Lecture # 9. Chapter 8. Activity and Systematic Treatment of Equilibrium. K = [Fe(SCN) 2+ ] [Fe 3+ ] [SCN - ] Fe 3+ + SCN - Fe(SCN) 2+

Size: px
Start display at page:

Download "Lecture # 9. Chapter 8. Activity and Systematic Treatment of Equilibrium. K = [Fe(SCN) 2+ ] [Fe 3+ ] [SCN - ] Fe 3+ + SCN - Fe(SCN) 2+"

Transcription

1 Lecture # 9 Chapter 8 Activity and Systematic Treatment of Equilibrium K = [Fe(SCN) ] [Fe 3 ] [SCN ] Fe 3 SCN Fe(SCN) CaCO 3 (s) Ca (aq) CO K sp =.5 x 10 9 CaCO 3 (s) CO H O Ca HCO 3 CaCO 3 (s) Ca (aq) CO CO (g) CO (aq) CO (aq) H O H CO H CO H HCO 3 HCO H CO 3 H O H OH 1

2 a way to deal with all types of chemical equilibria, regardless of their complexity Step 1: Write all pertinent equations. Step : Write the charge balance equation. Step 3: Write the mass balance equation(s). Step : Write the equilibrium constant expression for each reaction. Step 5: Count the equations and unknowns. They should be equal. Step 6: Solve for all unknowns. Dissociation of Ions in Water Dissociation of Ions in Water CaCO 3 solubility Effects of Ions on Solubility CaCO 3 (s) Ca (aq) CO Common Ion Effect CaCl Concentration of Added Substance (M) CaCO 3 (s) Common Ion Effect Ca (aq) CO 3 (aq) Common Ion Effect CaCO 3 (s) Ca (aq) CO

3 CaCO 3 solubility Effects of Ions on Solubility CaCO 3 (s) Ca (aq) CO KNO 3 CaCl Concentration of Added Substance (M) Dissociation of Ions in Water Ionic Atmosphere Ionic Atmosphere Ionic Strength measure of the total concentration of ions in solution = 1 (c 1 z 1 c z c 3 z 3.) = 1 (c i z i ) c = concentration (M) z = charge (e.g. 1, 1,,, etc.) Activity and Equilibrium A X = [X] c = Activity Where c = Activity Coefficient Activity Coefficients Extended DebyeHückel Equation: log = 0.51z (at 5 C) 1 ( /305) aa bb cc dd K = [C] c [D] d [A] a [B] b Where ± z = ion charge, = ionic strength and = ion diameter (pm) K = A c C A d D A a A A b B = [C] c c c [D] d d d [A] a a a [B] b b b Note: 1 for neutral compounds and gases Works well for <

4 log γ = 0.51z μ 1 (α μ /305) Activity Coefficient (γ) Activity Coefficients 1 M M M M Ionic Strength (μ) 1. As ionic strength (μ) increases, the activity coefficient (γ) decreases.. As magnitude of charge (z) increases, increased departure from unity (1). 3. The smaller the ion size, the more important activity. Activity Coefficients Interpolation of Activity Coefficients Unknown yinterval Δy = Known xinterval Δx? y?? x Example: What is the γ for (CH3H7)N at μ = 0.015?

5 Interpolation of Activity Coefficients Unknown yinterval = Known xinterval y x y?? Example: What is the for (CH 3 H 7 ) N at = 0.015? (0.91 ) = ( ) ( ) ( ) = (0.035/0.0) x (0.06) 0.91 = 0.858? a way to deal with all types of chemical equilibria, regardless of their complexity Step 1: Write all pertinent equations. Step : Write the charge balance equation. Step 3: Write the mass balance equation(s). Step : Write the equilibrium constant expression for each reaction. Step 5: Count the equations and unknowns. They should be equal. Step 6: Solve for all unknowns. Charge Balance The sum of the positive charges in solution equal the sum of the negative charges in solution (c i z i ) = 0 n 1 [C 1 ] n [C ] = m 1 [A 1 ] m [A ] Example: CaCO 3 (s) CO H O Ca HCO 3 CaCO 3 (s) CO (g) CO (aq) H O Ca (aq) CO 3 (aq) CO (aq) H CO H CO H HCO 3 HCO 3 (aq) H CO 3 H O H OH [H ] [Ca ] = [CO 3 ] [HCO 3 ] [OH ] Mass Balance the quantity of all species in a solution containing a particular atom (or group of atoms) must equal the amount of that atom (or group) delivered to the solution Example: CaCO 3 (s) CO H O Ca HCO 3 CaCO 3 (s) CO (g) CO (aq) H O Ca (aq) CO 3 (aq) CO (aq) H CO H CO H HCO 3 HCO 3 (aq) H CO 3 H O H OH [Ca ] = [CO 3 ] [Ca ] = [CaCO 3 ] [Ca ] [CO 3 ] = [CO 3 ] [HCO 3 ] [H CO 3 ] [CaCO 3 ] [Ca ] = [CO 3 ] [HCO 3 ] [H CO 3 ] a way to deal with all types of chemical equilibria, regardless of their complexity Step 1: Write all pertinent equations. Step : Write the charge balance equation. Step 3: Write the mass balance equation(s). Step : Write the equilibrium constant expression for each reaction. Step 5: Count the equations and unknowns. They should be equal. Step 6: Solve for all unknowns. Equilibrium Constants K sp = [Ca ] Ca [CO 3 ] CO3 = 6 x 10 9 [CO (aq)] CO = K CO P(CO ), K CO = 3. x 10 K a1 = [H ] H [HCO 3 ] HCO3 =.5 x 10 7 [H CO 3 ] HCO3 K a = [H ] H [CO 3 ] CO3 =.69 x [HCO 3 ] HCO3 K w = [H ] H [OH ] OH = 1 x

6 Equations (TOTAL) K sp = [Ca ] Ca [CO 3 ] CO3 = 6 x 10 9 [CO (aq)] CO = K CO P(CO ), K CO = 3. x 10 K a1 = [H ] H [HCO 3 ] HCO3 =.5 x 10 7 [H CO 3 ] HCO3 K a = [H ] H [CO 3 ] CO3 =.69 x [HCO 3 ] HCO3 K w = [H ] H [OH ] OH = 1 x 10 1 [H ] [Ca ] = [CO 3 ] [HCO 3 ] [OH ] [CaCO 3 ] [Ca ] = { [CO 3 ] [HCO 3 ] [H CO 3 ] } Unknowns: [Ca ], [CO 3 ], [H CO ], [HCO 3 ], [CO (aq)], [H ], [OH ] 7 7 a way to deal with all types of chemical equilibria, regardless of their complexity Step 1: Write all pertinent equations. Step : Write the charge balance equation. Step 3: Write the mass balance equation(s). Step : Write the equilibrium constant expression for each reaction. Step 5: Count the equations and unknowns. They should be equal.??? Step 6: Solve for all unknowns. Example: Ca (s) Ca Ca (s) Ca (aq) Ca H O CaOH H H O H OH H O H OH Example: Ca (s) Ca Ca (s) Ca (aq) Ca H O CaOH H H O H OH H O H OH Unknowns: [Ca ], [ ], [Ca (aq)], [CaOH ], [H ]. [H ], [OH ] = 7 unknowns Charge Balance: [Ca ] [CaOH ] [H ] = [ ] [H ] [OH ] Mass Balance: [Total Calcium] = [Total Sulfate] [Ca ] [Ca (aq)] [CaOH ] = [ ] [H ] [Ca (aq)] Example: Ca (s) Ca Ca (s) Ca (aq) Ca H O CaOH H H O H OH H O H OH K sp = [Ca ] Ca [ ] =. x 10 5 K ion pair = [Ca (aq)] = 5.0 x 10 3 K a = [H ] H [CaOH] CaOH =.0 x [Ca ] Ca K b = [H ] H [OH ] OH = 9.8 x [ ] K W = [H ] H [OH ] OH = 1.0 x 10 1 = 7 equilibrium expression [Ca ] [CaOH ] [H ] = [ ] [H ] [OH ] [Ca ] [Ca (aq)] [CaOH ] = [ ] [H ] [Ca (aq)] Example: Ca (s) Ca Ca (s) Ca (aq) Ca H O CaOH H H O H OH H O H OH K sp = [Ca ][ ] =. x 10 5 K ion pair = [Ca (aq)] = 5.0 x 10 3 K a = [H ][CaOH] =.0 x [Ca ] K b = [H ][OH ] = 9.8 x [ ] K W = [H ][OH ] = 1.0 x 10 1 [Ca ] [CaOH ] [H ] = [ ] [H ] [OH ] [Ca ] [Ca (aq)] [CaOH ] = [ ] [H ] [Ca (aq)] 6

7 Example: Ca (s) Ca Ca (s) Ca (aq) Ca H O CaOH H H O H OH H O H OH K sp = [Ca ][ ] =. x 10 5 K ion pair = [Ca (aq)] = 5.0 x 10 3 [Ca (aq)] = 5.0 x 10 3 Example: Ca (s) Ca Ca (s) Ca (aq) Ca H O CaOH H H O H OH H O H OH K sp = [Ca ][ ] =. x 10 5 [Ca ] 1 = [ ] 1 =. x 10 5 =.9 x 10 3 [Ca ] [CaOH ] [H ] = [ ] [H ] [OH ] [Ca ] [Ca (aq)] [CaOH ] = [ ] [H ] [Ca (aq)] = 1/ ([Ca ] 1 () [ ] 1 () ) = 1/ (8 x.9 x 10 3 ) = (.9 x 10 3 ) = 0.00 M Example: Ca (s) Ca Ca (s) Ca (aq) Ca H O CaOH H H O H OH H O H OH K sp = [Ca ][ ] =. x 10 5 Ca = 0.68 = K sp = [Ca ] Ca [ ] =. x 10 5 [Ca ] (0.68) [Ca ] (0.606) =. x 105 [Ca ] = 7.9 x 10 3 K sp = [Ca ] Ca [ ] =. x 10 5 Solving by Iteration: Iteration Ca [Ca ] (M) (M) Are CaOH and H negligible? K a = [H ][CaOH] =.0 x [Ca ] K b = [H ][OH ] = 9.8 x [ ] K W = [H ][OH ] = 1.0 x 10 1 [CaOH ] = (.0 x )(0.009) (1.0 x 10 7 ) = x 10 8 [H ] = (9.8 x )(0.009) (1.0 x 10 7 ) = 9 x

8 [Ca ] = M [ ] = M [Ca (aq)] = 5.0 x 10 3 M [CaOH ] = x 10 8 m [H ] = 9 x 10 8 M [H ] = 1 x 10 7 M [OH ] = 1 x 10 7 M 8

8.00 Activity and Systematic Treatment of Equilibrium

8.00 Activity and Systematic Treatment of Equilibrium 8.00 Activity and Systematic Treatment of Equilibrium Recommended Problem Set: 7.7, 7.12, 7.18, 7.19, 7.27 Dr. Fred Omega Garces Chemistry 251 Miramar College 1 Effect of Electrolyte on Equilibrium The

More information

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT 2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? In general terms equilibrium implies a situation that is unchanging or steady. This is generally achieved through a balance of opposing forces. In chemistry equilibrium

More information

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level. Chemical Equilibrium A state of no net change in reactant & product concentrations. BUT There is a lot of activity at the molecular level. 1 Kinetics Equilibrium For an elementary step in the mechanism:

More information

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially.

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially. CHAPTER 17: SOLUBILITY AND COMPLEX ION EQUILIBRIA Part One: Solubility Equilibria A. Ksp, the Solubility Product Constant. (Section 17.1) 1. Review the solubility rules. (Table 4.1) 2. Insoluble and slightly

More information

Chapter 17: Solubility Equilibria

Chapter 17: Solubility Equilibria Previous Chapter Table of Contents Next Chapter Chapter 17: Solubility Equilibria Sections 17.1-17.2: Solubility Equilibria and the K sp Table In this chapter, we consider the equilibrium associated with

More information

Ch 7. Systematic Treatment of Equilibrium and Activity

Ch 7. Systematic Treatment of Equilibrium and Activity Ch 7 Systematic Treatment of Equilibrium and Activity Systematic Treatment of Equilibrium Complicated systems have several unknown variables species of unknown concentration Generally, you need to come

More information

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion AP Chemistry - Problem Drill 08: Chemical Reactions No. 1 of 10 1. What type is the following reaction: H 2 CO 3 (aq) + Ca(OH) 2 (aq) CaCO 3 (aq) + 2 H 2 O (l)? (A) Composition (B) Decomposition (C) Single

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information

III.1 SOLUBILITY CONCEPT REVIEW

III.1 SOLUBILITY CONCEPT REVIEW III.1 SOLUBILITY CONCEPT REVIEW Read Hebden p. 73 76 and review basic solubility definitions. Soluble means Insoluble means The Dissolving Process IONIC Solutions MOLECULAR Solutions (Covalent compounds)

More information

Solubility Equilibria

Solubility Equilibria Solubility Equilibria Heretofore, we have investigated gas pressure, solution, acidbase equilibriums. Another important equilibrium that is used in the chemistry lab is that of solubility equilibrium.

More information

Learning Outcomes: At the end of this assignment, students will be able to:

Learning Outcomes: At the end of this assignment, students will be able to: Chemical Equilibria & Sample Preparation Purpose: The purpose of this assignment is to predict how solute concentrations are controlled by chemical equilibria, understand the chemistry involved with sample

More information

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product Solubility Equilibria These are associated with ionic solids dissolving in water to form aqueous solutions Chapter 16 Solubility Equilibria It is assumed that when an ionic compound dissolves in water,

More information

Kinetics/ Reaction Rates

Kinetics/ Reaction Rates Reaction Rates Kinetics/ Reaction Rates Expressing Reaction Rate Collision Theory 1) Chapter 17 2) 3) Jodi Grack; Wayzata High School; Plymouth, MN Reaction Rates activated complex Factors Affecting Reaction

More information

Acids and Bases. Feb 28 4:40 PM

Acids and Bases. Feb 28 4:40 PM Acids and Bases H O s O Cl H O O H H N H Na O H H Feb 28 4:40 PM Properties of Acids 1. Taste sour 2. Conduct electrical current 3. Liberate H 2 gas when reacted with a metal. 4. Cause certain dyes to

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

V(STP) No.of mequivalents = n. Analytical chemistry

V(STP) No.of mequivalents = n. Analytical chemistry Analytical chemistry 1-qualitative analysis. Is concerned with the identification of ions molecules elements and compounds present in sample 2- Quantitative analysis :- Is concerned with the Determination

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

Aqueous Balance: Equilibrium

Aqueous Balance: Equilibrium Activity 4 Aqueous Balance: Equilibrium GOALS In this activity you will: Determine ph and understand its meaning. Learn the basic principles behind equilibrium and the law of mass action. Calculate a solubility

More information

Chapter 4 Reactions in Aqueous Solution

Chapter 4 Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Homework Chapter 4 11, 15, 21, 23, 27, 29, 35, 41, 45, 47, 51, 55, 57, 61, 63, 73, 75, 81, 85 1 2 Chapter Objectives Solution To understand the nature of ionic substances

More information

Chemical Equilibrium Review? Chemical Equilibrium

Chemical Equilibrium Review? Chemical Equilibrium Chemical Equilibrium Review? Most chemical systems are governed by equilibria such that if: aa + bb cc + dd, then c ac ad a a a A b B K where K is the equilibrium constant, and a X is the activity of X

More information

Chapter 7 Chemical Reactions

Chapter 7 Chemical Reactions Chapter 7 Chemical Reactions Evidence of Chemical Change Release or Absorption of Heat Color Change Emission of Light Formation of a Gas Formation of Solid Precipitate Tro's "Introductory 2 How Do We Represent

More information

Ba 2+ (aq) + SO 4 2 (aq) ] = at 25 C

Ba 2+ (aq) + SO 4 2 (aq) ] = at 25 C Solubility Solubility 1 A. Solubility Product In this chapter, we will be discussing the solubility of ionic compounds (salts) in water. However, solubility, at least qualitatively, is very roughly defined.

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

Chapter 8 - Activity

Chapter 8 - Activity Chapter 8 - Activity dilute solution Ions in concentrated solution interact CM 320 Lecture 10 Chap 8 ow do ionized species interact in solution? The charge on the ions attracts or repels other ionic species

More information

Solubility & Equilibrium Unit Review

Solubility & Equilibrium Unit Review Solubility & Equilibrium Unit Review This review is worth 3 marks of your total test marks. It must be completed on test day. 3 marks will be given to students who have fully completed this review with

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Not all reactions proceed to completion Chemical Equilibrium a state in which the ratio of concentrations of reactants and products is constant Chemical Equilibrium: Some Rules In

More information

Guide to Chapter 15. Aqueous Equilibria: Acids and Bases. Review Chapter 4, Section 2 on how ionic substances dissociate in water.

Guide to Chapter 15. Aqueous Equilibria: Acids and Bases. Review Chapter 4, Section 2 on how ionic substances dissociate in water. Guide to Chapter 15. Aqueous Equilibria: Acids and Bases We will spend five lecture days on this chapter. During the first two class meetings we will introduce acids and bases and some of the theories

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

We will briefly go over Answer Key

We will briefly go over Answer Key Chem 310 Test 1 12-15 % of Grade (I ll decide later) Tests will be returned no later than 1 week after taken Reminder on regrades We will briefly go over Answer Key Oops forgot to do this!! So answer

More information

Chemistry Equilibrium Notes

Chemistry Equilibrium Notes Chemistry Equilibrium Notes Fe 3+ (aq) + SCN - (aq) FeSCN 2+ (aq) Here s the equation for the reaction from last week s experiment. Based on the color changes that we saw, we drew three major conclusions

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Copyright 2004 by houghton Mifflin Company. Reactions in Aqueous Solutions Chapter 7 All rights reserved. 1 7.1 Predicting if a Rxn Will Occur When chemicals are mixed and one of these driving forces can

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

1. (3) The pressure on an equilibrium mixture of the three gases N 2, H 2 and NH 3

1. (3) The pressure on an equilibrium mixture of the three gases N 2, H 2 and NH 3 1. (3) The pressure on an equilibrium mixture of the three gases N 2, H 2 and NH 3 N 2 (g) + 3 H 2 (g) 2 NH 3 (g) is suddenly decreased by doubling the volume of the container at constant temperature.

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Name: The Common-Ion Effect Suppose we have a weak acid and a soluble salt of that acid. CH 3 COOH NaCH 3 COO CH 3 COOH CH 3 COO + H + Since NaCH

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES

DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES INTRODUCTION DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES SOLUBILTY EQUILIBRIA Many systems in chemistry appear to be static when in fact they are in (dynamic) equilibrium. When a system

More information

Revision Notes on Chemical and Ionic Equilibrium

Revision Notes on Chemical and Ionic Equilibrium Revision Notes on Chemical and Ionic Equilibrium Equilibrium Equilibrium is the state of a process in which the properties like temperature, pressure, and concentration etc of the system do not show any

More information

Chemistry 12 January 2000 Provincial Examination

Chemistry 12 January 2000 Provincial Examination Chemistry 2 January 2000 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers. Reaction Kinetics 2. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation

More information

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Exp. 20 - video (time: 41:13 minutes) Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Chemical Equilibrium Previously we have assumed that chemical reactions

More information

Chem!stry. Assignment on Acids, Bases and Salts #

Chem!stry. Assignment on Acids, Bases and Salts # Chem!stry Name: ( ) Class: Date: / / Assignment on Acids, Bases and Salts #5 Write your answers in the spaces below: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 1. Which of the

More information

Chemistry 12 August 2000 Provincial Examination

Chemistry 12 August 2000 Provincial Examination Chemistry August 000 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers. Reaction Kinetics. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation Ð

More information

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water Aqueous Solutions Solubility is a relative term since all solutes will have some solubility in water. Insoluble substances simply have extremely low solubility. The solubility rules are a general set of

More information

The 5 th planet in our solar system, Jupiter. The Mass Action Expression describes a system undergoing a chemical change.

The 5 th planet in our solar system, Jupiter. The Mass Action Expression describes a system undergoing a chemical change. Unit 5 The 5 th planet in our solar system, Jupiter Ch. 15 Chemical equilibrium: This is based on the idea that reactions go forwards and backwards at the same conditions The Mass Action Expression describes

More information

Chemistry 12 June 2003 Provincial Examination

Chemistry 12 June 2003 Provincial Examination Chemistry 12 June 2003 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers 1. Reaction Kinetics 2. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation

More information

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual Ch 4 Chemical Reactions Ionic Theory of Solutions - Ionic substances produce freely moving ions when dissolved in water, and the ions carry electric current. (S. Arrhenius, 1884) - An electrolyte is a

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 17 Additional Aspects of James F. Kirby Quinnipiac University Hamden, CT Effect of Acetate on the Acetic Acid Equilibrium Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq)

More information

Electrolytes do conduct electricity, in proportion to the concentrations of their ions in solution.

Electrolytes do conduct electricity, in proportion to the concentrations of their ions in solution. Chapter 4 (Hill/Petrucci/McCreary/Perry Chemical Reactions in Aqueous Solutions This chapter deals with reactions that occur in aqueous solution these solutions all use water as the solvent. We will look

More information

OFB Chapter 7 Chemical Equilibrium

OFB Chapter 7 Chemical Equilibrium OFB Chapter 7 Chemical Equilibrium 7-1 Chemical Reactions in Equilibrium 7-2 Calculating Equilibrium Constants 7-3 The Reaction Quotient 7-4 Calculation of Gas-Phase Equilibrium 7-5 The effect of External

More information

Section 3 Environmental Chemistry

Section 3 Environmental Chemistry Section 3 Environmental Chemistry 1 Environmental Chemistry Definitions Chemical Reactions Stoichiometry Photolytic Reactions Enthalpy and Heat of Reaction Chemical Equilibria ph Solubility Carbonate Systems

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

1. Parts of Chemical Reactions. 2 H 2 (g) + O 2 (g) 2 H 2 O(g) How to read a chemical equation

1. Parts of Chemical Reactions. 2 H 2 (g) + O 2 (g) 2 H 2 O(g) How to read a chemical equation Unit 6 Chemical Reactions 1. Parts of a Chemical Reaction 2. Indicators of a Chemical Reaction 3. Enthalpy 4. Balancing Chemical Equations 5. Word Equations 6. Classifying Chemical Reactions 7. Predicting

More information

Groundwater chemistry

Groundwater chemistry Read: Ch. 3, sections 1, 2, 3, 5, 7, 9; Ch. 7, sections 2, 3 PART 14 Groundwater chemistry Introduction Matter present in water can be divided into three categories: (1) Suspended solids (finest among

More information

More reaction types. combustions and acid/base neutralizations

More reaction types. combustions and acid/base neutralizations More reaction types combustions and acid/base neutralizations Combustion reactions C x H y + O 2(g) CO 2(g) + H 2 O (l) + E If the hydrocarbon contains nitrogen as well C x H y N z + O 2(g) CO 2(g) + H

More information

Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018

Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018 Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018 These problems are given to help you review concepts you may have forgotten. Old tests, quizzes and review sheets are also important in studying. Chapter

More information

Reactions in Aqueous Solutions Chang & Goldsby modified by Dr. Hahn

Reactions in Aqueous Solutions Chang & Goldsby modified by Dr. Hahn Reactions in Aqueous Solutions Chang & Goldsby modified by Dr. Hahn Chapter 4 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

I. Properties of Aqueous Solutions A) Electrolytes and Non-Electrolytes B) Predicting Solubility* II. Reactions of Ionic Compounds in Solution*

I. Properties of Aqueous Solutions A) Electrolytes and Non-Electrolytes B) Predicting Solubility* II. Reactions of Ionic Compounds in Solution* Chapter 5 Reactions in Aqueous Solutions Titrations Kick Acid!!! 1 I. Properties of Aqueous Solutions A) Electrolytes and Non-Electrolytes B) Predicting Solubility* II. Reactions of Ionic Compounds in

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Solubility Equilibria Many natural processes depend on the precipitation or dissolving of a slightly soluble salt. In the next section, we look at the equilibria of

More information

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3?

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3? 1) Convert the following 1) 125 g to Kg 6) 26.9 dm 3 to cm 3 11) 1.8µL to cm 3 16) 4.8 lb to Kg 21) 23 F to K 2) 21.3 Km to cm 7) 18.2 ml to cm 3 12) 2.45 L to µm 3 17) 1.2 m to inches 22) 180 ºC to K

More information

CHE 113 FINAL EXAMINATION December 15, 2008

CHE 113 FINAL EXAMINATION December 15, 2008 CHE 113 FINAL EXAMINATION December 15, 2008 University of Kentucky Department of Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely important that you fill in the

More information

Equilibrium. Reversible Reactions. Chemical Equilibrium

Equilibrium. Reversible Reactions. Chemical Equilibrium Equilibrium Reversible Reactions Chemical Equilibrium Equilibrium Constant Reaction Quotient Le Chatelier s Principle Reversible Reactions In most chemical reactions, the chemical reaction can be reversed,

More information

Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions

Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions When a system reaches equilibrium, the [products] and [reactants] remain constant. A + B C + D [5M] [2M] [3M] [1.5M] Rate fwd = Rate rev

More information

Chemistry. Nuclear Chemistry.

Chemistry. Nuclear Chemistry. Chemistry Nuclear Chemistry www.testprepkart.com Table of Content. Equilibrium and its dynamic nature.. hysical equilibrium.. Chemical equilibrium.. Reversible and Irreversible reactions. 5. Law of mass

More information

Review 7: Solubility Equilibria

Review 7: Solubility Equilibria Review 7: Solubility Equilibria Objectives: 1. Be able to write dissociation equations for ionic compounds dissolving in water. 2. Given Ksp, be able to determine the solubility of a substance in both

More information

Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions

Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions Chapter 12: Chemical Equilibrium The Extent of Chemical Reactions When a system reaches equilibrium, the [products] and [reactants] remain constant. A + B C + D [5M] [2M] [3M] [1.5M] Rate fwd = Rate rev

More information

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA?

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA? ch16blank Page 1 Chapter 16: Aqueous ionic equilibrium Topics in this chapter: 1. Buffers 2. Titrations and ph curves 3. Solubility equilibria Buffersresist changes to the ph of a solution. Consider a

More information

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state CHEMISTRY 111 LECTURE EXAM III Material PART 1 CHEMICAL EQUILIBRIUM Chapter 14 I Dynamic Equilibrium I. In a closed system a liquid obtains a dynamic equilibrium with its vapor state Dynamic equilibrium:

More information

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents Slide 1 / 39 AP Chemistry Slide 2 / 39 Equilibrium Part C : Solubility Equilibrium 2014-10-29 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 39 Molar Solubility Calculating

More information

Chemistry 12 August 2007 Form A Provincial Examination Multiple-Choice Key

Chemistry 12 August 2007 Form A Provincial Examination Multiple-Choice Key Chemistry 12 August 2007 Form A Provincial Examination Multiple-Choice Key Cognitive Processes K = Knowledge U = Understanding H = Higher Mental Processes Weightings 11% 78% 11% Question Types 50 = Multiple

More information

Salt Hydrolysis Problems

Salt Hydrolysis Problems Salt Hydrolysis Problems Page 169 Salt Hydrolysis Problems 1) Write the Brønsted-Lowry reaction between the base CN! and the weak acid H 2 O. CN! + H 2 O W HCN + OH! 2) Write the Brønsted-Lowry reaction

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1.

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1. Chemical Equilibrium Equilibrium constant for the reaction: aa + bb + cc + dd + [C ] c [D ] d... equilibrium constant K = [ A] a [B ] b... [] = concentration relative to standard state molarity (M): for

More information

Chem 321 Lecture 11 - Chemical Activities 10/3/13

Chem 321 Lecture 11 - Chemical Activities 10/3/13 Student Learning Objectives Chem 321 Lecture 11 - Chemical Activities 10/3/13 One of the assumptions that has been made in equilibrium calculations thus far has been to equate K to a ratio of concentrations.

More information

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK Chapter 3 3.68 Calculate each of the following quantities: (a) Mass (g) of solute in 185.8 ml of 0.267 M calcium acetate (b) Molarity of 500. ml

More information

Chapter 9. Chemical Equilibrium

Chapter 9. Chemical Equilibrium Chapter 9. Chemical Equilibrium 9.1 The Nature of Chemical Equilibrium -Approach to Equilibrium [Co(H 2 O) 6 ] 2+ + 4 Cl- [CoCl 4 ] 2- + 6 H 2 O Characteristics of the Equilibrium State example) H 2 O(l)

More information

Lower Sixth Chemistry. Sample Entrance Examination

Lower Sixth Chemistry. Sample Entrance Examination Lower Sixth Chemistry Sample Entrance Examination Time allowed: 60 minutes Name: Total : 60 Marks INSTRUCTIONS : Answer all questions Answers should be written in the spaces provided Dictionaries or reference

More information

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +.

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +. 16.1 Acids and Bases: A Brief Review Arrhenius concept of acids and bases: an acid increases [H + ] and a base increases [OH ]. 16.2 BrønstedLowry Acids and Bases In the BrønstedLowry system, a BrønstedLowry

More information

Unit 1 - Foundations of Chemistry

Unit 1 - Foundations of Chemistry Unit 1 - Foundations of Chemistry Chapter 2 - Chemical Reactions Unit 1 - Foundations of Chemistry 1 / 42 2.1 - Chemical Equations Physical and Chemical Changes Physical change: A substance changes its

More information

Chapter 17. Equilibrium

Chapter 17. Equilibrium Chapter 17 Equilibrium collision model (17.1) Chapter 17 Review p.541 Key Terms activation energy (Ea) (17.) catalyst (17.) enzyme (17.) equilibrium (17.3) Chemical equilibrium (17.3) law of chemical equilibrium

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium Equilibrium What is equilibrium? Hebden Unit (page 37 69) Dynamic Equilibrium Hebden Unit (page 37 69) Experiments show that most reactions, when carried out in a closed system, do NOT undergo complete

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

b t u t sta t y con o s n ta t nt

b t u t sta t y con o s n ta t nt Reversible Reactions & Equilibrium Reversible Reactions Reactions are spontaneous if G G is negative. 2H 2 (g) + O 2 (g) 2H 2 O(g) + energy If G G is positive the reaction happens in the opposite direction.

More information

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria E6 Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria Objective! Observe several interesting and colorful chemical reactions that are examples of chemical systems at equilibrium.!

More information

2. Indicators of Chemical Rxns. Abbreviations of State (g) gas (l) liquid (s) solid (aq) aqueous a substance dissolved in water

2. Indicators of Chemical Rxns. Abbreviations of State (g) gas (l) liquid (s) solid (aq) aqueous a substance dissolved in water Unit 6 Chemical Reactions 1. Parts of a Chemical Reaction 2. Indicators of a Chemical Reaction 3. Enthalpy 4. Balancing Chemical Equations 5. Word Equations 6. Classifying Chemical Reactions 7. Predicting

More information

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: EIS-210. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: EIS-210 All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 9 am to 11 am or by appointment. ANNOUNCEMENTS

More information

Chapter 13: Chemical Equilibrium

Chapter 13: Chemical Equilibrium Chapter 13: Chemical Equilibrium 13.1 The Equilibrium Condition Equilibrium: a state in which no observable changes occur H 2 O (l) H 2 O (g) Physical equilibrium: no chemical change. N 2(g) + 3H 2(g)

More information

K eq. b) 4 HCl (g) + O 2(g) 2 H 2 O (g) + 2 Cl 2(g) c) NOCl (g) NO (g) + ½ Cl 2(g) 1. d) Fe 3+ (aq) + SCN (aq) FeSCN 2+ (aq)

K eq. b) 4 HCl (g) + O 2(g) 2 H 2 O (g) + 2 Cl 2(g) c) NOCl (g) NO (g) + ½ Cl 2(g) 1. d) Fe 3+ (aq) + SCN (aq) FeSCN 2+ (aq) Name: 1 Equilibrium Worksheet SOLUTIONS Complete the following questions on a separate piece of paper. 1. Write the uilibrium epression,, for each of the following reactions: a) NO (g) + O (g) NO (g) [

More information

NCEA Chemistry 2.2 Identify Ions AS 91162

NCEA Chemistry 2.2 Identify Ions AS 91162 NCEA Chemistry 2.2 Identify Ions AS 91162 What is this NCEA Achievement Standard? When a student achieves a standard, they gain a number of credits. Students must achieve a certain number of credits to

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 14 REVIEW Acids and Bases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Name the following compounds as acids: a. H 2 SO 4 b. H 2 SO 3 c. H 2 S d. HClO 4 e. hydrogen

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chapter 16 - Principles of Chemical Equilibrium

Chapter 16 - Principles of Chemical Equilibrium Chapter 16 - Principles of Chemical Equilibrium -allreactions are "reversible" - principle of micro-reversibility - the "committed step" - much theory - not always obvious - for some the reverse reaction

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Contents and Concepts Solubility Equilibria 1. The Solubility Product Constant 2. Solubility and the Common-Ion Effect 3. Precipitation Calculations 4. Effect of ph

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 3 Chemical Equilibrium Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

Lect. 2: Chemical Water Quality

Lect. 2: Chemical Water Quality The Islamic University of Gaza Faculty of Engineering Civil Engineering Department M.Sc. Water Resources Water Quality Management (ENGC 6304) Lect. 2: Chemical Water Quality ١ Chemical water quality parameters

More information