Report due date. Please note: report has to be handed in by Monday, May 16 noon.

Size: px
Start display at page:

Download "Report due date. Please note: report has to be handed in by Monday, May 16 noon."

Transcription

1 Lecture

2 Report due date Please note: report has to be handed in by Monday, May 16 noon. Course evaluation: Please submit your feedback (you should have gotten an )

3 From the weak form to finite elements Electrostatics: The electrostatic potential p and the charge distribution r fulfill the Poisson equation (1D): (x) = 4 (x) Alternative system: r the mass density, p the gravitational potential We have seen that this can be expressed in its weak form as Z b a ( on interval Ω=[a,b] Dirichlet BCs to simplify the analysis (but not necessary): or (a) = a, (b) = b Z b a ( v +4 v) dx = v +4 v) dx + v b a = for all test functions v (BCs) for all test functions v

4 FE approximation (x) = 1X Plugging into the weak form we get: i=1 iv i (x) Find coe cients i such that Z!! b NX ivi(x) v (x)+4 (x)v(x) dx =, a i=1 for all v 2 H 1 D ( ) What about those v s? Since we have a basis and the problem is linear in v and v, we can just write the equivalent problem: Find coe cients i such that Z!! b NX ivi(x) vj(x)+4 (x)v j (x) dx =, a i=1 for j =1,..,N

5 FE approximation Find coe cients i such that Z!! b NX ivi(x) vj(x)+4 (x)v j (x) a i=1 dx =, for j =1,..,N Rearranging the terms a bit, the equation can be written as: Solve A ~ = ~ b with Z b ~ =( 1, 2,..., N ), A ij = vi(x)v j(x)dx, b i =4 a Z b a (x)v i (x)dx Since we need to invert a matrix, it makes sense to choose the basis such that most entries in A are zero! This is the case if different vi have only very small support (hence the name finite elements )

6 Nonlinear finite elements Solve (x) d2 dx 2 (x) = Z b a ( 4 (x) Equivalent weak statement: Find Φ such that for all v i : (x)+4 (x)) v i (x)dx = The same derivation as before now results in nonlinear coupled equations X i,j A ijk i j = b k with bk as before but A ijk = (1) Z b a v i (x)v j (x)v k (x)dx We now need a nonlinear root-finding algorithm to solve (1) for ɸ i.

7 asonable shot at this, especially if f is twice Nonlinear FE X How to solve? problems i,j A ijk i j = b k Write as r k ( ~ )= X i,j A ijk i j b k t f : R n Minimize (, ],! find ~r( ~ ) 2 2 We thus need methods to solve nonlinear problems. Quite general: given x s.t. a function f (x ) = f, we minneed to find find min {f (x)} n x R min {f (x)} n x R x R n {f (x)} l, but some cases, like f convex, are fairly solvable. find x s.t. f x lem: How about f : R n R, differentiable? Let s assume f is differentiable Then the problem becomes a root finding problem: find x s.t. f (x ) =

8 est we can get Nonlinear root-finding optimization: f (x) = 1 2 x t Ax x t b + c. ommon (actually universal) r expansion Let s first consider a particular form of f: f (x) = 1 2 x t Ax x t b + c. x) = f (x) + ( x) t f (x) ( x)t f (x) x + ly universal) Interpretation: Energy, quadratic in x. We have seen these kinds of f (x) = energies in the context of CG. Here: f (x) = Ax b = x = A 1 b mean A In has other to be words, invertible? quadratic Is this optimization all we need? amounts to a single matrix inversion (using direct methods, iterative methods (CG etc.)). But A has to be more than invertible! R. A. Lippert Non-linear optimization

9 Max, min, saddle, or what? Requires A be positive definite, why? Positive definitenes reexamined A 1.5 not only needs to be invertible, 1.5 but also positive definite f (x) = Otherwise, f.5 could also be a maximum or saddle point or a line! Positive definiteness is crucial to guarantee that we found a minimum by matrix inversion for quadratic energies! R. A. Lippert Non-linear optimization For general energies, positive definiteness requires convex f(x) image source: Ross A. Lippert D. E. Shaw Research

10 Nonlinear root-finding What do we do if f(x) is more complicated? If you have no clue, Taylor you can do! To start, lets consider 1D case: Minimize f(x): If x * is solution, we can write f (x )=f(x)+f (x)(x x)+ 1 2 f 2 (x)(x x)+... Need to find x * such that f (x * ) =, thus x = x x f (x) f (x) x n+1 = x n f (x n ) f (x n )

11 Nonlinear root-finding x = x x f (x) f (x) f (x n ) x n+1 = x n f (x n ) Instead of minimizing f, we could also search for a root of g(x)=f (x): x n+1 = x n g(x n ) g (x n ) Lecture

12 Nonlinear root finding

13 Nonlinear root-finding Now in higher dimensions: Taylor is now f (x ) f (x)+(x x) T rf (x)+ 1 2 (x x) T rrf (x)(x x)+... f(x) is a matrix of second derivatives (also called Hessian or Jacobian) Again, min f(x) means f(x * )= for solution x * x = x x (rrf (x)) 1 rf (x)

14 ton s method Naive nonlin. root solver (Newton-Raphson method) ewton s method finding x s.t. f (x) = ) Algorithm: find x s.t. f (x) = ) ; Start with initial guess x. Then iterate x i = ( f (x i )) 1 f (x i ) x i+1 = x i + x i until Δxi < tolerance or max. number if steps f (x i ) posdef, ( f (x i )) t (x i+1 x i ) < so x i is a ion of decrease (could overshoot) This means we need to invert the Hessian, i.e. solve again a linear problem! f (x i ) not posdef, x i might be in an increasing ion. However, (as in 1D), we have to do this many times (at each iteration!) convex, f (x i+1 ) f (x i ), so problems go away.

15 Why and where it fails x i = ( f (x i )) 1 f (x i ) x i+1 = x i + x i if f (x i ) posdef, ( f (x i )) t (x i+1 x i ) < so x i is a direction of decrease (could overshoot) if f (x i ) not posdef, x i might be in an increasing direction. if f is convex, f (x i+1 ) f (x i ), so problems go away. T

16 Example 1D example of trouble in 1D 1D example of trouble: f (x) = x 4 2x x D example of trouble: f (x) = x 4 2x x Has one local minimum Is not convex (note the concavity near x=) source: Ross A. Lippert D. E. Shaw Research R. A. Lippert Non-linear optimization

17 Example in 1D derivative of trouble: f (x) = 4x 3 4x negative f around x= is a barrier to reach solution! the negative f region around x repells the iterates: source: Ross A. Lippert D. E. Shaw Research

18 n ) f (x i ) Line search methods Algorithm: Try to enforce f(x i+1 )<f(x i ) by going in gradient direction far enough : i = ( f (x i )) 1 f (x i ) x i = ( f (x i )) 1 f (x i ) = x i + α i x i x i+1 = x i + α i x i t f (x i + α i x i ) f (x i ). If x i is a direction ch that f x x f x. If x Since Δx i is a direction in which f decreases, there will be some α i > such that f decreases. i exists. n do 1D optimization problem, But since f is nonlinear, we would need to solve the nonlinear optimization problem min f (x i + α i x i ) α i (,β] It s getting complicated use this rule: α i = ρµ n some n Convergence very much depends on quality of initial guess s x ) f (x ) νs ( x ) t f (x )

19 Alternatives Instead of solving f=, it is often easier to just minimize f, by using, e.g. gradient descent and a good guess for the step length: 1. dient Start descent: with initial guess xi 2. gradient descent: 1 Search direction: r i = f (x i ) 2 Search step: x i+1 = x i + α i r i Search direction: r i = f (x i ) 3 Pick alpha: (depends on what s cheap) 3. Search step: x i+1 = x i + α i r i 4. Pick Find alpha: optimal (depends!i on what s c 1 linearized α i = r t E.g. by approx 1D minimization of etc. i ( f )r i r t i r i 2 1D minimization f (x i + αr i ) (danger: low 3 zero-finding ri t f (x i + αr i ) = Can be extended to nonlinear CG as well Do not need second derivative evaluations!

20 What if f has: many local minima, is not differentiable or x is discrete? Traveling salesman problem: Find shortest route to visit all cities once! Here, f=length of route, x: ordered indices of cities to visit Many different methods available: Monte Carlo, simulated annealing, genetic algorithms etc.

21 What if f is has many local minima? Rough energy landscape: Gradient descent fails. General idea: Make sure we don t get stuck in local minimum!

22 Genetic algorithm Sketch: Start with a population of genes (for instance, random values of x in f(x)) A C B M Calculate cost for each. Then: XXX (no drugs) and rock & roll: Generate new x by crossing parents of good fitness Incorporate random mutations into children (=>overcomes minima) Run long enough until most populations converge to an optimal set of genes (=> best values of vector x)

23 Monte Carlo E Idea: Find a way to statistically sample all states according to well-defined probability (lower energy states = higher probability) Need: A way to walk through phase space such that there is a finite probability to visit each state in finite steps Ex.: Particle in energy landscape, coupled to heat bath (temperature T): Statistical physics: PDF for states with energy E is given by p(e) =e E = 1 k B T In order to visit all possible states with correct probability, the Metropolis algorithm can be used

24 Metropolis algorithm Make a trial move from current state x to a new randomly selected state x Calculate energy change de = E - E If de<, accept the new state x and repeat. If de>, accept state with probability e de : Draw random number r in [,1) Accept state if e de >r Application: Packing problems (see class)

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

Unconstrained Optimization

Unconstrained Optimization 1 / 36 Unconstrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University February 2, 2015 2 / 36 3 / 36 4 / 36 5 / 36 1. preliminaries 1.1 local approximation

More information

Optimization and Calculus

Optimization and Calculus Optimization and Calculus To begin, there is a close relationship between finding the roots to a function and optimizing a function. In the former case, we solve for x. In the latter, we solve: g(x) =

More information

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that Chapter 4 Nonlinear equations 4.1 Root finding Consider the problem of solving any nonlinear relation g(x) = h(x) in the real variable x. We rephrase this problem as one of finding the zero (root) of a

More information

Lecture 5. September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico

Lecture 5. September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico Lecture 5 September 4, 2018 Math/CS 471: Introduction to Scientific Computing University of New Mexico 1 Review: Office hours at regularly scheduled times this week Tuesday: 9:30am-11am Wed: 2:30pm-4:00pm

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

NONLINEAR. (Hillier & Lieberman Introduction to Operations Research, 8 th edition)

NONLINEAR. (Hillier & Lieberman Introduction to Operations Research, 8 th edition) NONLINEAR PROGRAMMING (Hillier & Lieberman Introduction to Operations Research, 8 th edition) Nonlinear Programming g Linear programming has a fundamental role in OR. In linear programming all its functions

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

PHYS 410/555 Computational Physics Solution of Non Linear Equations (a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9.

PHYS 410/555 Computational Physics Solution of Non Linear Equations (a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9. PHYS 410/555 Computational Physics Solution of Non Linear Equations (a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9.4) We will consider two cases 1. f(x) = 0 1-dimensional 2. f(x) = 0 d-dimensional

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Vector Derivatives and the Gradient

Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 10 ECE 275A Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego

More information

Root Finding (and Optimisation)

Root Finding (and Optimisation) Root Finding (and Optimisation) M.Sc. in Mathematical Modelling & Scientific Computing, Practical Numerical Analysis Michaelmas Term 2018, Lecture 4 Root Finding The idea of root finding is simple we want

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

Computer simulation can be thought as a virtual experiment. There are

Computer simulation can be thought as a virtual experiment. There are 13 Estimating errors 105 13 Estimating errors Computer simulation can be thought as a virtual experiment. There are systematic errors statistical errors. As systematical errors can be very complicated

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

MA102: Multivariable Calculus

MA102: Multivariable Calculus MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Differentiability of f : U R n R m Definition: Let U R n be open. Then f : U R n R m is differentiable

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Introduction: In applications, it often turns out that one cannot solve the differential equations or antiderivatives that show up in the real

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION 15-382 COLLECTIVE INTELLIGENCE - S19 LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION TEACHER: GIANNI A. DI CARO WHAT IF WE HAVE ONE SINGLE AGENT PSO leverages the presence of a swarm: the outcome

More information

Lecture 35 Minimization and maximization of functions. Powell s method in multidimensions Conjugate gradient method. Annealing methods.

Lecture 35 Minimization and maximization of functions. Powell s method in multidimensions Conjugate gradient method. Annealing methods. Lecture 35 Minimization and maximization of functions Powell s method in multidimensions Conjugate gradient method. Annealing methods. We know how to minimize functions in one dimension. If we start at

More information

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

More information

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA The Bayes classifier Linear discriminant analysis (LDA) Theorem The classifier satisfies In linear discriminant analysis (LDA), we make the (strong) assumption that where the min is over all possible classifiers.

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Introduction to Unconstrained Optimization: Part 2

Introduction to Unconstrained Optimization: Part 2 Introduction to Unconstrained Optimization: Part 2 James Allison ME 555 January 29, 2007 Overview Recap Recap selected concepts from last time (with examples) Use of quadratic functions Tests for positive

More information

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14 LOCAL SEARCH Today Reading AIMA Chapter 4.1-4.2, 5.1-5.2 Goals Local search algorithms n hill-climbing search n simulated annealing n local beam search n genetic algorithms n gradient descent and Newton-Rhapson

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

Optimization. Totally not complete this is...don't use it yet...

Optimization. Totally not complete this is...don't use it yet... Optimization Totally not complete this is...don't use it yet... Bisection? Doing a root method is akin to doing a optimization method, but bi-section would not be an effective method - can detect sign

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Math 273a: Optimization Netwon s methods

Math 273a: Optimization Netwon s methods Math 273a: Optimization Netwon s methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from Chong-Zak, 4th Ed. Main features of Newton s method Uses both first derivatives

More information

Optimization Methods. Lecture 19: Line Searches and Newton s Method

Optimization Methods. Lecture 19: Line Searches and Newton s Method 15.93 Optimization Methods Lecture 19: Line Searches and Newton s Method 1 Last Lecture Necessary Conditions for Optimality (identifies candidates) x local min f(x ) =, f(x ) PSD Slide 1 Sufficient Conditions

More information

Bindel, Spring 2016 Numerical Analysis (CS 4220) Notes for

Bindel, Spring 2016 Numerical Analysis (CS 4220) Notes for Life beyond Newton Notes for 2016-04-08 Newton s method has many attractive properties, particularly when we combine it with a globalization strategy. Unfortunately, Newton steps are not cheap. At each

More information

Notes for CS542G (Iterative Solvers for Linear Systems)

Notes for CS542G (Iterative Solvers for Linear Systems) Notes for CS542G (Iterative Solvers for Linear Systems) Robert Bridson November 20, 2007 1 The Basics We re now looking at efficient ways to solve the linear system of equations Ax = b where in this course,

More information

Lecture 17: Numerical Optimization October 2014

Lecture 17: Numerical Optimization October 2014 Lecture 17: Numerical Optimization 36-350 22 October 2014 Agenda Basics of optimization Gradient descent Newton s method Curve-fitting R: optim, nls Reading: Recipes 13.1 and 13.2 in The R Cookbook Optional

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2015 http://www.astro.cornell.edu/~cordes/a6523 Lecture 23:! Nonlinear least squares!! Notes Modeling2015.pdf on course

More information

BOUNDARY VALUE PROBLEMS

BOUNDARY VALUE PROBLEMS BOUNDARY VALUE PROBLEMS School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 BOUNDARY VALUE PROBLEMS 3 NEWTONS SHOOTING METHOD 4 SUMMARY OUTLINE 1 REVIEW 2 BOUNDARY VALUE PROBLEMS 3 NEWTONS SHOOTING

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

Math 409/509 (Spring 2011)

Math 409/509 (Spring 2011) Math 409/509 (Spring 2011) Instructor: Emre Mengi Study Guide for Homework 2 This homework concerns the root-finding problem and line-search algorithms for unconstrained optimization. Please don t hesitate

More information

FALL 2018 MATH 4211/6211 Optimization Homework 1

FALL 2018 MATH 4211/6211 Optimization Homework 1 FALL 2018 MATH 4211/6211 Optimization Homework 1 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Numerical Optimization Algorithms

Numerical Optimization Algorithms Numerical Optimization Algorithms 1. Overview. Calculus of Variations 3. Linearized Supersonic Flow 4. Steepest Descent 5. Smoothed Steepest Descent Overview 1 Two Main Categories of Optimization Algorithms

More information

Newton-Raphson. Relies on the Taylor expansion f(x + δ) = f(x) + δ f (x) + ½ δ 2 f (x) +..

Newton-Raphson. Relies on the Taylor expansion f(x + δ) = f(x) + δ f (x) + ½ δ 2 f (x) +.. 2008 Lecture 7 starts here Newton-Raphson When the derivative of f(x) is known, and when f(x) is well behaved, the celebrated (and ancient) Newton- Raphson method gives the fastest convergence of all (

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

ROOT FINDING REVIEW MICHELLE FENG

ROOT FINDING REVIEW MICHELLE FENG ROOT FINDING REVIEW MICHELLE FENG 1.1. Bisection Method. 1. Root Finding Methods (1) Very naive approach based on the Intermediate Value Theorem (2) You need to be looking in an interval with only one

More information

Computational Finance

Computational Finance Department of Mathematics at University of California, San Diego Computational Finance Optimization Techniques [Lecture 2] Michael Holst January 9, 2017 Contents 1 Optimization Techniques 3 1.1 Examples

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012 (Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

Practical Numerical Methods in Physics and Astronomy. Lecture 5 Optimisation and Search Techniques

Practical Numerical Methods in Physics and Astronomy. Lecture 5 Optimisation and Search Techniques Practical Numerical Methods in Physics and Astronomy Lecture 5 Optimisation and Search Techniques Pat Scott Department of Physics, McGill University January 30, 2013 Slides available from http://www.physics.mcgill.ca/

More information

High Performance Nonlinear Solvers

High Performance Nonlinear Solvers What is a nonlinear system? High Performance Nonlinear Solvers Michael McCourt Division Argonne National Laboratory IIT Meshfree Seminar September 19, 2011 Every nonlinear system of equations can be described

More information

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

Nonlinear Optimization

Nonlinear Optimization Nonlinear Optimization (Com S 477/577 Notes) Yan-Bin Jia Nov 7, 2017 1 Introduction Given a single function f that depends on one or more independent variable, we want to find the values of those variables

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester Physics 403 Numerical Methods, Maximum Likelihood, and Least Squares Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Quadratic Approximation

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 7: Solutions of nonlinear equations Newton-Raphson method

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 7: Solutions of nonlinear equations Newton-Raphson method 10.34: Numerical Methods Applied to Chemical Engineering Lecture 7: Solutions of nonlinear equations Newton-Raphson method 1 Recap Singular value decomposition Iterative solutions to linear equations 2

More information

ARE202A, Fall 2005 CONTENTS. 1. Graphical Overview of Optimization Theory (cont) Separating Hyperplanes 1

ARE202A, Fall 2005 CONTENTS. 1. Graphical Overview of Optimization Theory (cont) Separating Hyperplanes 1 AREA, Fall 5 LECTURE #: WED, OCT 5, 5 PRINT DATE: OCTOBER 5, 5 (GRAPHICAL) CONTENTS 1. Graphical Overview of Optimization Theory (cont) 1 1.4. Separating Hyperplanes 1 1.5. Constrained Maximization: One

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Improving the Convergence of Back-Propogation Learning with Second Order Methods

Improving the Convergence of Back-Propogation Learning with Second Order Methods the of Back-Propogation Learning with Second Order Methods Sue Becker and Yann le Cun, Sept 1988 Kasey Bray, October 2017 Table of Contents 1 with Back-Propagation 2 the of BP 3 A Computationally Feasible

More information

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised)

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised) Computational Optimization Mathematical Programming Fundamentals 1/5 (revised) If you don t know where you are going, you probably won t get there. -from some book I read in eight grade If you do get there,

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science Copyright 2016 University of Maryland. 1 AOSC 652 Root Finding & Function Minimization Week 7, Day 2 12 Oct 2016 2 Method #3: Newton-Raphson Root is

More information

Root Finding and Optimization

Root Finding and Optimization Root Finding and Optimization Ramses van Zon SciNet, University o Toronto Scientiic Computing Lecture 11 February 11, 2014 Root Finding It is not uncommon in scientiic computing to want solve an equation

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg MVE165/MMG631 Overview of nonlinear programming Ann-Brith Strömberg 2015 05 21 Areas of applications, examples (Ch. 9.1) Structural optimization Design of aircraft, ships, bridges, etc Decide on the material

More information

Monte Carlo Methods. PHY 688: Numerical Methods for (Astro)Physics

Monte Carlo Methods. PHY 688: Numerical Methods for (Astro)Physics Monte Carlo Methods Random Numbers How random is random? From Pang: we want Long period before sequence repeats Little correlation between numbers (plot ri+1 vs ri should fill the plane) Fast Typical random

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science AOSC 652 Week 7, Day 1 13 Oct 2014 1 Student projects: 20% of the final grade: you will receive a numerical score for the project and final grade will

More information

Mathematical optimization

Mathematical optimization Optimization Mathematical optimization Determine the best solutions to certain mathematically defined problems that are under constrained determine optimality criteria determine the convergence of the

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Taylor s Theorem Can often approximate a function by a polynomial The error in the approximation

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form: 0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

Math 273a: Optimization Basic concepts

Math 273a: Optimization Basic concepts Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on Chong-Zak, 4th Ed. Goals of this lecture The general form of optimization: minimize

More information

SIMPLE MULTIVARIATE OPTIMIZATION

SIMPLE MULTIVARIATE OPTIMIZATION SIMPLE MULTIVARIATE OPTIMIZATION 1. DEFINITION OF LOCAL MAXIMA AND LOCAL MINIMA 1.1. Functions of variables. Let f(, x ) be defined on a region D in R containing the point (a, b). Then a: f(a, b) is a

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

Local Beam Search. CS 331: Artificial Intelligence Local Search II. Local Beam Search Example. Local Beam Search Example. Local Beam Search Example

Local Beam Search. CS 331: Artificial Intelligence Local Search II. Local Beam Search Example. Local Beam Search Example. Local Beam Search Example 1 S 331: rtificial Intelligence Local Search II 1 Local eam Search Travelling Salesman Problem 2 Keeps track of k states rather than just 1. k=2 in this example. Start with k randomly generated states.

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review 10.34 Numerical Methods Applied to Chemical Engineering Fall 2015 Quiz #1 Review Study guide based on notes developed by J.A. Paulson, modified by K. Severson Linear Algebra We ve covered three major topics

More information

Multivariate Newton Minimanization

Multivariate Newton Minimanization Multivariate Newton Minimanization Optymalizacja syntezy biosurfaktantu Rhamnolipid Rhamnolipids are naturally occuring glycolipid produced commercially by the Pseudomonas aeruginosa species of bacteria.

More information

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM.

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Unless granted by the instructor in advance, you must turn

More information

A new nonmonotone Newton s modification for unconstrained Optimization

A new nonmonotone Newton s modification for unconstrained Optimization A new nonmonotone Newton s modification for unconstrained Optimization Aristotelis E. Kostopoulos a George S. Androulakis b a a Department of Mathematics, University of Patras, GR-265.04, Rio, Greece b

More information

GENG2140, S2, 2012 Week 7: Curve fitting

GENG2140, S2, 2012 Week 7: Curve fitting GENG2140, S2, 2012 Week 7: Curve fitting Curve fitting is the process of constructing a curve, or mathematical function, f(x) that has the best fit to a series of data points Involves fitting lines and

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information