AeroFoam: an accurate inviscid compressible solver for aerodynamic applications

Size: px
Start display at page:

Download "AeroFoam: an accurate inviscid compressible solver for aerodynamic applications"

Transcription

1 3 rd OpenFOAM Workshop th July 2008 AeroFoam: an accurate inviscid compressible solver for aerodynamic applications Giulio Romanelli Elisa Serioli Paolo Mantegazza Aerospace Engineering Department Politecnico di Milano

2 Table of contents Introduction 2 Numerical scheme 3 Test problems 4 Work in progress 5 Future work

3 Outline Objective Develop a new accurate inviscid compressible Godunov-type coupled solver for aerodynamic (and aeroelastic) applications in transonic and supersonic regime To begin with OpenFOAM built-in inviscid compressible segregated (with PISO correction) solvers rhosonicfoam, rhopsonicfoam and sonicfoam Previous similar work centralfoam by L. Gasparini: inviscid compressible central (or central-upwind) coupled solver, 2 nd order formulation of Kurganov, Noelle and Petrova (KNP) GASDYN+OpenFOAM D/3D formulation by Dipartimento di Energetica, Politecnico di Milano: inviscid compressible Godunov-type coupled solver, st order Harten, Lax and vanleer (HLL/C) Riemann solver

4 Euler equations Governing equations for time-dependent, compressible, ideal (inviscid µ = 0 and nonconducting κ = 0) fluid flows in coupled, integral, conservative form: β n S = V R Nd V R Nd S inflow S β n n d u dv + f(u) n ds = 0 dt V S u(x, 0) = u 0 (x) u(x S inflow, t) = u b (t) Conservative variables vector and inviscid flux function tensor: ρ ρ m u = m = ρ v f = E t ρe + 2 ρ v 2 m ρ m + P [ I ] m ρ (Et + P ) Polytropic Ideal Gas (PIG) thermodynamic model: γ = C p /C v, R = R u /M

5 FV Framework S h = V h Ω i Ω j Γ ij n ij du i dt + Ω i j= On each Ω i cell: averaged conservative variables vector (2 volumescalarfield, volumevectorfield) U i (t) = u(x, t) dv Ω i Ω i On each Γ ij interface: numerical fluxes vector (2 surfacescalarfield, surfacevectorfield) F ij (t) = Γ ij Γ ij F ij = 0 Targets:? Γ ij f(u) n(x, t) ds On each Ω i cell: cell-centered spatially discretized Euler equations ODE system Monotone and sharp solution N f near discontinuities 2 nd order of accuracy in space in smooth flow regions

6 Monotone numerical fluxes Several Godunov-type monotone st order expressions for the numerical fluxes vector presented in Literature in the form: F ij = F ij (U i, U j ) Approximate Riemann Solver (ARS) Convective Upwind and Split Pressure (CUSP) Implemented in AeroFoam: Harten-Lax-vanLeer (HLL/C) Osher-Solomon (OS) Euler equations rotational invariance From a 3D problem in global reference frame G (X Y Z) to an D equivalent problem in local reference frame L (x y z) R( n G ij) y, v L x, u local solutions U L i = R(bn ij) U G i Y, v Y Ωi z, w nij local fluxes F L ij = F L ij (U L i, U L j ) G X, v X Γij Z, v Z back to global fluxes F G ij = R(bn ij) F L ij

7 Approximate Riemann Solver Roe (98): local linearization at each interface Γ ij of the governing equations and exact solution of the resulting Riemann problem (e.g. D) U j U i u t +  u x = 0 x i Γ ij x j Projected Jacobian matrix evaluated at Roe s intermediate state  = f u bu n ij satisfying the following properties: b A A(U) smoothly as Ui, U j U 2 b A = b R b Λ b R diagonalizable with real eigenvalues and orthogonal eigenvectors 3 consistency: b A (U j U i) = ˆ f(u j) f(u i) bn ij Monotone st order numerical fluxes vector (generalization of upwind method): F ARS ij = f(u i) + f(u j ) n ij 2 2 R Λ R (U j U i )

8 High resolution numerical fluxes Idea: combine a monotone st order numerical flux F I ij (works fine near shocks) and a 2 nd order numerical flux F II ij (works fine in smooth flow regions) by means of a flux-limiter function Φ F HR ij = F I ij + Φ ( F II ij F I ij ) = F I ij + A ij, Implemented in AeroFoam Lax-Wendroff (LW) Jameson-Schmidt-Turkel (JST) Remark To build the antidissipative numerical fluxes vector A ij (U i, U j ; U i, U j ) solutions U i and U j on extended cells Ω i and Ω j are also needed

9 Extended cells connectivity Idea: continue Ω i and Ω j cells along n ij, e.g. Ω j : Ω q B(P j ) = {Ω q P j Ω q } such that = (x q x ij ) (x q x ij ) n ij n ij is minimum Extended cells connectivity data structures (2 labelfield) are initialized in the pre-processing stage with the following algorithms (meshsearch library is used): Ω P i i P Ω i Ω j j 0 Ω j Γ n ij ij 0 A. Incremental search algorithm (works fine on structured meshes) initial guess x A = s A bn ij Ω j : Ω q such that x A Ω q if Ω j Ω j update s A = 2 s A B. Nonincremental search algorithm (works fine on unstructured meshes) x B = s B bn ij where s B = 4 Ω j / Γ ij Ω j : Ω q such that x B Ω q

10 Lax-Wendroff Lax-Wendroff (96): the following antidissipative numerical fluxes vector A ij is added to ARS monotone st order numerical fluxes vector F ARS ij A ij = ( ) 2 R t Λ x j x i Λ 2 W Φ Characteristic variables jump vector W = R (U j U i ) is suitably limited as follows (e.g. vanleer flux limiter): W Φ = W Q + Q W Q + W + ε where the r th element of characteristic variables upwind jump vector reads: Q = Q r = { R r (U j U j ) if λr > 0 R r (U i U i ) if λr 0.

11 Im Introduction Numerical scheme Test problems Work in progress Future work Time discretization Explicit Runge-Kutta method of order p = 2, 3, 4 as a compromise between: computational efficiency memory requirements RK4 RK2 RK Re Remarks only 2 time levels must be stored CFL stability constraint Co max 2.8 CFL stability condition order of accuracy in time 8 {U} (k+) = {U} (k) + t K 6 + K K K 4 6 K = R( t (k), {U} (k) ) >< RK4: K 2 = R t (k) + t 2, {U}(k) + t 2 K K 3 = R t (k) + t 2, {U}(k) + t 2 K 2 >: K 4 = R( t (k) + t, {U} (k) + t K 3 ) O( t 2 ) minimum order of accuracy in time is granted also for nonlinear problems

12 Boundary conditions At each boundary interface Γ ij S h = V h a suitable numerical solution must be set on the fictitious or ghost cells Ω GC j and Ω GC j Ω GC j v ij u ij Ω GC j Ω Ω i n i ij Γ ij S 0 h = V h Characteristic splitting the number of physical boundary conditions N bc equals the number of negative eigenvalues λ r < 0 Physical boundary conditions: N bc primitive variables assigned Numerical boundary conditions: N d +2 N bc primitive variables extrapolated

13 Riemann boundary conditions At asymptotic/external boundary subset S Boundary type Flow type N bc Assigned variables Extrapolated variables S inflow v ij bn ij < 0 S outflow v ij bn ij > 0 Supersonic flow v ij bn ij > c ij ( SupersonicInlet) Subsonic flow v ij bn ij < c ij ( Inlet) Supersonic flow v ij bn ij > c ij ( ExtrapolatedOutlet) Subsonic flow v ij bn ij < c ij ( Outlet) N d + 2 T, v, P N d + T, v P 0 T, v, P T v, P

14 Slip boundary conditions At solid/impermeable boundary subset S body linear extrapolation of solution U GC j and U GC j on ghost cells ΩGC j and Ω GC j set to zero normal velocity component and update conservative variables ṽ j = v j (v j n ij ) n ij Ẽ t j = E t j 2 ρ j v j ρ j ṽ j 2 Generalization: transpiration boundary conditions The geometric and kinematic effects of a given body displacement law s(x, t) (rigid and deformative) can be simulated by means of a transpiration velocity: ṽ j = v j (v j n ij ) n ij + Vn n ij V n = v j n + ṡ n 0 + ṡ n }{{}}{{}}{{} geometric kinematic mixed Mesh is not deformed runtime (expensive) but only in the post-processing stage with the implemented utility showdisplacement (motionsolver library is used)

15 Introduction Numerical scheme Test problems Work in progress Future work Comparison with existing solvers 2D Oblique shock reflection M = 2.9, α = 29 2 M2, P2, T2 v θ θ v2 M, P, T v2 v3 h 3 M3, P3, T3 α α L 4 hexahedral meshes (blockmesh) from Nv = 40 0 to Nv = comparison with exact solution PC AMD GHz, Gbyte RAM rhosonicfoam rhopsonicfoam sonicfoam AeroFoam

16 Comparison with existing solvers Least Squares fit for e h L h e h L [ ] CPUtime [ s ] O(h) rhosonicfoam rhopsonicfoam sonicfoam AeroFoam O(h 2 ) h [ m ] 0 00 rhosonicfoam rhopsonicfoam 0 sonicfoam AeroFoam O(N e ) 0. 2 O(N e ) N e Speedup [ ] Solver A p R h rhosonicfoam rhopsonicfoam sonicfoam AeroFoam rhosonicfoam 6 rhopsonicfoam 5 sonicfoam N e

17 Incompressible limit M = 0.05! 2D Fixed cylinder 5K triangular mesh (Gmsh) comparison with exact solution (potential theory) single iteration CPUtime = 0.09 s 3 2 AeroFoam Exact C p [ ] 0 C p Exact = 4 sin 2 ϑ x/r [ ]

18 NACA 02 airfoil 2D NACA 02 airfoil M = 0.75, α = 4 7K triangular mesh (Gmsh) comparison with FLUENT and experimental data (AGARD 38) single iteration CPUtime = 0.04 s.5 Upper Surface C p [ ] Lower Surface WT -0.5 FLUENT AeroFoam x/c [ ]

19 Thin airfoil 2D Thin airfoil (t/c = 0.) M = 0.5, 0.7,.0,.2 vertical step gust v g/v = tan( ) 7K triangular mesh (Gmsh) comparison with exact solution (Bisplinghoff) single iteration CPUtime = 0.04 s.6.6 C L/α /2π [ ] M =0.7 M =0.5 C L/α /2π [ ] M =.0 M = Exact AeroFoam τ [ ] 0.6 Exact AeroFoam τ [ ]

20 ONERA M6 wing () cr = m 0.44 cr y x ΛLE = 30 b =.96 m M = ΛTE = 5.8 c ct = m 3D ONERA M6 wing M = 0.84, α = K tetrahedral mesh (GAMBIT) comparison with FLUENT and experimental data (AGARD 38) single iteration CPUtime = 3.48 s

21 ONERA M6 wing (2).5 y/b = y/b = 0.95 C p [ ] Upper Surface Lower Surface -0.5 WT FLUENT AeroFoam x/c [ ] C p [ ] Upper Surface Lower Surface -0.5 WT FLUENT AeroFoam x/c [ ]

22 RAE A wing + body () L =.928 m xw = m xo = m cr = m R(x) Ro = m Λ c/2 = 30 x ϕ c xb =0.760 m Rb=Ro/2 b = m 3D RAE A wing + body M = 0.9, α = 500K tetrahedral mesh (GAMBIT) comparison with FLUENT and experimental data (AGARD 38) single iteration CPUtime = 4.52 s ct = m

23 RAE A wing + body (2) ϕ = Upper Surface y/b = C p [ ] ϕ = 5 C p [ ] 0 Lower Surface -0.6 WT -0.8 FLUENT Body AeroFoam x/l [ ] -0.5 WT FLUENT Wing AeroFoam x/c [ ]

24 Pitching NACA 64A0 airfoil 0.5 2D NACA 64A0 airfoil M = 0.796, α = ±., k = ωc/2v = K triangular mesh (Gmsh) comparison with Flo3xx and experimental data (AGARD 702) single iteration CPUtime = 0.02 s Cycling to limit cycle C L [ ] WT Flo3xx AeroFoam α [ ]

25 Introduction Numerical scheme Test problems Work in progress Future work YF-7 fighter High AoA LEX vortex flow M = 0.28, α = K tetrahedral mesh (Gmsh) comparison with numerical and experimental data q/q

26 AGARD wing Aeroelastic transonic flutter boundary fluid-structure interaction (FSI) M = 0.678, 0.960,.40, α = 0 50K tetrahedral mesh (GAMBIT) comparison with numerical and experimental data (Langley TDT) Flutter index [ ] Experimental CFL3D EDGE FLUENT AeroFoam M = Mode n M [ ]

27 Future work Numerical scheme fully implicit time integration scheme (template for LDUmatrix class needed) runtime mesh deformation and ALE formulation (dynamicmesh library) parallelization Physical models thermodynamic model of real reacting gas mixture in thermo-chemical equilibrium (important for hypersonic flows) viscous numerical fluxes and turbulence models (e.g. Spalart-Allmaras) More 3D test problems (e.g. Piaggio P-80, Apollo reentry capsule)

28 References Numerical scheme M. Feistauer, J. Felcman and I. Straškraba. Mathematical and Computational Methods for Compressible Flow. Oxford University Press, 2003 R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser Verlag, 992 Test problems R. L. Bisplinghoff, H. Ashley and R. L. Halfman. Aeroelasticity. Dover, 996 Various Authors. Experimental Data Base for Computer Program Assessment. AGARD Advisory Report 38, 979 S. S. Davies and G. N. Malcolm. Experimental Unsteady Aerodynamics of Conventional and Supercritical Airfoils. NASA Tech. Memorandum 822, 980

Finite volume method on unstructured grids

Finite volume method on unstructured grids Finite volume method on unstructured grids Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

Solution Algorithms for Viscous Flow

Solution Algorithms for Viscous Flow Solution Algorithms for Viscous Flow Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA Indian Institute of Science Bangalore, India September 20, 2004 Flo3xx Computational

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

Deforming Composite Grids for Fluid Structure Interactions

Deforming Composite Grids for Fluid Structure Interactions Deforming Composite Grids for Fluid Structure Interactions Jeff Banks 1, Bill Henshaw 1, Don Schwendeman 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,

More information

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

More information

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay Dipartimento di Ingegneria Industriale, Università di Bergamo CERMICS-ENPC

More information

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544 MULTIGRID CALCULATIONS FOB. CASCADES Antony Jameson and Feng Liu Princeton University, Princeton, NJ 0544 1. Introduction Development of numerical methods for internal flows such as the flow in gas turbines

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy Antony Jameson 1 1 Thomas V. Jones Professor of Engineering Department of Aeronautics and Astronautics Stanford University

More information

Comparison of Approximate Riemann Solvers

Comparison of Approximate Riemann Solvers Comparison of Approximate Riemann Solvers Charlotte Kong May 0 Department of Mathematics University of Reading Supervisor: Dr P Sweby A dissertation submitted in partial fulfilment of the requirement for

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers R. Sanchez 1, D. Thomas 2, R. Palacios 1, V. Terrapon 2 1 Department of Aeronautics, Imperial College London 2 Department

More information

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations Hao Li Math Dept, Purdue Univeristy Ocean University of China, December, 2017 Joint work with

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 43 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Treatment of Boundary Conditions These slides are partially based on the recommended textbook: Culbert

More information

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws

A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws S. Jaisankar, S. V. Raghurama Rao CFD Centre, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India-56 Abstract

More information

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch Transport equation cavitation models in an unstructured flow solver Kilian Claramunt, Charles Hirsch SHF Conference on hydraulic machines and cavitation / air in water pipes June 5-6, 2013, Grenoble, France

More information

Compressible Navier-Stokes (Euler) Solver based on Deal.II Library

Compressible Navier-Stokes (Euler) Solver based on Deal.II Library Compressible Navier-Stokes (Euler) Solver based on Deal.II Library Lei Qiao Northwestern Polytechnical University Xi an, China Texas A&M University College Station, Texas Fifth deal.ii Users and Developers

More information

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations NASA/CR-1998-208741 ICASE Report No. 98-51 Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations David L. Darmofal Massachusetts Institute of Technology, Cambridge,

More information

41st AIAA Aerospace Sciences Meeting and Exhibit January 6 9, 2003/Reno, NV

41st AIAA Aerospace Sciences Meeting and Exhibit January 6 9, 2003/Reno, NV AIAA 3 267 Calculation of Unsteady Transonic Flow by an Euler Method with Small Perturbation Boundary Conditions C. Gao, S. Luo, F. Liu Department of Mechanical and Aerospace Engineering University of

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

Mixing-Plane Method for Flutter Computation in Multi-stage Turbomachines

Mixing-Plane Method for Flutter Computation in Multi-stage Turbomachines 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-862 Mixing-Plane Method for Flutter Computation in Multi-stage

More information

On Numerical Simulation of Flow Problems by Discontinuous Galerkin and Finite Volume Techniques

On Numerical Simulation of Flow Problems by Discontinuous Galerkin and Finite Volume Techniques On Numerical Simulation of Flow Problems by Discontinuous Galerkin and Finite Volume Techniques Ondřej Winter 1, Petr Sváček 1 1 CTU in Prague, Faculty of Mechanical Engineering, Department of Technical

More information

A NONLINEAR HARMONIC BALANCE METHOD FOR THE CFD CODE OVERFLOW 2

A NONLINEAR HARMONIC BALANCE METHOD FOR THE CFD CODE OVERFLOW 2 IFASD-2009-050 A NONLINEAR HARMONIC BALANCE METHOD FOR THE CFD CODE OVERFLOW 2 Chad H. Custer 1, Jeffrey P. Thomas 2, Earl H. Dowell 3, and Kenneth C. Hall 4 Duke University Mechanical Engineering & Materials

More information

Reduced order model of three-dimensional Euler equations using proper orthogonal decomposition basis

Reduced order model of three-dimensional Euler equations using proper orthogonal decomposition basis Journal of Mechanical Science and Technology 24 (2) (2010) 601~608 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-010-0106-0 Reduced order model of three-dimensional Euler equations using proper

More information

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering - University

More information

Gas Dynamics Equations: Computation

Gas Dynamics Equations: Computation Title: Name: Affil./Addr.: Gas Dynamics Equations: Computation Gui-Qiang G. Chen Mathematical Institute, University of Oxford 24 29 St Giles, Oxford, OX1 3LB, United Kingdom Homepage: http://people.maths.ox.ac.uk/chengq/

More information

FLUTTER PREDICTION IN THE TRANSONIC FLIGHT REGIME WITH THE γ-re θ TRANSITION MODEL

FLUTTER PREDICTION IN THE TRANSONIC FLIGHT REGIME WITH THE γ-re θ TRANSITION MODEL 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Entropy stable schemes for compressible flows on unstructured meshes

Entropy stable schemes for compressible flows on unstructured meshes Entropy stable schemes for compressible flows on unstructured meshes Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore deep@math.tifrbng.res.in http://math.tifrbng.res.in/

More information

CapSel Roe Roe solver.

CapSel Roe Roe solver. CapSel Roe - 01 Roe solver keppens@rijnh.nl modern high resolution, shock-capturing schemes for Euler capitalize on known solution of the Riemann problem originally developed by Godunov always use conservative

More information

Force analysis of underwater object with supercavitation evolution

Force analysis of underwater object with supercavitation evolution Indian Journal of Geo-Marine Sciences Vol. 42(8), December 2013, pp. 957-963 Force analysis of underwater object with supercavitation evolution B C Khoo 1,2,3* & J G Zheng 1,3 1 Department of Mechanical

More information

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS 1 / 36 HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS Jesús Garicano Mena, E. Valero Sánchez, G. Rubio Calzado, E. Ferrer Vaccarezza Universidad

More information

PRECONDITIONING METHODS FOR IDEAL AND MULTIPHASE FLUID FLOWS. Ashish Gupta. W. Roger Briley

PRECONDITIONING METHODS FOR IDEAL AND MULTIPHASE FLUID FLOWS. Ashish Gupta. W. Roger Briley PRECONDITIONING METHODS FOR IDEAL AND MULTIPHASE FLUID FLOWS By Ashish Gupta Approved: Kidambi Sreenivas Research Professor of Computational Engineering Chairperson) W. Roger Briley Professor of Computational

More information

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics Eleuterio R Toro Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction With 223 Figures Springer Table of Contents Preface V 1. The Equations of Fluid Dynamics 1 1.1 The Euler

More information

Lecture 5.7 Compressible Euler Equations

Lecture 5.7 Compressible Euler Equations Lecture 5.7 Compressible Euler Equations Nomenclature Density u, v, w Velocity components p E t H u, v, w e S=c v ln p - c M Pressure Total energy/unit volume Total enthalpy Conserved variables Internal

More information

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x CapSel Euler - 01 The Euler equations keppens@rijnh.nl conservation laws for 1D dynamics of compressible gas ρ t + (ρ v) x = 0 m t + (m v + p) x = 0 e t + (e v + p v) x = 0 vector of conserved quantities

More information

Adjoint code development and optimization using automatic differentiation (AD)

Adjoint code development and optimization using automatic differentiation (AD) Adjoint code development and optimization using automatic differentiation (AD) Praveen. C Computational and Theoretical Fluid Dynamics Division National Aerospace Laboratories Bangalore - 560 037 CTFD

More information

Relevant self-assessment exercises: [LIST SELF-ASSESSMENT EXERCISES HERE]

Relevant self-assessment exercises: [LIST SELF-ASSESSMENT EXERCISES HERE] Chapter 6 Finite Volume Methods In the previous chapter we have discussed finite difference methods for the discretization of PDEs. In developing finite difference methods we started from the differential

More information

Capability of CFD-tools for supersonic multiphase flows

Capability of CFD-tools for supersonic multiphase flows OpenFOAM Capability of CFD-tools for supersonic multiphase flows by József Nagy and Michael Harasek Simulations for both multiphase flows and supersonic single phased flows are well known, however the

More information

International Engineering Research Journal

International Engineering Research Journal Special Edition PGCON-MECH-7 Development of high resolution methods for solving D Euler equation Ms.Dipti A. Bendale, Dr.Prof. Jayant H. Bhangale and Dr.Prof. Milind P. Ray ϯ Mechanical Department, SavitribaiPhule

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm

How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm AIAA 2 2673 How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm Antony Jameson Stanford University Stanford, CA 9435 D. A. Caughey

More information

Journal of Computational Physics

Journal of Computational Physics Journal of Computational Physics 8 (9) 77 798 Contents lists available at ScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp A central Rankine Hugoniot solver

More information

Extension to moving grids

Extension to moving grids Extension to moving grids P. Lafon 1, F. Crouzet 2 & F. Daude 1 1 LaMSID - UMR EDF/CNRS 2832 2 EDF R&D, AMA April 3, 2008 1 Governing equations Physical coordinates Generalized coordinates Geometrical

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Matthew McMullen and Antony Jameson and Juan J. Alonso Dept. of Aeronautics & Astronautics Stanford University

More information

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Appendices A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Eq.(3.11), can be found in the literature [9,172,173] and are therefore

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL M. SADEGHI AND F. LIU Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975,

More information

Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration

Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration Claudio Marongiu, Renato Tognaccini 2 CIRA, Italian Center for Aerospace Research, Capua (CE), Italy E-mail: c.marongiu@cira.it

More information

SIMULATION OF UNSTEADY TURBOMACHINERY FLOWS USING AN IMPLICITLY COUPLED NONLINEAR HARMONIC BALANCE METHOD

SIMULATION OF UNSTEADY TURBOMACHINERY FLOWS USING AN IMPLICITLY COUPLED NONLINEAR HARMONIC BALANCE METHOD Proceedings of ASME Turbo Expo 2011 GT2011 June 6-10, 2011, ancouver, Canada GT2011-46367 SIMULATION OF UNSTEADY TURBOMACHINERY FLOWS USING AN IMPLICITLY COUPLED NONLINEAR HARMONIC BALANCE METHOD Jonathan

More information

Unsteady Flow Computation Using a Harmonic Balance Approach Implemented about the OVERFLOW 2 Flow Solver

Unsteady Flow Computation Using a Harmonic Balance Approach Implemented about the OVERFLOW 2 Flow Solver 9th AIAA Computational Fluid Dynamics Conference // June 22-25, 2009, San Antonio, Texas Unsteady Flow Computation Using a Harmonic Balance Approach Implemented about the OVERFLOW 2 Flow Solver Jeffrey

More information

The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy

The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy Antony Jameson Stanford University Aerospace Computing Laboratory Report ACL 007 January

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations p.1/50

Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations p.1/50 Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations Matthew McMullen Advisor: Antony Jameson Co-advisor: Juan Alonso Sponsor: Accelerated Strategic Computing Initiative

More information

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Aerodynamic Resonance in Transonic Airfoil Flow J. Nitzsche, R. H. M. Giepman Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Source: A. Šoda, PhD thesis, 2006 Slide 2/39 Introduction

More information

Divergence Formulation of Source Term

Divergence Formulation of Source Term Preprint accepted for publication in Journal of Computational Physics, 2012 http://dx.doi.org/10.1016/j.jcp.2012.05.032 Divergence Formulation of Source Term Hiroaki Nishikawa National Institute of Aerospace,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

Is My CFD Mesh Adequate? A Quantitative Answer

Is My CFD Mesh Adequate? A Quantitative Answer Is My CFD Mesh Adequate? A Quantitative Answer Krzysztof J. Fidkowski Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan January 26, 2011 K.J. Fidkowski (UM) GDRC 2011

More information

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models 0-0 Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program, University of Washington, Seattle,

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 9 Finite Volume method II 9.1. Outline of Lecture Conservation property of Finite Volume method Apply FVM to

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

Antony Jameson. AIAA 18 th Computational Fluid Dynamics Conference

Antony Jameson. AIAA 18 th Computational Fluid Dynamics Conference Energy Estimates for Nonlinear Conservation Laws with Applications to Solutions of the Burgers Equation and One-Dimensional Viscous Flow in a Shock Tube by Central Difference Schemes Antony Jameson AIAA

More information

Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells

Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells Abstract We present a shock capturing procedure for high order Discontinuous Galerkin methods, by which shock regions are refined in sub-cells and treated by finite volume techniques Hence, our approach

More information

Solution Algorithms for High-Speed Viscous Flows Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA

Solution Algorithms for High-Speed Viscous Flows Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA Solution Algorithms for High-Speed Viscous Flows Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA 13 th Conference on Finite Element for Flow Problems University

More information

FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH DYNAMICAL EFFECTS

FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH DYNAMICAL EFFECTS Proceedings of Czech Japanese Seminar in Applied Mathematics 2004 August 4-7, 2004, Czech Technical University in Prague http://geraldine.fjfi.cvut.cz pp. 63 72 FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH

More information

Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme

Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme Oren Peles and Eli Turkel Department of Applied Mathematics, Tel-Aviv University In memoriam of

More information

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014 Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing. Lakhdar Remaki

CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing. Lakhdar Remaki CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing Lakhdar Remaki Outline What we doing in CFD? CFD in Industry Shock-filter model for mesh adaptation

More information

Procedia Computer Science. Volume 66, 2015, Pages YSC th International Young Scientists Conference on Computational Science

Procedia Computer Science. Volume 66, 2015, Pages YSC th International Young Scientists Conference on Computational Science Procedia Computer Science Volume 66, 2015, Pages 43 52 YSC 2015. 4th International Young Scientists Conference on Computational Science Adaptation of Kurganov-Tadmor Numerical Scheme For Applying in Combination

More information

Discontinuous Galerkin methods Lecture 2

Discontinuous Galerkin methods Lecture 2 y y RMMC 2008 Discontinuous Galerkin methods Lecture 2 1 Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu y 1 0.75 0.5 0.25 0-0.25-0.5-0.75 y 0.75-0.0028-0.0072-0.0117 0.5-0.0162-0.0207-0.0252

More information

GT UNSTEADY SIMULATION OF A TWO-STAGE COOLED HIGH PRESSURE TURBINE USING AN EFFICIENT NON-LINEAR HARMONIC BALANCE METHOD

GT UNSTEADY SIMULATION OF A TWO-STAGE COOLED HIGH PRESSURE TURBINE USING AN EFFICIENT NON-LINEAR HARMONIC BALANCE METHOD Proceedings of ASME Turbo Expo 213: Turbine Technical Conference and Exposition GT213 June 3-7, 213, San Antonio, Texas, USA GT213-94574 UNSTEADY SIMULATION OF A TWO-STAGE COOLED HIGH PRESSURE TURBINE

More information

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra Semi-discrete central schemes for balance laws. Application to the Broadwell model. Alexander Kurganov * *Department of Mathematics, Tulane University, 683 St. Charles Ave., New Orleans, LA 708, USA kurganov@math.tulane.edu

More information

RANS Solutions Using High Order Discontinuous Galerkin Methods

RANS Solutions Using High Order Discontinuous Galerkin Methods RANS Solutions Using High Order Discontinuous Galerkin Methods Ngoc Cuong Nguyen, Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 2139, U.S.A. We present a practical

More information

Numerical and mathematical analysis of a five-equation model for two-phase flow

Numerical and mathematical analysis of a five-equation model for two-phase flow SINTEF Energy Research Master s Thesis PFE-Master Numerical and mathematical analysis of a five-equation model for two-phase flow Author Pedro José Martínez Ferrer Supervisors Svend Tollak Munkejord Tore

More information

Large Time Step Scheme Behaviour with Different Entropy Fix

Large Time Step Scheme Behaviour with Different Entropy Fix Proceedings of the Paistan Academy of Sciences: A. Physical and Computational Sciences 53 (): 13 4 (016) Copyright Paistan Academy of Sciences ISSN: 0377-969 (print), 306-1448 (online) Paistan Academy

More information

Local Preconditioning for Low Mach-number Aerodynamic Flow Simulation with a Steady Compressible Navier-Stokes Flow Solver

Local Preconditioning for Low Mach-number Aerodynamic Flow Simulation with a Steady Compressible Navier-Stokes Flow Solver Local Preconditioning for Low Mach-number Aerodynamic Flow Simulation with a Steady Compressible Navier-Stokes Flow Solver Kurt Sermeus and Eric Laurendeau Advanced Aerodynamics Department Bombardier Aerospace

More information

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS JOHN A. TRANGENSTEIN Department of Mathematics, Duke University Durham, NC 27708-0320 Ш CAMBRIDGE ЩР UNIVERSITY PRESS Contents 1 Introduction

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 59 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS The Finite Volume Method These slides are partially based on the recommended textbook: Culbert B.

More information

Verification Study of a CFD-RANS Code for Turbulent Flow at High Reynolds Numbers

Verification Study of a CFD-RANS Code for Turbulent Flow at High Reynolds Numbers Verification Study of a CFD-RANS Code for Turbulent Flow at High Reynolds Numbers Omer Musa, Zhou Changshen, Chen Xiong, and Li Yingkun Abstract This article surveys the verification and validation methods

More information

Incompressible Flow Solver by Means of Pseudo-Compressibility Method

Incompressible Flow Solver by Means of Pseudo-Compressibility Method Incompressible Flow Solver by Means of Pseudo-Compressibility Method Árpád Veress Department of Aircraft and Ships Budapest University of Technology and Economics H Budapest, Sztoczek u. 6. J. ép., Hungary

More information

TAU Solver Improvement [Implicit methods]

TAU Solver Improvement [Implicit methods] TAU Solver Improvement [Implicit methods] Richard Dwight Megadesign 23-24 May 2007 Folie 1 > Vortrag > Autor Outline Motivation (convergence acceleration to steady state, fast unsteady) Implicit methods

More information

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of Conservation Laws Sirui Tan and Chi-Wang Shu 3 Abstract We develop a high order finite difference numerical boundary condition for solving

More information

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows: Topic 7 Fluid Dynamics Lecture The Riemann Problem and Shock Tube Problem A simple one dimensional model of a gas was introduced by G.A. Sod, J. Computational Physics 7, 1 (1978), to test various algorithms

More information

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms Future Generation Computer Systems () 65 7 Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms R. Naidoo a,b, S. Baboolal b, a Department

More information

Parallel Computation of Forced Vibration for A Compressor Cascade

Parallel Computation of Forced Vibration for A Compressor Cascade 44th AIAA Aerospace Sciences Meeting and Exhibit 9-2 January 26, Reno, Nevada AIAA 26-628 AIAA Paper 26-628 Parallel Computation of Forced Vibration for A Compressor Cascade Zongjun Hu and Gecheng Zha

More information

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel Conference Applications of Mathematics 1 in honor of the th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 1 STEADY AND UNSTEADY D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS

More information

A finite-volume algorithm for all speed flows

A finite-volume algorithm for all speed flows A finite-volume algorithm for all speed flows F. Moukalled and M. Darwish American University of Beirut, Faculty of Engineering & Architecture, Mechanical Engineering Department, P.O.Box 11-0236, Beirut,

More information

Length Learning Objectives Learning Objectives Assessment

Length Learning Objectives Learning Objectives Assessment Universidade Federal Fluminense PGMEC Course: Advanced Computational Fluid Dynamics Coordinator: Vassilis Theofilis Academic Year: 2018, 2 nd Semester Length: 60hrs (48hrs classroom and 12hrs tutorials)

More information