Surfaces, Interfaces, and Layered Devices

Size: px
Start display at page:

Download "Surfaces, Interfaces, and Layered Devices"

Transcription

1 Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1

2 Role of surface effects in mesoscopic objects A / V = 6a 2 / a 3 = 6 / a = 6 V -1/3 t 1. Why are surfaces important in Nanophysics? Are their properties different from bulk? Jonas V = a 3 (2a) 3 = 8 a 3 (5a) 3 = 125 a 3 (10a) 3 = 1000 a 3 Percentage of surface atoms : 100% 100% 78,4% 48,8% Macroscopic: V = (10 8 a) 3 = a 3 A = 6 (10 8 a) 2 = a 2 Percentage of surface atoms: %!!! (negligible) Introduction to Nanophysics 2

3 Progress in miniaturisation By Cmglee - Own work, CC BY-SA 3.0, Introduction 3

4 Interface between a crystal and vacuum: 1D Schematic representation of the potential landscape in a finite crystal, which gets modified close to the surface. Surface states (S) may result, with typical energies inside the gap between the valence band (VB) and the conduction band (CB) t 3. What is the origin of surface states? Where do they come from and where are they located in band structures of semiconductors? Surfaces and Interfaces 4

5 Tight binding model To find energies and wave functions one should solve the Schrödinger equation in a realistic potential, which often has to be found in a self-consistent way generally difficult! 1D chain of 10 atoms. The surface states are split from other N-2 states, their energies turn out to be larger (or smaller) than those of bulk states Surfaces and Interfaces 5

6 Tight binding model Overlap integral Transfer integral 5. thow do surface states appear in the tight binding model in crystalvacuum interface? Have they got anything to do with Bloch s theorem solutions with imaginary wave vectors and evanescent waves? Give an example of a surface wave function in one dimension. Surfaces and Interfaces 6

7 Tight binding model Surfaces and Interfaces 7

8 Tight binding model t 5. How do surface states appear in the tight binding model in crystalvacuum interface? Have they got anything to do with Bloch s theorem solutions with imaginary wave vectors and evanescent waves? Give an example of a surface wave function in one dimension. Surfaces and Interfaces 8

9 Tight binding model Energy of surface states in the one-dimensional Shockley model, shown as a function of the lattice constant a. After [ShockleyI939]. At e.g. a 2, both a donor-like and an acceptor-like surface states are present. t 6. Is it possible to have contribution to surface states from different bands? Can they be of different character of doping (n, p)? Maue-Shockley states no modification of the potential Tamm-Goodwin states due to modification of the potential In general more complicated than simple models 3. twhat is the origin of surface states? Where do they come from and where are they located in band structures of semiconductors? Surfaces and Interfaces 9

10 Nearly free electron model t 7. Can surface states be derived from the nearly-free-electron model? Does the imaginary part of the wave vector play a role there? Does the model of nearly free electrons give qualitatively different results from the tight binding model? Surfaces and Interfaces 10

11 Nearly free electron model Surfaces and Interfaces 11

12 Surface states emerge from the conduction and valence band since the total number of states is conserved. Surface states are usually partly filled, so the chemical potential is located within the surface band. Hence, the energy bands get bent and the Fermi level gets pinned utmost important for semiconductor heterostructures. Surface states in real systems are complicated. In particular, one has to allow for: So-called surface reconstruction (change of symmetry) Changes in the surface potential to preserve electrical neutrality Possibilities for surface states to serve as donors and acceptors Surfaces and Interfaces 12

13 Band bending and Fermi level pinning What happens to the surface states if the material is doped? Usually both donor-like and acceptor-like surface states will appear, and that leads to important complications. Let us consider an example of a n-doped semiconductor. Then the donor electrons in the conduction band will reduce their energy by occupying the acceptor-like surface states. In this way a negative surface charge will be generated, counterbalanced by a positive charge from ionized donors in the depletion layer near the surface. 4. What is the origin of band bending? At what conditions and in what materials does it happen? Is charge redistribution important for this process? Surfaces and Interfaces 13

14 Illustration: Depleted layer 8. t Can different types (donor-like and acceptorlike) of surface bands be partially filled? What is the charge neutrality level in semiconductors with intrinsic charge carriers? To what energy level are surface states filled in a neutral and a charged surface? Z dep Before equilibration 9. What is surface depletion layer in n-doped semiconductors? How thick is it typically? What is the link between surface and bulk density of states in doped semiconductors? After equilibration: the surface gets charged, an upward band bending results, the Fermi level gets pinned keeping neutrality Surfaces and Interfaces 14

15 How to find the thickness of the depleted layer? If the donors are fully ionized then the charge density is. Then, the Poisson equation gives the z-dependence of the potential: Then The total surface density,, is still small compared to the integrated density of surface states, so the chemical potential is almost independent of the doping concentration. 10. What is a typical ratio of surface charge density to integrated density of surface states? Does chemical potential at the surface change a lot due to the charge transfer? What is Fermi level pinning by the surface states? 9. What is surface depletion layer in n-doped semiconductors? How thick is it typically? What is the link between surface and bulk density of states in doped semiconductors? Surfaces and Interfaces 15

16 Semiconductor-metal interfaces Schottky barriers Ohmic contacts Surfaces and Interfaces 16

17 Band bending In a p-type material the bands bend downwards creating a well for electrons rather than a barrier. n-type semiconductor junction to a metal and a p- type semiconductor junction to a metal Work function in a metal of the at the interface of (a) a low metal and n-type, (b) a low work function metal and a p-type semi conductor, (c)a high work function metal and a n-type semi conductor, (d)a high work function metal and a p-type semi conductor. (Figure adapted from H. Luth's Solid Surfaces, Interfaces, and Thin Films, p. 384 ) Surfaces and Interfaces 17

18 Interfaces are like surfaces; it is semi-extended functions that have to match at the interface. Most interesting are the situations where the states are located in the conduction band of one component, but in the gap of other one. Most important example the states in the gap of a semiconductor, but in a conduction band of a metal. The extended wave functions in a metal induce evanescent waves in a semiconductor the so-called induced gap states (IGS). These states are similar to the decaying wave function in vacuum. 11. What are induced gap states (ISG) close to a metal-semiconductor interface? Are IGSs semiconductorspecific? What are they built from? Surfaces and Interfaces 18

19 Band alignment and Schottky barrier Work function Electron affinity Typical energy band alignment between a metal (left) and a semiconductor (right) before charge transfer across the interface is allowed. t 2. What are work function and electron affinity? Why does the latter need to be introduced in semiconductors and insulators? New feature - induced gap interface states (IGS) due to matching of the wave functions. Interface states can be both donor-like and acceptor-like Surfaces and Interfaces 19

20 Before charge transfer After charge transfer from donors 12. What is the consequence of a charge moving from metal to semiconductor? What is the extent of the formed dipole? What is the Schottky barrier? Does redistribution of dopants in bulk change this picture? What is the scale of dopants redistribution in space? After charge transfer from metal Schottky barrier Surfaces and Interfaces 20

21 Schottky model Interface states are ignored Schottky barrier 13. How does the Schottky barrier height depend on work function of different metals in contact with the semiconductor? How is the Schottky barrier height calculated? What is its typical value in ev? Positions of the Fermi levels of a metal and a n-doped semiconductor in equilibrium as obtained within the Schottky model. Surfaces and Interfaces 21

22 Conventional semiconductor interface: p-n junction The regions nearby the p n interfaces lose their neutrality and become charged, forming the space charge region or depletion layer Surfaces and Interfaces 22

23 Schottky diode (semiconductor is grounded) 14. What is a Schottky diode and how does it work? Band diagram at positive (a) and negative (b) voltage (semiconductor is grounded) Current-voltage curve Surfaces and Interfaces 23

24 Variety of Applications. The Schottky diode is used in a wide variety of applications. It can naturally be used as a general-purpose rectifier. However, in terms of RF applications, it is particularly useful because of its high switching speed and high-frequency capability. Schottky diodes are similarly very good as RF detectors as their low capacitance and forward-voltage drop enable them to detect signals which an ordinary PN junction would not see. It has already been mentioned that the Schottky diode has a high-current density and low forward-voltage drop. As a result, Schottky diodes are widely used in power supplies. By using these diodes, less power is wasted, making the supply more efficient. The Schottky diode is used in logic circuits as well as a fundamental building block in a number of other devices Surfaces and Interfaces 24

25 Ohmic contacts Ohmic contacts can take place when conduction band of both sides overlap InAs - metal Without Schottky barrier 15. Describe how to make Ohmic contact to a semiconductor. With narrow Schottky barrier (heavily doped) Surfaces and Interfaces 25

26 Semiconductor heterointerfaces Alignment of surface chemical potentials n p Quantum charge is neglected Before charge transfer Equilibration of bulk chemical potentials Surfaces and Interfaces 26

27 Types of alignment in heterostructures Type I, center Type II, staggered Type II, misaligned 16. What are heterointerfaces? Explain 2 different scales of charge redistribution in p-n heterojunctions. Do induced gap states appear there? What are 3 basic types of band alignments in semiconductor heterointerfaces? What are staggered and misaligned alignments? Surfaces and Interfaces 27

28 There are many theoretical models for the interface band alignment. However, the agreement between theory and experiments is often hampered by surface defects and imperfections, interface strains, etc. Still, the state-of-art technology can provide close-to-perfect interfaces, which can be considered by modern analytical and numerical models. The simplest (and least accurate) model is, which predicts the band alignment based on the properties of vacuumsemiconductor interfaces (in particular the vacuum ). The main limitation is its neglect of chemical bonding. Surfaces and Interfaces 28

29 Field effect transistors and quantum wells Si-MOSFET GaAs-HEMT Other devices Jonas Nano FET Surfaces and Interfaces 29

30 Surfaces and Interfaces 30

31 Surfaces and Interfaces 31

32 Surfaces and Interfaces 32

33 Si-MOSFET 17. What are MOSFET and HEMT? Which device is based on Si and which on GaAs? Illustrate MOSFET by drawing. How does it differ from a Schottky diode? Does this transistor rely on the electrostatic field effect? p-doped Si Metallic gate Ohmic contacts, n-doped Oxide, SiO 2 Band alignment along the dashed line at V g = 0 Surfaces and Interfaces 33

34 V g = 0 V g > 0 V g < 0 Inversion (acc. of electr.) Accumulation of holes 18. What is inversion and accumulation in MOSFET? What are ambipolar devices? Ambipolar device: using both EG (gas) and HG. Surfaces and Interfaces 34

35 Wave functions and eigenenergies: Simple model Splitting of variables Triangular potential approximation Schrödinger equation Dimensionless variable Localization length -z 0 /l F z= l F ( +z 0 /l F ) Airy function p. 241 Building blocks for nanodevices 35

36 Energy quantization is given by the roots Quasi 2DEG 2DEG Fermi level Each level generates a sub-band in the energy spectrum Building blocks for nanodevices 36

37 Transverse wave functions in a triangle well z = l F ( +z 0 /l F ) Normalized electron densities Building blocks for nanodevices 37

38 Quasi-two-dimensional electron gas and Size quantization discrete modes! Quantized levels of transverse motion 19. What are specific properties of the electron gas that is formed at the O S interface in MOSFET (density, spatial extent, possibility of energy quantisation, separation from the ionised donors, impurity scattering, mobility, effective mass, location with respect to interface)? What is two-dimensional electron gas (2DEG)? What is quasi-two-dimensional electron gas? Electron density profile Ions and electrons are separated and Coulomb scattering is relatively weak However, oxide is amorphous and the interface scattering is noticeable Surfaces and Interfaces 38

39 Energy bands in Ga As and Si GaAs -m e,1 = m e,2 = m e,3 = 0.067m m hh (Si) = 0.54m, m lh (Si) = 0.15m, m hh (GaAs) = 0.51m, and m lh (GaAs) = 0.08m Si -perpendicular to the ΓX direction, m e,t = 0.19m, along the ΓX direction, m e,l = 0.92m. TH Update of solid state physics 39

40 Usage of Si-MOSFETs for digital electronics according to CMOS-technology, as well as most important circuits for realizing logical operations are briefly discussed in the Sec of the textbook. 20. Where are Si MOSFET circuits used? What are advantages of Si MOS material systems? What is complementary MOS (CMOS) concept? How can CMOS circuits reduce power consumption? What are NOT and NAND gates? How could NAND gates be used for building a storage cell? Surfaces and Interfaces 40

41 GaAs-HEMT Typical choice interface Al 0.3 Ga 0.7 As - GaAs, Type I alignment, conduction band of Al 0.3 Ga 0.7 As is 300 mev higher than that one of GaAs. The top of the Al 0.3 Ga 0.7 As valence band is 160 mev below that of GaAs. 21. What is the design of Ga[Al]As high electron mobility transistor (HEMT)? What is the principle of modulation doping? What determines the density of the 2DEG in HEMT? How can it be tuned? In contrast to Si, GaAs remains undoped, and the electrons are provided by the doping layer (Si) inside the Al 0.3 Ga 0.7 As. This is called the modulation doping. Surfaces and Interfaces 41

42 GaAs-HEMT for RF technology 22. What allows increasing electron mobility and mean free path in HEMT and what is the progress over years? Do these parameters depend on temperature? Surfaces and Interfaces 42

43 Why d-doping is advantageous? Scattering potential Doping layer 2DEG The scattering matrix elements is W k,k <k V k> 2 Matrix element Backscattering is exponentially suppressed large mobility Building blocks for nanodevices 43

44 GaAs-HEMT: modulation doping Cross section of a GaAs/AlGaAs/InGaAs phemt equilibrium. of GaAs/AlGaAs -based HEMT, at Surfaces and Interfaces 44

45 Advantages of GaAs-based systems: Crystalline structure, low interface scattering; Doped layer is rather remote from the two-dimensional electron gas; Very high mobility: the present record is 1440 m 2 /Vs, that corresponds to the mean free path of 120 μm. Possibility to engineer band offsets by varying content of Al. In this way one can make quantum wells. Surfaces and Interfaces 45

46 Quantum confined vs. bulk carriers Evolution of electron mobility over time, after modulation doping was introduced After L. Pfeiffer et al., Surfaces and Interfaces 46

47 Scattering mechanisms in GaAs: 2D Significance of various scattering mechanisms in Ga[Al]As HEMT Dots experimental results for the structure with Each scattering mechanism can be characterized by its contribution to the carrier mobility μ i, which sum up to the total mobility according to the Matthiesen rule, 1/μ = Σ i 1/μ i 2 Surfaces and Interfaces 47

48 Scattering mechanisms in GaAs: 2D vs 3D 26. What are main scattering mechanisms in HEMT? What is the difference between scattering in quantum well systems and 3D materials? Is further progress in increasing electron mobilities in quantum-well systems expected? Is inter-band scattering important? GaAs 3D bulk GaAs 2DEG The sample contained a donor density of n v = 4.8x10 19 m -3 and an acceptor density of n A = 2.1x10 19 m Update of solid state physics 48

49 Many technological problems: lattice matching, interface states, possibilities for modulation doping, etc. Doping of a heterostructure implemented in such way that the resulting free electrons are spatially separated from the positive donor ions; as a result scattering of moving electrons on the dopant atoms is avoided; aslo, due to the separation, electrons remain free and mobile even at the very low temperatures 24. What semiconductors can be combined in layered devices? What is the bandgap engineer s map? Give an example of an efficient quantum well system. Are organic FETs possible? The band gap engineer s map. It is shown which compounds can tolerate Building blocks for nanodevices

50 Other types of layered devices Quantum wells 25. Are properties of quantum confined carriers different from those in the bulk? Can effective masses of holes be reversed in quantum wells? Is screening different in quantum wells from that in 3D systems? 23. What is a parabolic quantum well and how can it be made? Surfaces and Interfaces 50

51 Plastic transistors Less expensive Mechanically soft Organic FET pentacene 24. What semiconductors can be combined in layered devices? What is the bandgap engineer s map? Give an example of an efficient quantum well system. Are organic FETs possible? polythiophene OFET-based flexible display At present time such systems are just in the beginning of the way Surfaces and Interfaces 51

52 Surfaces and Interfaces 52

53 Summary FETs and quantum well, and other layered devices are widely used. They are also promising for future. Interfaces strongly influence the band structure, in particular, dispersion laws, effective masses, etc. Many issues are already understood, but many things have to be done. Organic transistors are in the beginning of their way. Surfaces and Interfaces 53

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

3. Two-dimensional systems

3. Two-dimensional systems 3. Two-dimensional systems Image from IBM-Almaden 1 Introduction Type I: natural layered structures, e.g., graphite (with C nanostructures) Type II: artificial structures, heterojunctions Great technological

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The Metal-Semiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)

More information

Session 6: Solid State Physics. Diode

Session 6: Solid State Physics. Diode Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Nanoscience and Molecular Engineering (ChemE 498A) Semiconductor Nano Devices

Nanoscience and Molecular Engineering (ChemE 498A) Semiconductor Nano Devices Reading: The first two readings cover the questions to bands and quasi-electrons/holes. See also problem 4. General Questions: 1. What is the main difference between a metal and a semiconductor or insulator,

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

* motif: a single or repeated design or color

* motif: a single or repeated design or color Chapter 2. Structure A. Electronic structure vs. Geometric structure B. Clean surface vs. Adsorbate covered surface (substrate + overlayer) C. Adsorbate structure - how are the adsorbed molecules bound

More information

Figure 3.1 (p. 141) Figure 3.2 (p. 142)

Figure 3.1 (p. 141) Figure 3.2 (p. 142) Figure 3.1 (p. 141) Allowed electronic-energy-state systems for two isolated materials. States marked with an X are filled; those unmarked are empty. System 1 is a qualitative representation of a metal;

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

2.4 GaAs Heterostructures and 2D electron gas

2.4 GaAs Heterostructures and 2D electron gas Semiconductor Surfaces and Interfaces 8 2.4 GaAs Heterostructures and 2D electron gas - To determine the band structure of the heterostructure, a self consistent solution of Poisson and Schrödinger equation

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

The discussion about p-n junctions in the semiconductor device is fundamental both

The discussion about p-n junctions in the semiconductor device is fundamental both CHAPTER II MATERIALS JUNCTIONS 2.1 p-n Junctions 2.1.1 Homojunction The discussion about p-n junctions in the semiconductor device is fundamental both in modern electronic applications and in understanding

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

FREQUENTLY ASKED QUESTIONS February 21, 2017

FREQUENTLY ASKED QUESTIONS February 21, 2017 FREQUENTLY ASKED QUESTIONS February 21, 2017 Content Questions How do you place a single arsenic atom with the ratio 1 in 100 million? Sounds difficult to get evenly spread throughout. Yes, techniques

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Semiconductor device structures are traditionally divided into homojunction devices

Semiconductor device structures are traditionally divided into homojunction devices 0. Introduction: Semiconductor device structures are traditionally divided into homojunction devices (devices consisting of only one type of semiconductor material) and heterojunction devices (consisting

More information

Semiconductor Module

Semiconductor Module Semiconductor Module Optics Seminar July 18, 2018 Yosuke Mizuyama, Ph.D. COMSOL, Inc. The COMSOL Product Suite Governing Equations Semiconductor Schrödinger Equation Semiconductor Optoelectronics, FD Semiconductor

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Fabrication of semiconductor sensor

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

Metal Semiconductor Contacts

Metal Semiconductor Contacts Metal Semiconductor Contacts The investigation of rectification in metal-semiconductor contacts was first described by Braun [33-35], who discovered in 1874 the asymmetric nature of electrical conduction

More information

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic LECTURE 23 Lecture 16-20 Digital Circuits, Logic 1 We need a smart switch, i.e., an electronically controlled switch 2 We need a gain element for example, to make comparators. The device of our dreams

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Electrostatics of Nanowire Transistors

Electrostatics of Nanowire Transistors Electrostatics of Nanowire Transistors Jing Guo, Jing Wang, Eric Polizzi, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering Purdue University, West Lafayette, IN, 47907 ABSTRACTS

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

Semiconductor Junctions

Semiconductor Junctions 8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor

More information

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping Avalanche breakdown Impact ionization causes an avalanche of current Occurs at low doping Zener tunneling Electrons tunnel from valence band to conduction band Occurs at high doping Tunneling wave decays

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

ECE236A Semiconductor Heterostructure Materials Basic Properties of Semiconductor Heterostructures Lectures 2 & 3 Oct. 5, 2017

ECE236A Semiconductor Heterostructure Materials Basic Properties of Semiconductor Heterostructures Lectures 2 & 3 Oct. 5, 2017 ECE236A Semiconductor Heterostructure Materials Basic Properties of Semiconductor Heterostructures Lectures 2 & 3 Oct. 5, 217 Basic definitions. Types of band-alignment. Determination of band-offsets:

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Solid-state physics Review of Semiconductor Physics The daunting task of solid state physics Quantum mechanics gives us the fundamental equation The equation is only analytically solvable for a handful

More information

Typical example of the FET: MEtal Semiconductor FET (MESFET)

Typical example of the FET: MEtal Semiconductor FET (MESFET) Typical example of the FET: MEtal Semiconductor FET (MESFET) Conducting channel (RED) is made of highly doped material. The electron concentration in the channel n = the donor impurity concentration N

More information

Nanoscience and Molecular Engineering (ChemE 498A) Semiconductor Nano Devices

Nanoscience and Molecular Engineering (ChemE 498A) Semiconductor Nano Devices Homework 7 Dec 9, 1 General Questions: 1 What is the main difference between a metal and a semiconductor or insulator, in terms of band structure? In a metal, the Fermi level (energy that separates full

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

V BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.

V BI. H. Föll:  kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e. Consider the the band diagram for a homojunction, formed when two bits of the same type of semicondutor (e.g. Si) are doped p and ntype and then brought into contact. Electrons in the two bits have different

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

8.1 Drift diffusion model

8.1 Drift diffusion model 8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Quiz #1 Practice Problem Set

Quiz #1 Practice Problem Set Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016 - No aids except a non-programmable calculator - All questions must be answered - All questions

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Band Alignment and Graded Heterostructures. Guofu Niu Auburn University

Band Alignment and Graded Heterostructures. Guofu Niu Auburn University Band Alignment and Graded Heterostructures Guofu Niu Auburn University Outline Concept of electron affinity Types of heterojunction band alignment Band alignment in strained SiGe/Si Cusps and Notches at

More information

1. Binary III-V compounds 2 p From which atoms are the 16 binary III-V compounds formed?...column III B, Al, Ga and In...column V N, P, As and Sb...

1. Binary III-V compounds 2 p From which atoms are the 16 binary III-V compounds formed?...column III B, Al, Ga and In...column V N, P, As and Sb... PROBLEMS part B, Semiconductor Materials. 2006 1. Binary III-V compounds 2 p From which atoms are the 16 binary III-V compounds formed?...column III B, Al, Ga and In...column V N, P, As and Sb... 2. Semiconductors

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Quick Review over the Last Lecture Classic model : Dulong-Petit empirical law c V, mol 3R 0 E

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Electronic Devices & Circuits

Electronic Devices & Circuits Electronic Devices & Circuits For Electronics & Communication Engineering By www.thegateacademy.com Syllabus Syllabus for Electronic Devices Energy Bands in Intrinsic and Extrinsic Silicon, Carrier Transport,

More information

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes Qualitative Picture of the Ideal Diode G.R. Tynan UC San Diego MAE 119 Lecture Notes Band Theory of Solids: From Single Attoms to Solid Crystals Isolated Li atom (conducting metal) Has well-defined, isolated

More information

EE 3329 Electronic Devices Syllabus ( Extended Play )

EE 3329 Electronic Devices Syllabus ( Extended Play ) EE 3329 - Electronic Devices Syllabus EE 3329 Electronic Devices Syllabus ( Extended Play ) The University of Texas at El Paso The following concepts can be part of the syllabus for the Electronic Devices

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm I Name: Closed book. One sheet of notes is allowed.

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

Module-6: Schottky barrier capacitance-impurity concentration

Module-6: Schottky barrier capacitance-impurity concentration 6.1 Introduction: Module-6: Schottky barrier capacitance-impurity concentration The electric current flowing across a metal semiconductor interface is generally non-linear with respect to the applied bias

More information

n N D n p = n i p N A

n N D n p = n i p N A Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donor-doped semiconductor: n N D where N D is the concentration of donor impurity Acceptor-doped

More information

Effective masses in semiconductors

Effective masses in semiconductors Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse

More information

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr. Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Being virtually killed by a virtual laser in a virtual space is just as effective as the real thing, because you are as dead as you think you are. -Douglas Adams, Mostly Harmless David J. Starling Penn

More information

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs 1 V. Semiconductor Detectors V.1. Principles Semiconductor Detectors are Ionization Chambers Detection volume with electric field Energy deposited positive and negative charge pairs Charges move in field

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

ECE 340 Lecture 27 : Junction Capacitance Class Outline:

ECE 340 Lecture 27 : Junction Capacitance Class Outline: ECE 340 Lecture 27 : Junction Capacitance Class Outline: Breakdown Review Junction Capacitance Things you should know when you leave M.J. Gilbert ECE 340 Lecture 27 10/24/11 Key Questions What types of

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 4 Doping in Semiconductors Good morning. Let us start with

More information

an introduction to Semiconductor Devices

an introduction to Semiconductor Devices an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor -

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information