A Helical Undulator Wave-guide Inverse Free- Electron Laser

Size: px
Start display at page:

Download "A Helical Undulator Wave-guide Inverse Free- Electron Laser"

Transcription

1 A Helical Undulator Wave-guide Inverse Free- Electron Laser J. Rosenzweig*, N. Bodzin*, P. Frigola*, C. Joshi ℵ, P. Musumeci*, C. Pellegrini*, S. Tochitsky ℵ, and G. Travish* *UCLA Dept. of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, CA ℵ UCLA Dept. of Electrical Engineering, 405 Hilgard Ave., Los Angeles, CA Abstract. With recent success in high gradient, high-energy gain IFEL experiments at the UCLA Neptune Laboratory, future experiments are now being contemplated. The Neptune IFEL was designed to use a tightly focused, highly diffracting, near-tw peak power 10 micron laser. This choice of laser focusing, driven by power-handling limitations of the optics near the interaction region, led to design and use of a very complex undulator, and to sensitivity to both laser misalignment and focusing errors. As these effects limited the performance of the IFEL experiment, a next generation experiment at Neptune has been studied which avoids the use of a highly diffractive laser beam through use of a waveguide. We discuss here the choice of low-loss waveguide, guided mode characteristics and likely power limitations. We also examine a preferred undulator design, which is chosen to be helical in order to maximize the acceleration achieved for a given power. With the limitations of these laser and undulator choices in mind, we show the expected performance of the IFEL using 1D simulations. Three-dimensional effects are examined, in the context of use of a solenoid for focusing and acceleration enhancement. In the last year, a very high energy-gain inverse free-electron[1] laser (IFEL) experiment was performed at the UCLA Neptune Lab, in which 14.5 MeV electrons [2] were accelerated to over 35 MeV [3]. This experiment is unique in the power of the laser source 4 : a single TW line of 10.6 µm CO 2 light. With such high power and limited laboratory space, the handling of the beam required use of small f/# optics. Thus the laser beam used may have very high intensities, but at the cost of a very short focus short Rayleigh range Z r, in our case a design of less than 3 cm. With this tight focus, there was a significant challenge in dealing with a large Guoy phase shift which ran into tens of degrees per undulator period. In addition, with a tightly focused TW beam and moderate injection energy, we designed for a very large fractional acceleration. Thus, the undulator was strongly tapered in order to keep the beam captured and accelerating in the IFEL ponderomotive bucket. The design of the tapered IFEL undulator had a specially tailored magnetic field at the focus to evade the effects of the Guoy phase shift, by shifting the phase of the electron s transverse oscillation smoothly, while also accommodating a quickly diffracting laser spot. This magnet system was analyzed extensively to understand and optimize longitudinal dynamics issues, producing an experiment where a large percentage of the beam was to accelerate from 14.5 MeV injection to a narrow band near 55 MeV in 50 cm. It was found more difficult than anticipated to achieve Z r above 1.5 cm, and thus the laser power was mismatched to the acceleration program of of the undulator. In practice, the second half of the undulator was not turned on

2 effectively due to this effect. In addition a high sensitivity to relative laser/electron beam alignment was observed. The diffraction-dominated IFEL experiment performed last year at Neptune thus yielded many lessons, both positive (significantly larger acceleration than previous experiments [5,6,7]) and negative, and concerning both physics and technology issues. A follow-on experiment that attempts to use the techniques mastered in the first IFEL experiment, while avoiding the problems listed above is discussed here a waveguide IFEL. This scenario is designed to mitigate issue encountered in the first experiment, and should yield 100 MeV electrons at the end of an 80 cm undulator. To begin the discussion of implementing a waveguide for an far-ir IFEL experiment, we note that the guiding the CO 2 laser pulse has already been experimentally tested at Neptune 8, on metallic wall pipes, which have shown the ability to propagate up to 10 TW in ps laser pulses previously [9]. Good performance in 2 mm ID capillary pipes for short pulses was obtained for very high intensities, before plasma formation closed the capillary to radiation propagation. Unfortunately, in the far IR, wall losses are an issue for propagation over the 10 s of cm needed for an IFEL experiment; orders of magnitude of attenuation would be expected in 80 cm. Thus we have investigated the use of very low loss, so-called leaky guides [10] (Fig. 1), which we had originally examined in the context of a far-ir guided SASE-FEL experiment [11]. Initial low power tests on a 2 mm ID guide showed no measurable loss over 30 cm, with matching obtained from an f/18 final focus. FIGURE 1. A typical, ultra-low loss, leaky waveguide geometry: inner layer of AgI, followed by Ag, and smooth glass capillary. High power behavior of these guides is now under investigation at Neptune. For our pulse length ( 100 ps FWHM), it has been proposed that one may be able to guide up to W/cm 2 in these guides without damage. For the sake of a conservative approach, however, we have restricted the present design study to one in which the peak intensity in the guide does not exceed W/cm 2, with a guide of 2 mm ID. To increase the coupling of the electrons to the laser fields, which are assumed to be limited by breakdown in the guide, and match the waveguide geometry optimally, a

3 helical undulator (with circularly polarized laser) is proposed. In order to make sure that the beam stays well within the guide and samples only a small region where the field does not vary much radially, we also include in the design a strong solenoid guide-field. These features are generally favored in long wavelength FEL and IFEL experiments, but also provide significant benefits in this far-ir design. The additional positive effect of using the solenoid field is to enhance the beam rotation velocity [12], and couple the beam motion more strongly to the laser field. FIGURE 2. Design study layout of Neptune IFEL wavelength-tapered undulator, bifilar windings shown in blue and red, solenoid windings (partially shown) in yellow. A design study of the beam dynamics of such an IFEL, with GW of total laser power (assuming matched-mode propagation) has yielded an experimental scenario, summarized in Table 1. The undulator which delivers this type of performance is a wavelength tapered ( cm), constant field (1.7 kg) bifilar helical-magnet 80 cm in length. These parameters give the undulator a normalized strength which slews from a u = eb u k u m e c =0.28 to We assume the undulator is embedded in a large solenoid, as indicated in a first-pass engineering design shown in Fig. 2. The maximum beam offset should be kept to below the laser w 0, so we may expect one-dimensional behavior from the IFEL interaction through most of the undulator. We note that some loss of coupling may occur near the end of the undulator, where the amplitude of the helical motion grows. The addition of the focusing solenoid field increases the rotational velocity by a factor of ( 1 ω c /k u c) 1, where ω c = eb s γm e c, and k u = 2π /λ u. In our case this enhancement factor is less than 5% throughout the undulator. While this rotational velocity gives rise to a proportionally larger acceleration gradient, it also results in a slightly larger radial offset of the design orbit,

4 R [ 1 ( ω c /k u c) 2 ] 1 ; this effect is negligible for our parameters. Thus the main effect 2 of the solenoid is to increase the field s net focusing strength k β = 1 k u a u 2 γ minimizing the betatron beam size, σ β = ε n /γk β. 2 + ω 2 c, 2c This effect of electrons sampling regions of smaller laser field can be controlled by matching into a larger value of w, as the CO 2 laser may supply more total power than we have assumed. As such, we have performed an initial 1D analysis of the longitudinal beam dynamics, ignoring 3D effects on the electron-laser coupling. TABLE 1. Parameters for study of helical undulator waveguide IFEL experiment at Neptune. Parameter Value Undulator Field, B u 1.7 kg Undulator Period, λ u cm Solenoid Guide Field, B z 0.5 T Undulator Length, L u 80 cm Undulator Gap, a 2 mm Input Power, P 50 GW Matched Laser Spot Size, w >250 µm TABLE 2. Electron beam parameters for Neptune helical undulator waveguide IFEL experiment. Parameter Value Normalized emittance, ε n 5 mm-mrad Matched rms beam size, σ β 175 µm Beam centroid offset (start-end) µm Injection energy 14.5 MeV Extraction energy 100 MeV Trapping fraction 63% The one-dimensional, undulator period-averaged equations of motion integrated to give the longitudinal dynamics are dθ dz = k k r 0 2 k 0 + k ( z) k 0 u 1 1+ a 2 u ( z) + a 2 L ( z) + 2a u ( z)a L ( z)cos( θ), 1/ 2 γ 2 dγ dz = k a ( z)a ( z) 0 u L sin( θ). γ Here k 0 = ω /c is the free-space wave-number of the laser radiation, k r 1/w is the radial wave-number associated with the waveguide mode, and a L = ee L /k 0 m e c 2 is the

5 normalized vector potential of the circularly polarized laser, and energy loss by synchrotron radiation [1] is ignored. Note that the change in the phase velocity due to the presence of the wave-guide is non-negligible. The design case, where the full laser power of 50 GW is used, is shown in Fig. 3(a). The wavelength is linearly varied to give a final resonant energy of 100 MeV (107 MeV/m average acceleration), with over 61% of the electrons trapped in the accelerating bucket. Figure 3(b) shows the longitudinal phase space obtained by use of only 15 GW, with the trapping fraction degraded to 42%. FIGURE 3. Simulation results showing the final longitudinal phase space for the design power of 50 GW (a), and the phase space for the design power derated by a factor of 0.3 (b).

6 Trapping fraction Trapped fraction Intensity (W/cm 2 z (cm) ) a FIGURE 4. The trapping fraction as a function of (a) on-axis laser intensity and (b) attenuation length in waveguide. As the major uncertainties in the design at this point concern the level of power tolerated in the waveguide, the performance of the IFEL, as measured by trapping fraction (defined as fraction above 80 MeV) was examined as a function of on-axis laser intensity, assuming no attenuation in the guide. As can be seen in Fig. 4(a), the trapping falls precipitously for intensities less than 20% of design, or W/cm 2. Additionally we have explored the effect of attenuation in the guide, by assuming an initial intensity of W/cm 2, and then having the field decay as exp( z /z a ). Here obviously z a is the field attenuation length, which is twice the power attenuation length. In Fig. 4(b), it is shown that the trapping fraction falls quickly for z a < 0.65 m, in which case the power exiting 0.8 m of guide is attenuated to below 10% of its initial value. This result may thus have been anticipated from the study of parametric dependence on power in Fig. 4(a). At present, we are now studying options for undulator construction. The bifilar helical winding approach is straightforward to build at low field, but in our design the current density is high, and the windings should be cryogenically cooled to liquid nitrogen temperatures, or pulsed. Other options include use of iron between the windings to give field enhancement, and a permanent magnet-based system. We note that a solenoid-assisted design requires the absence of iron, and also that this system could not be pulsed. Any design must have a high degree of tunability so that the field profile can be adjusted for correct acceleration program and steering. The undulator and solenoid must also be designed with a proper spin-up quasi-adiabatic transition section. A final design will of course be based on an understanding of the waveguide power-handling capabilities through experiments. Relevant measurements include not only power limits, which are most relevant to next-generation plasma beatwave accelerator experiments at Neptune [13], but mode-matching characteristics. It would be desirable to have a mode-matching horn or funnel which gives a larger mode area inside of the guide. This problem is currently being studied through analytical and computational work.

7 Future issues that should be addressed in the design of the next-generation Neptune IFEL experiment include the diagnosis of bunching in the system. The possibility of using the harmonics in the coherent undulator-radiation spectrum [14] to deduce the microbunching state of the beam has been studied [3]. New tools for calculating the expected coherent spectra from synchrotron radiation (as well as edge and transition radiation) based on the code TREDI [15] are now being studied at UCLA [16]. ACKNOWLEGMENTS This work is supported by U.S. Dept. of Energy grant DE-FG03-92ER REFERENCES 1. R. Palmer, J. Applied Physics 43, 3014 (1972); E.D.Courant, C. Pellegrini, and W. Zakowicz, Phys. Rev. A 32, 2813 (1985). 2. S.G. Anderson, M. Loh, P. Musumeci, J.B. Rosenzweig and M.C. Thompson, in Proc. of the 9th Workshop on Advanced Accelerator Concepts, 487 (AIP Conf. Proc. 569, 2001). 3. P. Musumeci, et al., these proceedings. 4. S. Y. Tochitsky et al., Opt. Lett. 24, 1717 (1999). 5. A. Van Steenbergen, J. Gallardo, J. Sandweiss, and J. M. Fang, Phys. Rev. Lett. 77, 2690 (1996). 6. R. B. Yoder, T. C. Marshall, and J. L. Hirshfeld, Phys. Rev. Lett. 86, 1765 (2001). 7. W.Kimura et al., Phys. Rev. Lett. 86, 4041 (2001);W.Kimura et al., Phys. Rev. Lett. 92, (2004). 8. C. Sung, S. Ya. Tochitsky, and C. Joshi, Guiding of 10 µm laser pulses by use of hollow waveguides these proceedings. 9. M Borghesi, et al., Phys. Rev. E, 57, R4899 (1998). 10. Abel, T., Hirsch, J., and Harrington, J. A., "Hollow glass waveguides for broadband infrared transmission," Opt. Lett., vol. 19, pp , S. Reiche, J. Rosenzweig, S. Telfer, Proposal for a IR waveguide SASE FEL at the PEGASUS injector, NIM A 475 (2001) L. Friedland, Phys. Fluids 23, 2376 ( S. Y. Tochitsky et al., Phys. of Plasmas 11, 2875 (2004). 14. Z. Huang and K. J. Kim, Phys. Rev. E 62, 7295 (2000). 15. L. Giannessi and M. Quattromini, Phys. Rev. ST Accel. Beams 6, (2003). 16. A. Flacco, et al., these proceedings.

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

Study of a THz IFEL prebuncher for laser-plasma accelerators

Study of a THz IFEL prebuncher for laser-plasma accelerators Study of a THz IFEL prebuncher for laser-plasma accelerators C. Sung 1, S. Ya. Tochitsky 1, P. Musumeci, J. Ralph 1, J. B. Rosenzweig, C. Pellegrini, and C. Joshi 1 Neptune Laboratory, 1 Department of

More information

UCLA Neptune Facility for Advanced Accelerator Studies

UCLA Neptune Facility for Advanced Accelerator Studies UCLA Neptune Facility for Advanced Accelerator Studies Sergei Ya. Tochitsky, 1 Christopher E. Clayton, 1 Kenneth A. Marsh, 1 James B. Rosenzweig, 2 Claudio Pellegrini 2 and Chandrashekhar Joshi 1 Neptune

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

Acceleration of electrons by Inverse Free Electron Laser interaction

Acceleration of electrons by Inverse Free Electron Laser interaction Acceleration of electrons by Inverse Free Electron Laser interaction P. Musumeci 3.12.2004 Università La Sapienza, Roma Outline Laser accelerators Brief IFEL introduction Inverse-Free-Electron-Laser accelerators

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

MATTHEW COLIN THOMPSON

MATTHEW COLIN THOMPSON MATTHEW COLIN THOMPSON Office: University of California, Los Angeles 3-166 Knudsen Hall e-mail: mct@physics.ucla.edu Phone: 310 825-9982 EDUCATION Doctor of Philosophy Physics, June 2004, University of

More information

Observation of Ultra-Wide Bandwidth SASE FEL

Observation of Ultra-Wide Bandwidth SASE FEL Observation of Ultra-Wide Bandwidth SASE FEL Gerard Andonian Particle Beam Physics Laboratory University of California Los Angeles The Physics and Applications of High Brightness Electron Beams Erice,

More information

A THz radiation driven IFEL as a phaselocked prebuncher for a Plasma Beat-Wave Accelerator

A THz radiation driven IFEL as a phaselocked prebuncher for a Plasma Beat-Wave Accelerator A THz radiation driven IFEL as a phaselocked prebuncher for a Plasma Beat-Wave Accelerator P. Musumeci 1, S. Ya. Tochitsky, C. E. Clayton, C. Joshi, C. Pellegrini 1, J.B. Rosenzweig 1 1 Department of Physics,

More information

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract SLAC PUB 10694 August 2004 Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator Z. Huang Stanford Linear Accelerator Center, Menlo Park, CA 94025 S. Reiche UCLA,

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Characterization of an 800 nm SASE FEL at Saturation

Characterization of an 800 nm SASE FEL at Saturation Characterization of an 800 nm SASE FEL at Saturation A.Tremaine*, P. Frigola, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig UCLA, Los Angeles, CA 90095 M. Babzien, I. Ben-Zvi, E. Johnson, R. Malone,

More information

Beam Dynamics in a Hybrid Standing Wave- Traveling Wave Photoinjector

Beam Dynamics in a Hybrid Standing Wave- Traveling Wave Photoinjector Beam Dynamics in a Hybrid Standing Wave- Traveling Wave Photoinjector J. Rosenzweig, D. Alesini, A. Boni, M. Ferrario, A. Fukusawa, A. Mostacci $, B. O Shea, L. Palumbo $, B. Spataro UCLA Dept. of Physics

More information

Higher harmonic inverse free-electron laser interaction

Higher harmonic inverse free-electron laser interaction PHYSICAL REVIEW E 72, 016501 2005 Higher harmonic inverse free-electron laser interaction P. Musumeci, 1 C. Pellegrini, 2 and J. B. Rosenzweig 2 1 Dipartimento di Fisica and INFN, Università di Roma La

More information

The VISA II Experiment

The VISA II Experiment The VISA II Experiment A study in electron beam dynamics and high gain, ultra short pulses in SASE FEL. Gerard Andonian PBPL UCLA DoE Review May 18, 2004 Experiment Timeline VISA I Re-commissioning FEL

More information

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract SLAC PUB 11781 March 26 Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator Z. Huang, G. Stupakov Stanford Linear Accelerator Center, Stanford, CA 9439 S. Reiche University of

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Fundamental and Harmonic Microbunching Measurements in a High-Gain, Self-amplified, Spontaneous Emission Free-Electron Laser

Fundamental and Harmonic Microbunching Measurements in a High-Gain, Self-amplified, Spontaneous Emission Free-Electron Laser Fundamental and Harmonic Microbunching Measurements in a High-Gain, Self-amplified, Spontaneous Emission Free-Electron Laser A. Tremaine 1, X.J. Wang 2, M. Babzien 2, I. Ben-Zvi 2, M. Cornacchia 3, A.

More information

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources LCLS-TN-05-8 Traveling Wave Undulators for FELs and Synchrotron Radiation Sources 1. Introduction C. Pellegrini, Department of Physics and Astronomy, UCLA 1 February 4, 2005 We study the use of a traveling

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

Advances in Inverse Free Electron Laser accelerators and implications for high efficiency FELs

Advances in Inverse Free Electron Laser accelerators and implications for high efficiency FELs Advances in Inverse Free Electron Laser accelerators and implications for high efficiency FELs P. Musumeci UCLA Department of Physics and Astronomy Noce workshop, Arcidosso, September 20 th 2017 Outline

More information

Demonstration of cascaded modulatorchicane pre-bunching for enhanced. trapping in an Inverse Free Electron Laser

Demonstration of cascaded modulatorchicane pre-bunching for enhanced. trapping in an Inverse Free Electron Laser Demonstration of cascaded modulatorchicane pre-bunching for enhanced trapping in an Inverse Free Electron Laser Nicholas Sudar UCLA Department of Physics and Astronomy Overview Review of pre-bunching Cascaded

More information

Laser Heater: Scaling of Laser Power with Undulator Period and Laser Wavelength

Laser Heater: Scaling of Laser Power with Undulator Period and Laser Wavelength Laser Heater: Scaling of Laser Power with Undulator Period and Laser Wavelength LCLS-II TN-14-05 3/25/2014 M. Venturini and Z. Huang March 26, 2014 LCLSII-TN-XXXX 1 Introduction L C L S - I I T E C H N

More information

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET N. Vafaei-Najafabadi 1, a), C.E. Clayton 1, K.A. Marsh 1, W. An 1, W. Lu 1,, W.B. Mori 1, C. Joshi 1, E. Adli

More information

Harmonic Lasing Self-Seeded FEL

Harmonic Lasing Self-Seeded FEL Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov FEL seminar, DESY Hamburg June 21, 2016 In a planar undulator (K ~ 1 or K >1) the odd harmonics can be radiated on-axis (widely used in SR

More information

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ Proceedings of FEL2014, Basel, Switzerland MOP055 START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ P. Boonpornprasert, M. Khojoyan, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany B.

More information

Acceleration Of Electrons By Inverse Free Electron Laser Interaction

Acceleration Of Electrons By Inverse Free Electron Laser Interaction University of California Los Angeles Acceleration Of Electrons By Inverse Free Electron Laser Interaction A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

More information

STUDIES OF UNDULATOR TAPERING FOR THE CLARA FEL

STUDIES OF UNDULATOR TAPERING FOR THE CLARA FEL STUDIES OF UNDULATOR TAPERING FOR THE CLARA FEL I.P.S. Martin, Diamond Light Source, Oxfordshire, UK R. Bartolini, Diamond Light Source, Oxfordshire, UK and John Adams Institute, University of Oxford,

More information

First operation of a Harmonic Lasing Self-Seeded FEL

First operation of a Harmonic Lasing Self-Seeded FEL First operation of a Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov ICFA workshop, Arcidosso, Italy, 22.09.2017 Outline Harmonic lasing Harmonic lasing self-seeded (HLSS) FEL Experiments

More information

Transverse Coherence Properties of the LCLS X-ray Beam

Transverse Coherence Properties of the LCLS X-ray Beam LCLS-TN-06-13 Transverse Coherence Properties of the LCLS X-ray Beam S. Reiche, UCLA, Los Angeles, CA 90095, USA October 31, 2006 Abstract Self-amplifying spontaneous radiation free-electron lasers, such

More information

Generation of Ultra-Short, High Brightness Electron Beams for Single Spike SASE FEL Operation

Generation of Ultra-Short, High Brightness Electron Beams for Single Spike SASE FEL Operation SPARC-BD-07/004 10 October 2007 Generation of Ultra-Short, High Brightness Electron Beams for Single Spike SASE FEL Operation J. B. Rosenzweig, G. Andonian, M. Dunning, A. Fukusawa, E. Hemsing, P. Musumeci,

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Marty Zwikel Department of Physics, Grinnell College, Grinnell, IA, 50 Abstract Free

More information

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05 Emittance Compensation J.B. Rosenzweig ERL Workshop, Jefferson Lab 3//5 Emittance minimization in the RF photoinjector Thermal emittance limit Small transverse beam size Avoid metal cathodes? " n,th #

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

Wake-fields in Planar Dielectric-loaded Structures *

Wake-fields in Planar Dielectric-loaded Structures * Wae-fields in Planar Dielectric-loaded Structures * A. Tremaine and J. Rosenzweig Department of Physics and Astronomy, University of California, Los Angeles 45 Hilgard Ave., Los Angeles, CA 995 P. Schoessow

More information

Free-Electron Lasers

Free-Electron Lasers Introduction to Free-Electron Lasers Neil Thompson ASTeC Outline Introduction: What is a Free-Electron Laser? How does an FEL work? Choosing the required parameters Laser Resonators for FELs FEL Output

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Lecture 5: Photoinjector Technology J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Technologies Magnetostatic devices Computational modeling Map generation RF cavities 2 cell devices Multicell

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments SLAC-PUB-12420 Ultra-High Gradient Dielectric Wakefield Accelerator Experiments M.C. Thompson, H. Badakov, J.B. Rosenzweig, G. Travish, M. Hogan, R. Ischebeck, N. Kirby, R. Siemann, D. Walz, P. Muggli,

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Generation of Femtosecond Electron Pulses

Generation of Femtosecond Electron Pulses Generation of Femtosecond Electron Pulses W. D. Kimura STI Optronics, Inc., 755 Northup Way, Bellevue, WA 984-1495, USA Two techniques for generation of femtosecond electron pulses will be presented. The

More information

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract SLAC PUB 868 October 7 Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun Z. Huang, Y. Ding Stanford Linear Accelerator Center, Stanford, CA 9439 J. Qiang Lawrence Berkeley National

More information

Monoenergetic Proton Beams from Laser Driven Shocks

Monoenergetic Proton Beams from Laser Driven Shocks Monoenergetic Proton Beams from Laser Driven Shocks Dan Haberberger, Department of Electrical Engineering, UCLA In collaboration with: Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi, Department of

More information

Beam compression experiments using the UCLA/ATF compressor

Beam compression experiments using the UCLA/ATF compressor Beam compression experiments using the UCLA/ATF compressor J.B. ROSENZWEIG, M. DUNNING, E. HEMSING, G. ANDONIAN, A.M. COOK, A. MUROKH, S. REICHE, D. SCHILLER, M. BABZIEN #, K. KUSCHE #, V. YAKIMENKO #,

More information

Short Wavelength Regenerative Amplifier FELs (RAFELs)

Short Wavelength Regenerative Amplifier FELs (RAFELs) Short Wavelength Regenerative Amplifier FELs (RAFELs) Neil Thompson, David Dunning ASTeC, Daresbury Laboratory, Warrington UK Brian McNeil Strathclyde University, Glasgow, UK Jaap Karssenberg & Peter van

More information

STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER

STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER H.P. Freund, 1,2,3 1 Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico USA 2 Department of Electrical

More information

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana Free Electron Laser Project report: Synchrotron radiation By Sadaf Jamil Rana History of Free-Electron Laser (FEL) The FEL is the result of many years of theoretical and experimental work on the generation

More information

Γ f Σ z Z R

Γ f Σ z Z R SLACPUB866 September Ponderomotive Laser Acceleration and Focusing in Vacuum for Generation of Attosecond Electron Bunches Λ G. V. Stupakov Stanford Linear Accelerator Center Stanford University, Stanford,

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

AREAL Test Facility for Advanced Accelerator and Radiation Sources Concepts

AREAL Test Facility for Advanced Accelerator and Radiation Sources Concepts 2 nd European Advanced Accelerator Concepts AREAL Test Facility for Advanced Accelerator and Radiation Sources Concepts V. Tsakanov CANDLE SRI 13-19 Sep 2015, La Biodola, Isola d'elba Introduction 2nd

More information

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

Update on and the Issue of Circularly-Polarized On-Axis Harmonics Update on FERMI@Elettra and the Issue of Circularly-Polarized On-Axis Harmonics W. Fawley for the FERMI Team Slides courtesy of S. Milton & Collaborators The FERMI@Elettra Project FERMI@Elettra is a single-pass

More information

Switchyard design for the Shanghai soft x-ray free electron laser facility

Switchyard design for the Shanghai soft x-ray free electron laser facility Switchyard design for the Shanghai soft x-ray free electron laser facility Gu Duan, Wang Zhen, Huang Dazhang, Gu Qiang, Zhang Meng* Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai,

More information

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators 3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators Asher Davidson, Ming Zheng,, Wei Lu,, Xinlu Xu,, Chang Joshi, Luis O. Silva, Joana Martins, Ricardo Fonseca

More information

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract Febrary 2009 SLAC-PUB-13533 Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams D. Xiang, Z. Huang and G. Stupakov SLAC National Accelerator Laboratory,

More information

Low Emittance High Energy Gain Inverse Free Electron Laser Using a Waveguided Helical Undulator

Low Emittance High Energy Gain Inverse Free Electron Laser Using a Waveguided Helical Undulator Low Emittance High Energy Gain Inverse Free Electron Laser Using a Wavegided Helical Undlator Matthew James Affolter Particle Beam Physics Laboratory, University of California at Los Angeles (Dated: September

More information

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

LCLS Accelerator Parameters and Tolerances for Low Charge Operations LCLS-TN-99-3 May 3, 1999 LCLS Accelerator Parameters and Tolerances for Low Charge Operations P. Emma SLAC 1 Introduction An option to control the X-ray FEL output power of the LCLS [1] by reducing the

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Simulation of phase-dependent transverse focusing in dielectric laser accelerator based lattices

Simulation of phase-dependent transverse focusing in dielectric laser accelerator based lattices Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of phase-dependent transverse focusing in dielectric laser accelerator based lattices To cite this article: F Mayet et al 2018 J. Phys.:

More information

Compact Wideband THz Source

Compact Wideband THz Source Compact Wideband THz Source G. A. Krafft Center for Advanced Studies of Accelerators Jefferson Lab Newport News, VA 3608 Previously, I have published a paper describing compact THz radiation sources based

More information

FIRST DEMONSTRATION OF STAGED LASER ACCELERATION

FIRST DEMONSTRATION OF STAGED LASER ACCELERATION Proceedings of the Particle Accelerator Conference, Chicago FIRT DEMOTRATIO OF TAGED LAER ACCELERATIO W. D. Kimura, L. P. Campbell, C. E. Dilley,. C. Gottschalk, D. C. Quimby, TI Optronics, Inc., Bellevue,

More information

Introduction to the Physics of Tapered Undulator FELs

Introduction to the Physics of Tapered Undulator FELs Introduction to the Physics of Tapered Undulator FELs William M. Fawley Workshop on the Physics and Applications of High Efficiency FELs UCLA 11-13 April 2018 Outline What is undulator tapering and why

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Free electron lasers Lecture 2.: Insertion devices Zoltán Tibai János Hebling 1 Outline Introduction

More information

Ultrashort electron source from laser-plasma interaction

Ultrashort electron source from laser-plasma interaction The Workshop on Ultrafast Electron Sources for Diffraction and Microscopy applications (UESDM 212) UCLA, Dec 12-14, 212 Ultrashort electron source from laser-plasma interaction Jiansheng Liu, Aihua Deng*,

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04 Lecture 4: Emittance Compensation J.B. Rosenzweig USPAS, UW-Madision 6/30/04 Emittance minimization in the RF photoinjector Thermal emittance limit Small transverse beam size Avoid metal cathodes? n,th

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

Beam halo formation in high-intensity beams

Beam halo formation in high-intensity beams Beam halo formation in high-intensity beams Alexei V. Fedotov,1,2 Brookhaven National Laboratory, Upton, NY 11973, USA Abstract Studies of beam halo became an unavoidable feature of high-intensity machines

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Eric R. Colby* SLAC National Accelerator Laboratory

Eric R. Colby* SLAC National Accelerator Laboratory Eric R. Colby* SLAC National Accelerator Laboratory *ecolby@slac.stanford.edu Work supported by DOE contracts DE AC03 76SF00515 and DE FG03 97ER41043 III. Overview of the Technology Likely Performance

More information

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop Measuring very low emittances using betatron radiation Nathan Majernik October 19, 2017 FACET-II Science Workshop Plasma photocathode injection Trojan horse High and low ionization threshold gases Blowout

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

Beam Echo Effect for Generation of Short Wavelength Radiation

Beam Echo Effect for Generation of Short Wavelength Radiation Beam Echo Effect for Generation of Short Wavelength Radiation G. Stupakov SLAC NAL, Stanford, CA 94309 31st International FEL Conference 2009 Liverpool, UK, August 23-28, 2009 1/31 Outline of the talk

More information

Wakefield Acceleration in Dielectric Structures

Wakefield Acceleration in Dielectric Structures Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy Future Light Sources SLAC, March 2, 2010 Scaling the accelerator in size Lasers produce copious power

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Compressor and Chicane Radiation Studies at the ATF Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Collaboration UCLA PBPL G. Andonian, A. Cook, M. Dunning, E. Hemsing, A. Murokh, S.

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

Optical Circular Deflector with Attosecond Resolution for Ultrashort Electron. Abstract

Optical Circular Deflector with Attosecond Resolution for Ultrashort Electron. Abstract SLAC-PUB-16931 February 2017 Optical Circular Deflector with Attosecond Resolution for Ultrashort Electron Zhen Zhang, Yingchao Du, Chuanxiang Tang 1 Department of Engineering Physics, Tsinghua University,

More information

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE Proceedings of FEL03, New York, NY, USA SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE S. Bettoni, M. Pedrozzi, S. Reiche, PSI, Villigen, Switzerland Abstract The first section of FEL injectors driven

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

THz Electron Gun Development. Emilio Nanni 3/30/2016

THz Electron Gun Development. Emilio Nanni 3/30/2016 THz Electron Gun Development Emilio Nanni 3/30/2016 Outline Motivation Experimental Demonstration of THz Acceleration THz Generation Accelerating Structure and Results Moving Forward Parametric THz Amplifiers

More information

UV laser pulse temporal profile requirements for the LCLS injector - Part I - Fourier Transform limit for a temporal zero slope flattop

UV laser pulse temporal profile requirements for the LCLS injector - Part I - Fourier Transform limit for a temporal zero slope flattop UV laser pulse temporal profile requirements for the LCLS injector - Part I - Fourier Transform limit for a temporal zero slope flattop C. Limborg-Deprey and P.R. Bolton, Stanford Linear Accelerator Center,

More information

Investigation of Coherent Emission from the NSLS VUV Ring

Investigation of Coherent Emission from the NSLS VUV Ring SPIE Accelerator Based Infrared Sources and Spectroscopic Applications Proc. 3775, 88 94 (1999) Investigation of Coherent Emission from the NSLS VUV Ring G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.H. Reitze,

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang External Injection in Plasma Accelerators R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang Why Plasma Accelerators? Conventional RF cavities: 50-100 MV/m due to electrical breakdown Plasma: E>100 GV/m

More information

Advanced Acceleration Concepts

Advanced Acceleration Concepts Advanced Acceleration Concepts Levi Schächter chter Technion Israel Institute of Technology Acknowledgement R.H. Siemann (SLAC) W. D. Kimura (STI) I. Ben-Zvi (BNL) D. Sutter (DoE) Outline Some brief guidelines

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

IEEE Transactions on Nuclear Science, Vol. NS-32, No. 5, October 1985 LASER ACCELERATORS. C. Joshi

IEEE Transactions on Nuclear Science, Vol. NS-32, No. 5, October 1985 LASER ACCELERATORS. C. Joshi 1576 IEEE Transactions on Nuclear Science, Vol. NS-32, No. 5, October 1985 Abstract The use of lasers to accelerate particles to ultra-high energies is motivated by the very high electric fields associated

More information

Laser acceleration of electrons at Femilab/Nicadd photoinjector

Laser acceleration of electrons at Femilab/Nicadd photoinjector Laser acceleration of electrons at Femilab/Nicadd photoinjector P. Piot (FermiLab), R. Tikhoplav (University of Rochester) and A.C. Melissinos (University of Rochester) FNPL energy upgrade Laser acceleration

More information