of Structural Analysis for Industrial Equipment, School of Aeronautics

More information

Lift Enhancement by Dynamically Changing Wingspan. in Forward Flapping Flight (09/10/2013)

Lift Enhancement by Dynamically Changing Wingspan. in Forward Flapping Flight (09/10/2013) Lift Enhancement by Dynamically Changing Wingspan in Forward Flapping Flight Shizhao Wang 1, Xing Zhang 1, Guowei He 1a), ianshu Liu 2,1 (09/10/2013) 1 he State Key Laboratory of Nonlinear Mechanics, Institute

More information

I nsect flight has long been considered a paradox, defeating the expectations of steady state aerodynamics. We

I nsect flight has long been considered a paradox, defeating the expectations of steady state aerodynamics. We OPEN SUBJECT AREAS: BIOMECHANICS FLUID DYNAMICS Received 15 May 2013 Accepted 5 November 2013 Published 20 November 2013 Correspondence and requests for materials should be addressed to L.C.J. (Christoffer.

More information

The manipulation of trailing-edge vortices for an airfoil in plunging motion

The manipulation of trailing-edge vortices for an airfoil in plunging motion Journal of Fluids and Structures 26 (2) 93 24 www.elsevier.com/locate/jfs The manipulation of trailing-edge vortices for an airfoil in plunging motion T. Prangemeier, D. Rival, C. Tropea Institute of Fluid

More information

Unsteady aerodynamic forces of a flapping wing

Unsteady aerodynamic forces of a flapping wing The Journal of Experimental Biology 7, 37-5 Published by The Company of Biologists 4 doi:.4/jeb.868 37 Unsteady aerodynamic forces of a flapping wing Jiang Hao Wu and Mao Sun* Institute of Fluid Mechanics,

More information

An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing Exp Fluids (11) 51:37 359 DOI 1.17/s38-11-15-z RESEARCH ARTICLE An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing Hui Hu Lucas Clemons Hirofumi Igarashi

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This is an open access article which appeared in a ournal published by Elsevier. This article is free

More information

COMPUTATIONAL STUDY ON THE INFLUENCE OF DYNAMIC STALL ON THE UNSTEADY AERODYNAMICS OF FLAPPING WING ORNITHOPTER

COMPUTATIONAL STUDY ON THE INFLUENCE OF DYNAMIC STALL ON THE UNSTEADY AERODYNAMICS OF FLAPPING WING ORNITHOPTER COMPUTATIONAL STUDY ON THE INFLUENCE OF DYNAMIC STALL ON THE UNSTEADY AERODYNAMICS OF FLAPPING WING ORNITHOPTER Alif Syamim Syazwan Ramli and Harijono Djojodihardjo Department of Aerospace Engineering,

More information

ScienceDirect. Experimental Validation on Lift Increment of a Flapping Rotary Wing with Boring-hole Design

ScienceDirect. Experimental Validation on Lift Increment of a Flapping Rotary Wing with Boring-hole Design Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (2015 ) 1543 1547 APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 Experimental

More information

PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW

PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW ICAS CONGRESS PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW G. M. Di Cicca Department of Aerospace Engineering, Politecnico di Torino C.so Duca degli Abruzzi, 4 - I 19 Torino, ITALY

More information

International Journal of Micro Air Vehicles

International Journal of Micro Air Vehicles Reliable Force Predictions for a Flapping-wing Micro Air Vehicle: A Vortex-lift Approach W. Thielicke, A.B. Kesel and E.J. Stamhuis Reprinted from International Journal of Micro Air Vehicles Volume 3 Number

More information

Wing Kinematics in a Hovering Dronefly Minimize Power Expenditure

Wing Kinematics in a Hovering Dronefly Minimize Power Expenditure Wing Kinematics in a Hovering Dronefly Minimize Power Expenditure Authors: J. H. Wu, and M. Sun Source: Journal of Insect Science, 14(159) : 1-8 Published By: Entomological Society of America URL: https://doi.org/10.1093/jisesa/ieu021

More information

Flow Characteristics around an Inclined Circular Cylinder with Fin

Flow Characteristics around an Inclined Circular Cylinder with Fin Lisbon, Portugal, 7- July, 28 Flow Characteristics around an Inclined Circular Cylinder with Fin Tsuneaki ISHIMA, Takeshi SASAKI 2, Yoshitsugu GOKAN 3 Yasushi TAKAHASHI 4, Tomio OBOKATA 5 : Department

More information

The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in

The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in 1 Wing and body shape of Manduca sexta and Agrius convolvuli The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in terms of the aspect ratio of forewing AR fw (wing length

More information

Effects of Unequal Pitch and Plunge Airfoil Motion Frequency on Aerodynamic Response

Effects of Unequal Pitch and Plunge Airfoil Motion Frequency on Aerodynamic Response Effects of Unequal Pitch and Plunge Airfoil Motion Frequency on Aerodynamic Response C. Webb *, H. Dong Department of Mechanical & Materials Engineering, Wright State University Dayton, OH 45435, Michael

More information

Fig. 1. Bending-Torsion Foil Flutter

Fig. 1. Bending-Torsion Foil Flutter 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXTRACTING POWER IN JET STREAMS: PUSHING THE PERFORMANCE OF FLAPPING WING TECHNOLOGY M.F. Platzer*, M.A. Ashraf**, J. Young**, and J.C.S. Lai**

More information

Enclosure enhancement of flight performance

Enclosure enhancement of flight performance THEORETICAL & APPLIED MECHANICS LETTERS, 23 (21) Enclosure enhancement of flight performance Mehdi Ghommem, 1, a) Daniel Garcia, 2 Victor M. Calo 3 1) Center for Numerical Porous Media (NumPor), King Abdullah

More information

Unsteady Force Generation and Vortex Dynamics of Pitching and Plunging Flat Plates at Low Reynolds Number

Unsteady Force Generation and Vortex Dynamics of Pitching and Plunging Flat Plates at Low Reynolds Number 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 4-7 January 2011, Orlando, Florida AIAA 2011-220 Unsteady Force Generation and Vortex Dynamics of Pitching

More information

Effects of Flexibility on the Aerodynamic Performance of Flapping Wings

Effects of Flexibility on the Aerodynamic Performance of Flapping Wings 6th AIAA Theoretical Fluid Mechanics Conference 27-30 June 2011, Honolulu, Hawaii AIAA 2011-3121 Effects of Flexibility on the Aerodynamic Performance of Flapping Wings Chang-kwon Kang 1, Hikaru Aono 2,

More information

arxiv: v1 [physics.flu-dyn] 27 Mar 2014

arxiv: v1 [physics.flu-dyn] 27 Mar 2014 A study on aerodynamics and mechanisms of elementary morphing models for flapping wing in bat forward flight arxiv:143.684v1 [physics.flu-dyn] 7 Mar 14 GUAN Zi-Wu 1,, YU Yong-Liang 1 (1. The Laboratory

More information

K. M. Isaac, P. Shivaram + University of Missouri-Rolla Rolla, MO T. DalBello NASA Glenn Research Center

K. M. Isaac, P. Shivaram + University of Missouri-Rolla Rolla, MO T. DalBello NASA Glenn Research Center Low Re, High α Aerodynamics with Controlled Wing Kinematics K. M. Isaac, P. Shivaram + University of Missouri-Rolla Rolla, MO 65409 isaac@umr.edu T. DalBello NASA Glenn Research Center ABSTRACT Numerical

More information

ABSTRACT. travels through the wing reducing the drag forces generated. When the wings are in

ABSTRACT. travels through the wing reducing the drag forces generated. When the wings are in ABSTRACT Tiny insects use a process called clap and fling to augment the lift forces generated during flight. The one disadvantage to using this method is the drag forces created when the wings fling apart

More information

Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils

Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils Andrew Magstadt, John Strike, Michael Hind, Pourya Nikoueeyan, and Jonathan Naughton Dept. of Mechanical Engineering Wind Energy Research Center

More information

Investigation of Transonic Flow Behavior around a Three- Dimensional Turret Using Particle Image Velocimetry

Investigation of Transonic Flow Behavior around a Three- Dimensional Turret Using Particle Image Velocimetry Investigation of Transonic Flow Behavior around a Three- Dimensional Turret Using Particle Image Velocimetry Carlos Caballero College of Engineering, University of Florida Light distortions produced by

More information

Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System Without Guide Implementing Inherent Pitching Stability

Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System Without Guide Implementing Inherent Pitching Stability Journal of Bionic Engineering 9 (2012) 391 401 Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System Without Guide Implementing Inherent Pitching Stability Hoang Vu Phan 1, Quoc Viet Nguyen

More information

Vortex-Array Model of a Shear Layer Perturbed by a Periodically Pitching Airfoil

Vortex-Array Model of a Shear Layer Perturbed by a Periodically Pitching Airfoil AIAA Aviation 1- June 1, Atlanta, GA th AIAA Fluid Dynamics Conference AIAA 1-53 Vortex-Array Model of a Shear Layer Perturbed by a Periodically Pitching Airfoil K. Zhang 1 Xi an Jiaotong University, Xi

More information

Computational Fluid-Structure Interaction of a Deformable Flapping Wing for Micro Air Vehicle Applications

Computational Fluid-Structure Interaction of a Deformable Flapping Wing for Micro Air Vehicle Applications 46th AIAA Aerospace Sciences Meeting and Exhibit 7-10 January 008, Reno, Nevada AIAA 008-615 Computational Fluid-Structure Interaction of a Deformable Flapping Wing for Micro Air Vehicle Applications Jian

More information

Dynamic flight stability of a hovering bumblebee

Dynamic flight stability of a hovering bumblebee The Journal of Experimental iology 28, 447-459 Published by The Company of iologists 25 doi:1.1242/jeb.147 447 Dynamic flight stability of a hovering bumblebee Mao Sun* and Yan Xiong Institute of Fluid

More information

Stall Suppression of a Low-Reynolds-Number Airfoil with a Dynamic Burst Control Plate

Stall Suppression of a Low-Reynolds-Number Airfoil with a Dynamic Burst Control Plate 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 4-7 January 2011, Orlando, Florida AIAA 2011-1180 Stall Suppression of a Low-Reynolds-Number Airfoil with

More information

FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL

FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL Hiroyuki Tanaka Department

More information

When vortices stick: an aerodynamic transition in tiny insect flight

When vortices stick: an aerodynamic transition in tiny insect flight The Journal of Experimental Biology 7, 7-88 Published by The Company of Biologists 4 doi:.4/jeb.8 7 When vortices stick: an aerodynamic transition in tiny insect flight Laura A. Miller* and Charles S.

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

25 years of PIV development for application in aeronautical test facilities

25 years of PIV development for application in aeronautical test facilities 25 years of PIV development for application in aeronautical test facilities Jürgen Kompenhans and team Department Experimental Methods Institute of Aerodynamics and Flow Technology German Aerospace Center

More information

Empirical Determination of Aerodynamic Coefficients of. a Micro-robotic Dragonfly s Wings

Empirical Determination of Aerodynamic Coefficients of. a Micro-robotic Dragonfly s Wings Empirical Determination of Aerodynamic Coefficients of a Micro-robotic Dragonfly s Wings Submitted to Undergraduate Awards Engineering and Mechanical Sciences Category June 2014 Abstract The present study

More information

A COMPUTATIONAL FLUID DYNAMICS STUDY OF CLAP AND FLING IN THE SMALLEST INSECTS. Laura A. Miller* and Charles S. Peskin**

A COMPUTATIONAL FLUID DYNAMICS STUDY OF CLAP AND FLING IN THE SMALLEST INSECTS. Laura A. Miller* and Charles S. Peskin** A COMPUTATIONAL FLUID DYNAMICS STUDY OF CLAP AND FLING IN THE SMALLEST INSECTS Laura A. Miller* and Charles S. Peskin** *Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City,

More information

Computation of Inertial Forces and Torques Associated with. Flapping Wings

Computation of Inertial Forces and Torques Associated with. Flapping Wings AIAA Guidance, Navigation, and Control Conference 3-6 August, Minneapolis, Minnesota AIAA -498 Computation of Forces and Torques Associated with Flapping Wings Michael W. Oppenheimer Downloaded by UNIVERSITY

More information

Aeroelastic Analysis Of Membrane Wings

Aeroelastic Analysis Of Membrane Wings Aeroelastic Analysis Of Membrane Wings Soumitra P. Banerjee and Mayuresh J. Patil Virginia Polytechnic Institute and State University, Blacksburg, Virginia 46-3 The physics of flapping is very important

More information

Numerical and experimental investigation of the role of flexibility in flapping wing flight

Numerical and experimental investigation of the role of flexibility in flapping wing flight 36th AIAA Fluid Dynamics Conference and Exhibit 5-8 June 26, San Francisco, California AIAA 26-3211 Numerical and experimental investigation ohe role of flexibility in flapping wing flight Jonathan Toomey

More information

Aerodynamic characterization of bio inspired corrugated wings

Aerodynamic characterization of bio inspired corrugated wings MOJ Applied Bionics and Biomechanics Research Article Open Access Aerodynamic characterization of bio inspired corrugated wings Abstract Wings of a dragon fly found in nature possess corrugations on its

More information

Modeling of Pitching and Plunging Airfoils at Reynolds Number between and

Modeling of Pitching and Plunging Airfoils at Reynolds Number between and 27th AIAA Applied Aerodynamics Conference 22-25 June 2009, San Antonio, Texas AIAA 2009-4100 Modeling of Pitching and Plunging Airfoils at Reynolds Number between 1 10 4 and 6 10 4 Chang-kwon Kang 1 *,

More information

A computational fluid dynamics of clap and fling in the smallest insects

A computational fluid dynamics of clap and fling in the smallest insects The Journal of Experimental Biology 8, 95- Published by The Company of Biologists 5 doi:.4/jeb.376 95 A computational fluid dynamics of clap and fling in the smallest insects Laura A. Miller, * and Charles

More information

A Biologically Inspired Computational Study of Flow Past Tandem Flapping Foils

A Biologically Inspired Computational Study of Flow Past Tandem Flapping Foils A Biologically Inspired Computational Study of Flow Past andem Flapping Foils I. Akhtar * and R. Mittal Department of Mechanical & Aerospace Engineering he George Washington University, Washington DC 20052

More information

OSCILLATING AERO-WING MODEL IN THE QUASI-STEADY DOMAIN A REFERENCE FOR SUSTAINED ANIMAL FLIGHT AND MICRO AIR VEHICLES

OSCILLATING AERO-WING MODEL IN THE QUASI-STEADY DOMAIN A REFERENCE FOR SUSTAINED ANIMAL FLIGHT AND MICRO AIR VEHICLES P. Freymuth, Int. Journal of Design & Nature. Vol. 1, No. 2 (2007) 87 99 OSCILLATING AERO-WING MODEL IN THE QUASI-STEADY DOMAIN A REFERENCE FOR SUSTAINED ANIMAL FLIGHT AND MICRO AIR VEHICLES P. FREYMUTH

More information

INVESTIVATION OF LOW THRUST TO WEIGHT RATIO ROTATIONAL CAPACITY OF ASYMMETRIC MONO-WING CONFIGURATIONS

INVESTIVATION OF LOW THRUST TO WEIGHT RATIO ROTATIONAL CAPACITY OF ASYMMETRIC MONO-WING CONFIGURATIONS 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES INVESTIVATION OF LOW THRUST TO WEIGHT RATIO ROTATIONAL CAPACITY OF ASYMMETRIC MONO-WING CONFIGURATIONS Derrick Ho*, Dr KC Wong* School of Aerospace,

More information

Active wing control in a Dragonfly-inspired Micro Air Vehicle

Active wing control in a Dragonfly-inspired Micro Air Vehicle Active wing control in a Dragonfly-inspired Micro Air Vehicle A Thesis Submitted for the Degree of Doctor of Philosophy by Jia Ming Kok School of Engineering, Division of Information Technology, Engineering

More information

Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies

Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies F.F.J. Schrijer 1, A. Sciacchitano 1, F. Scarano 1 1: Faculty of Aerospace Engineering,

More information

Experimental Investigation of Automobile Sunroof Buffeting Shear Flows

Experimental Investigation of Automobile Sunroof Buffeting Shear Flows Seoul, Korea, 22-24 June 29 Experimental Investigation of Automobile Sunroof Buffeting Shear Flows Seong Ryong Shin and Moo Sang Kim Corporate Research & Development Division Hyundai Motor Company 772-1

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Dynamic flight stability of a hovering model insect: lateral motion

Dynamic flight stability of a hovering model insect: lateral motion Acta Mech Sin (010) 6:175 190 DOI 10.1007/s10409-009-00-1 RESEARCH PAPER Dynamic flight stability of a hovering model insect: lateral motion Yanlai Zhang Mao Sun Received: 18 May 009 / Revised: 5 August

More information

Fluid Dynamics of Pitching and Plunging Airfoils of Reynolds Number between and

Fluid Dynamics of Pitching and Plunging Airfoils of Reynolds Number between and 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-536 Fluid Dynamics of Pitching and Plunging Airfoils of Reynolds

More information

THE purpose of this work has been to evaluate the aerodynamic

THE purpose of this work has been to evaluate the aerodynamic JOURNAL OF AIRCRAFT Vol. 44, No. 5, September October 2007 Experimental Aerodynamic Study of Tandem Flapping Membrane Wings Jonathan Warkentin InvoDane Engineering, Ltd., Toronto, Ontario M3B 2T6, Canada

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot Taylor S. Clawson, Sawyer B. Fuller Robert J. Wood, Silvia Ferrari American Control Conference Seattle, WA May 25, 2016

More information

Dynamics of Flapping Micro-Aerial Vehicles

Dynamics of Flapping Micro-Aerial Vehicles 29 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 1-12, 29 FrA7.6 Dynamics of Flapping Micro-Aerial Vehicles T.M. Yang and F.Y. Hsiao Abstract The dynamics of flapping wing

More information

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena Dr. Hui HU Advanced Flow Diagnostics and Experimental Aerodynamics Laboratory

More information

High-Fidelity Optimization of Flapping Airfoils for Maximum Propulsive Efficiency

High-Fidelity Optimization of Flapping Airfoils for Maximum Propulsive Efficiency 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 07-10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas AIAA 2013-0085 High-Fidelity Optimization of

More information

THE MECHANICS OF FLIGHT IN THE HAWKMOTH MANDUCA SEXTA

THE MECHANICS OF FLIGHT IN THE HAWKMOTH MANDUCA SEXTA The Journal of Experimental Biology 00, 73 745 (1997) Printed in Great Britain The Company of Biologists Limited 1997 JEB0994 73 THE MECHANICS OF FLIGHT IN THE HAWKMOTH MANDUCA SEXTA II. AERODYNAMIC CONSEQUENCES

More information

Experimental characterization of flow field around a square prism with a small triangular prism

Experimental characterization of flow field around a square prism with a small triangular prism Journal of Mechanical Science and Technology 29 (4) (2015) 1649~1656 www.springerlink.com/content/1738-494x OI 10.1007/s12206-015-0336-2 Experimental characterization of flow field around a square prism

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow

Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow Supplementary Information for Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow Authors: J. Tai, C. P. Lim, Y. C. Lam Correspondence to: MYClam@ntu.edu.sg This document includes:

More information

Lift and power requirements of hovering flight in Drosophila virilis

Lift and power requirements of hovering flight in Drosophila virilis The Journal of Experimental Biology 5, 37 () Printed in Great Britain The ompany of Biologists Limited JEB6 3 Lift and power requirements of hovering flight in Drosophila virilis Mao Sun* and Jian Tang

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

Thrust and Efficiency of Propulsion by Oscillating Foils

Thrust and Efficiency of Propulsion by Oscillating Foils Thrust and Efficiency of Propulsion by Oscillating Foils J. Young, J.C.S. Lai, M.Kaya 2 and I.H. Tuncer 2 School of Aerospace, Civil and Mechanical Engineering, UNSW@ADFA, Australian Defence Force Academy,

More information

Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics

Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics Rajkiran Madangopal Graduate Student e-mail: madangop@me.udel.edu Zaeem A. Khan Graduate Student e-mail: khanza@me.udel.edu Sunil K. Agrawal Ph.D. Professor e-mail: agrawal@me.udel.edu Mechanical Systems

More information

Design of a Butterfly Ornithopter

Design of a Butterfly Ornithopter Journal of Applied Science and Engineering, Vol. 19, No. 1, pp. 7 16 (2016) DOI: 10.6180/jase.2016.19.1.02 Design of a Butterfly Ornithopter Bo-Hsun Chen, Li-Shu Chen, Yueh Lu, Zih-Jie Wang and Pei-Chun

More information

Research on Balance of Unmanned Aerial Vehicle with Intelligent Algorithms for Optimizing Four-Rotor Differential Control

Research on Balance of Unmanned Aerial Vehicle with Intelligent Algorithms for Optimizing Four-Rotor Differential Control 2019 2nd International Conference on Computer Science and Advanced Materials (CSAM 2019) Research on Balance of Unmanned Aerial Vehicle with Intelligent Algorithms for Optimizing Four-Rotor Differential

More information

A wing characterization method for flapping-wing robotic insects

A wing characterization method for flapping-wing robotic insects 213 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 213. Tokyo, Japan A wing characterization method for flapping-wing robotic insects Alexis Lussier Desbiens*,

More information

ABSTRACT. flapping wings in hover. An experimental apparatus, with a bio-inspired flapping

ABSTRACT. flapping wings in hover. An experimental apparatus, with a bio-inspired flapping ABSTRACT Title of dissertation: DYNAMICS AND AEROELASTICITY OF HOVER CAPABLE FLAPPING WINGS: EXPERIMENTS AND ANALYSIS Beerinder Singh, Doctor of Philosophy, 26 Dissertation directed by: Professor Inderjit

More information

Flight and Orbital Mechanics. Exams

Flight and Orbital Mechanics. Exams 1 Flight and Orbital Mechanics Exams Exam AE2104-11: Flight and Orbital Mechanics (23 January 2013, 09.00 12.00) Please put your name, student number and ALL YOUR INITIALS on your work. Answer all questions

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture-0 Introduction toufiquehasan.buet.ac.bd

More information

INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS

INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS ICAS 2002 CONGRESS INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS S. Yarusevych*, J.G. Kawall** and P. Sullivan* *Department of Mechanical and Industrial Engineering, University

More information

Flow structure and performance of a flexible plunging airfoil

Flow structure and performance of a flexible plunging airfoil University of Iowa Iowa Research Online Theses and Dissertations Spring 2013 Flow structure and performance of a flexible plunging airfoil James Marcus Akkala University of Iowa Copyright 2013 James Akkala

More information

Coupling of the wings and the body dynamics enhances damselfly maneuverability

Coupling of the wings and the body dynamics enhances damselfly maneuverability Coupling of the wings and the body dynamics enhances damselfly maneuverability Samane Zeyghami, Haibo Dong Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904 In flapping

More information

EXPERIMENTAL STUDY OF JET FLOW FIELD BY DUAL HOLOGRAM INTERFEROMETRY

EXPERIMENTAL STUDY OF JET FLOW FIELD BY DUAL HOLOGRAM INTERFEROMETRY 7 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL STUDY OF JET FLOW FIELD BY DUAL HOLOGRAM INTERFEROMETRY Peng Lv*, Zhimin Chen, Xing Wang *Northwestern Polytechnical University, Xian,

More information

AERODYNAMICS OF WINGS AT LOW REYNOLDS NUMBERS. John McArthur. A Qualifying Exam Proposal Presented to the FACULTY OF THE GRADUATE SCHOOL

AERODYNAMICS OF WINGS AT LOW REYNOLDS NUMBERS. John McArthur. A Qualifying Exam Proposal Presented to the FACULTY OF THE GRADUATE SCHOOL AERODYNAMICS OF WINGS AT LOW REYNOLDS NUMBERS by John McArthur A Qualifying Exam Proposal Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the

More information