Chapter 2: Statics of Particles

Size: px
Start display at page:

Download "Chapter 2: Statics of Particles"

Transcription

1 CE297-A09-Ch2 Page 1 Wednesday, August 26, :18 AM Chapter 2: Statics of Particles orces as Vectors & Resultants orces are drawn as directed arrows. The length of the arrow represents the magnitude of the force and the arrow shows its direction. orces on rigid bodies further have a line of action. orces (and in general all vectors) follow the parallelogram law of vector addition. In fact, vectors are defined as quantities that follow the parallelogram law. Q R R = P + Q P Vector addition is represented by the same symbol + The meaning of plus will be clear from the context it is used in. Note: Vector addition is independent of any chosen coordinate system. Two vectors are equal if they have the same magnitude and direction. ' The negative of a vector is simply - denoted by arrow of the same size in the opposite direction. + (-) = 0 - -

2 CE297-A09-Ch2 Page 2 Wednesday, August 26, :05 AM Addition of Vectors, orce resultants Vector Addition Parallelogram law: Commutative property P + Q = Q + P = R Vector Addition Triangle law (tip-to-tail): Derives from the parallelogram law. Subtraction of a vector from another vector: (Addition of the negative vector) P - Q = P + (-Q) Alternatively Addition of multiple vectors Associative property P + Q + S = (P + Q) + S = P + (Q + S) = S + Q + P

3 CE297-A09-Ch2 Page 3 Alternatively Using tip-to-tail rule (Polygon Law): Product of a scalar & a vector "Scales" the length of the vector. Compare 1, 2 and 3. scalar vector Similarly

4 riday, August 28, :21 AM CE297-A09-Ch2 Page 4

5 CE297-A09-Ch2 Page 5 riday, August 28, :02 AM Examples Read Example 2.1 in book. Exercise 2.1 P = 75 N Q = 125 N Determine the resultant using (1) Parallelogram Law, (2) Triangle Rule, (3) Trigonometry. A A Using trigonometry A B C Using the cosine Law :- solving:

6 Now using Sine Law: CE297-A09-Ch2 Page 6

7 CE297-A09-Ch2 Page 7 riday, August 28, :08 AM 2.6 Resolving orces into Components Reverse process of vector addition. Split a force into two (or more) components. Given, ind P and Q? = P + Q Many Possibilities Special cases: One component (say P) is known: The line of action of both components is known

8 CE297-A09-Ch2 Page 8 riday, August 28, :14 AM Example 2.2 in book: 5000 lb (1) If α=45, then find T1 and T2 (2) The value of α for which T2 is minimum. (1) (2) In class exercise.

9 CE297-A09-Ch2 Page 9 Thursday, August 27, :19 PM 2.7 Rectangular Components of Vectors; Unit vectors or ease in mathematical manipulation, forces (and vectors) can be resolved into rectangular components along predefined x, y (and z) directions. y y y' y' x' x x x' = x + y = x' + y' One can choose any coordinate system [O, i, j, k] and resolve forces and vectors along these directions. j j' i' i, j, (and k) are unit vectors. (magnitude =1) O i O' Note: i' = cosθ i + sinθ j j' = - sinθ i + cosθ j i' cosθ sinθ i j' - sinθ cosθ j Useful in converting one coordinate system to another. Using the unit vectors: y y x = x i y = y j x = x + y = x i + y j x Vector Unit Vector (Direction) Scalar (Magnitude) x = cosθ y = sinθ Examples Read examples 1, 2 & 3 in section 2.7 of the book.

10 CE297-A09-Ch2 Page 10 Exercise 2.21 Determine the x, y components of the 3 forces. (i) Note: Similarly solve for the other two forces Addition of forces in x-y components The vector sum of two or more forces can be obtained by Resolving each force into x-y components Simply adding the individual components

11 CE297-A09-Ch2 Page 11 where Example Read example 2.3 in book. Exercise 2.36 Tension in BC = 725 N. Determine the resultant of the 3 forces at B. Note:

12 CE297-A09-Ch2 Page 12 Thus the resultant is: Equilibrium of a Particle; ree Body Diagrams If the resultant of all the forces acting on a particle is zero, the particle is said to be in equilibrium. R = Σ = 0 Σ x = 0 ; Σ y = 0 Recall, Newton's 1st Law. Choose the particle judiciously. REE BODY DIAGRAMS A diagram showing all the forces acting on a particle or an object.

13 CE297-A09-Ch2 Page 13 In 2 dimensions, we have two equations of equilibrium, thus the maximum number of unknowns we can solve for is two. Examples: Unloading a truck. A Read Examples 2.4, 2.5 and 2.6 in book. Exercise 2.46: Determine T AC and T BC

14 CE297-A09-Ch2 Page 14 Tuesday, September 01, :44 PM Pulleys The tension on both sides of a frictionless pulley is the same (under Equilibrium). T T T T T T Exercise 2.65 ind P for equilibrium. We wave to consider the free body diagrams of all the "particles" in the system here.

15 CE297-A09-Ch2 Page 15 Monday, August 31, :24 AM orces (and Vectors) in 3-Dimensional Space Unit vectors in space. scalar = x i + y j + z k Unit vector A force in 3-dimensional space can be represented with the angles φ and θ that it makes with the x-axis and the vertical axis respectively. Vector Note:

16 CE297-A09-Ch2 Page 16 Example: Consider the force shown: Direction Cosines Example: or the example shown above in figure 1:

17 CE297-A09-Ch2 Page 17 General 3-dimensional Unit Vector A general 3-D unit vector can be used to represent the line of action of a 3-D force. λ = cos θ x i + cos θ y j + cos θ Z k = λ λ Example or the example in figure 1: λ = i j k = 10 λ N Addition of forces (vectors) in 3-D space Simply add the x, y, and z components. R = Σ 2.15 Equilibrium of Particles in 3D Space R = Σ = 0 Σ x = 0 ; Σ y = 0 ; Σ z = 0 Note: 3 Independent equations. Thus 3 unknowns can be solved for. Example 2.7 in book

18 riday, September 04, :22 AM CE297-A09-Ch2 Page 18

19 CE297-A09-Ch2 Page 19 riday, September 04, :47 AM Example ree body diagram of point O:

20 CE297-A09-Ch2 Page 20

21 CE297-A09-Ch2 Page 21 riday, September 04, :00 PM In Class Assignment 2: Side View: Top View: ind: (i) Is the pole OD in "tension" or "compression". (ii) Magnitude of the force in the pole OD. Consider point O: Choose x, y, z such that "y" is vertical; and 1h is in the (-) "x" direction. Note: This is an arbitrary choice. You may choose a different x, y, z, and the result will be the same. Resolving the 3 forces into "vertical" and "horizontal" components, rather than x, y, z. Each of the 3 triangles will be "similar".

22 CE297-A09-Ch2 Page 22 On the x-z plane: ree body diagram of the pole:

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics

CE 201 Statics. 2 Physical Sciences. Rigid-Body Deformable-Body Fluid Mechanics Mechanics Mechanics CE 201 Statics 2 Physical Sciences Branch of physical sciences 16 concerned with the state of Mechanics rest motion of bodies that are subjected to the action of forces Rigid-Body Deformable-Body Fluid

More information

MECHANICS. Prepared by Engr. John Paul Timola

MECHANICS. Prepared by Engr. John Paul Timola MECHANICS Prepared by Engr. John Paul Timola MECHANICS a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces. subdivided

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

Ishik University / Sulaimani Civil Engineering Department. Chapter -2-

Ishik University / Sulaimani Civil Engineering Department. Chapter -2- Ishik University / Sulaimani Civil Engineering Department Chapter -- 1 orce Vectors Contents : 1. Scalars and Vectors. Vector Operations 3. Vector Addition of orces 4. Addition of a System of Coplanar

More information

2.1 Scalars and Vectors

2.1 Scalars and Vectors 2.1 Scalars and Vectors Scalar A quantity characterized by a positive or negative number Indicated by letters in italic such as A e.g. Mass, volume and length 2.1 Scalars and Vectors Vector A quantity

More information

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University T E CHAPTER 1 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: Introduction John Chen California Polytechnic State University! Contents

More information

Engineering Mechanics: Statics in SI Units, 12e Force Vectors

Engineering Mechanics: Statics in SI Units, 12e Force Vectors Engineering Mechanics: Statics in SI Units, 1e orce Vectors 1 Chapter Objectives Parallelogram Law Cartesian vector form Dot product and angle between vectors Chapter Outline 1. Scalars and Vectors. Vector

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

Introduction to Engineering Mechanics

Introduction to Engineering Mechanics Introduction to Engineering Mechanics Statics October 2009 () Introduction 10/09 1 / 19 Engineering mechanics Engineering mechanics is the physical science that deals with the behavior of bodies under

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

Chapter 2 Statics of Particles. Resultant of Two Forces 8/28/2014. The effects of forces on particles:

Chapter 2 Statics of Particles. Resultant of Two Forces 8/28/2014. The effects of forces on particles: Chapter 2 Statics of Particles The effects of forces on particles: - replacing multiple forces acting on a particle with a single equivalent or resultant force, - relations between forces acting on a particle

More information

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Vectors a vector is a quantity that has both a magnitude (size) and a direction Vectors In physics, a vector is a quantity that has both a magnitude (size) and a direction. Familiar examples of vectors include velocity, force, and electric field. For any applications beyond one dimension,

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Today After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a vector (only right triangles) Add and subtract

More information

Static Equilibrium. University of Arizona J. H. Burge

Static Equilibrium. University of Arizona J. H. Burge Static Equilibrium Static Equilibrium Definition: When forces acting on an object which is at rest are balanced, then the object is in a state of static equilibrium. - No translations - No rotations In

More information

a Particle Forces the force. of action its sense is of application. Experimen demonstra forces ( P Resultant of Two Note: a) b) momentum)

a Particle Forces the force. of action its sense is of application. Experimen demonstra forces ( P Resultant of Two Note: a) b) momentum) Chapter 2 : Statics of a Particle 2.2 Force on a Particle: Resultant of Two Forces Recall, force is a vector quantity whichh has magnitude and direction. The direction of the the force. force is defined

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

Force Vectors and Static Equilibrium

Force Vectors and Static Equilibrium Force Vectors 1 Force Vectors and Static Equilibrium Overview: In this experiment you will hang weights from pulleys over the edge of a small round force table, to exert various forces on a metal ring

More information

Chapter 2: Force Vectors

Chapter 2: Force Vectors Chapter 2: Force Vectors Chapter Objectives To show how to add forces and resolve them into components using the Parallelogram Law. To express force and position in Cartesian vector form and explain how

More information

11.8 Vectors Applications of Trigonometry

11.8 Vectors Applications of Trigonometry 00 Applications of Trigonometry.8 Vectors As we have seen numerous times in this book, Mathematics can be used to model and solve real-world problems. For many applications, real numbers suffice; that

More information

Units are important anyway

Units are important anyway Ch. 1 Units -- SI System (length m, Mass Kg and Time s). Dimensions -- First check of Mathematical relation. Trigonometry -- Cosine, Sine and Tangent functions. -- Pythagorean Theorem Scalar and Vector

More information

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j General comments: closed book and notes but optional one page crib sheet allowed. STUDY: old exams, homework and power point lectures! Key: make sure you can solve your homework problems and exam problems.

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

MEE224: Engineering Mechanics Lecture 4

MEE224: Engineering Mechanics Lecture 4 Lecture 4: Structural Analysis Part 1: Trusses So far we have only analysed forces and moments on a single rigid body, i.e. bars. Remember that a structure is a formed by and this lecture will investigate

More information

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction CHAPTER ENT 151 STATICS Lecture Notes: Azizul bin Mohamad KUKUM Statics of Particles Contents Introduction Resultant of Two Forces Vectors Addition of Vectors Resultant of Several Concurrent Forces Sample

More information

Please Visit us at:

Please Visit us at: IMPORTANT QUESTIONS WITH ANSWERS Q # 1. Differentiate among scalars and vectors. Scalars Vectors (i) The physical quantities that are completely (i) The physical quantities that are completely described

More information

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head Vectors The study of motion involves the introduction of a variety of quantities which are used to describe the physical world. Examples of such quantities include distance, displacement, speed, velocity,

More information

scalar and - vector - - presentation SCALAR AND VECTOR

scalar and - vector - - presentation SCALAR AND VECTOR http://www.slideshare.net/fikrifadzal/chapter-14scalar-and-vector- and presentation SCLR ND VECTOR Scalars Scalars are quantities which have magnitude without directioni Examples of scalars temperaturere

More information

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4 Lecture 1, Sections ST1.1 ST2.4 ST1.1-ST1.2) Introduction ST1.3) Units of Measurements ST1.4) The International System (SI) of Units ST1.5) Numerical Calculations ST1.6) General Procedure of Analysis ST2.1)

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

Chapter 8 Vectors and Scalars

Chapter 8 Vectors and Scalars Chapter 8 193 Vectors and Scalars Chapter 8 Vectors and Scalars 8.1 Introduction: In this chapter we shall use the ideas of the plane to develop a new mathematical concept, vector. If you have studied

More information

ARCH 614 Note Set 2 S2011abn. Forces and Vectors

ARCH 614 Note Set 2 S2011abn. Forces and Vectors orces and Vectors Notation: = name for force vectors, as is A, B, C, T and P = force component in the direction = force component in the direction h = cable sag height L = span length = name for resultant

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors orces and Vectors Notation: = name for force vectors, as is A, B, C, T and P = force component in the direction = force component in the direction R = name for resultant vectors R = resultant component

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

Section 8.2 Vector Angles

Section 8.2 Vector Angles Section 8.2 Vector Angles INTRODUCTION Recall that a vector has these two properties: 1. It has a certain length, called magnitude 2. It has a direction, indicated by an arrow at one end. In this section

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To show how to add forces and resolve them into components using the Parallelogram Law. To express force and position in Cartesian vector form and explain how to determine the vector

More information

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar J. Peraire Dynamics 16.07 Fall 2004 Version 1.1 REVIEW - Vectors By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making

More information

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics As we have already discussed, the study of the rules of nature (a.k.a. Physics) involves both

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 3 Equilibrium of a Particle 1 Chapter Objectives Concept of the free-body diagram for a particle Solve particle equilibrium problems using the equations

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Vector is a quantity which has both magnitude and direction. We will use the arrow to designate vectors.

Vector is a quantity which has both magnitude and direction. We will use the arrow to designate vectors. In this section, we will study the fundamental operations (addition, resolving vectors into components) of force vectors. Vector is a quantity which has both magnitude and direction. We will use the arrow

More information

(arrows denote positive direction)

(arrows denote positive direction) 12 Chapter 12 12.1 3-dimensional Coordinate System The 3-dimensional coordinate system we use are coordinates on R 3. The coordinate is presented as a triple of numbers: (a,b,c). In the Cartesian coordinate

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering- 2016 Engineering Mechanics Statics 2. Force Vectors; Operations on Vectors Dr. Rami Zakaria MECHANICS, UNITS, NUMERICAL CALCULATIONS & GENERAL PROCEDURE FOR ANALYSIS Today

More information

Name. MECH 223 Engineering Statics. Midterm 1, February 24 th 2015

Name. MECH 223 Engineering Statics. Midterm 1, February 24 th 2015 1 Name MECH 223 Engineering Statics Midterm 1, February 24 th 2015 Question 1 (20 + 5 points) (a) (5 points) Form the vector products B C and B C (where B = B ) and use the result to prove the identity

More information

ME 201 Engineering Mechanics: Statics. Final Exam Review

ME 201 Engineering Mechanics: Statics. Final Exam Review ME 201 Engineering Mechanics: Statics inal Exam Review inal Exam Testing Center (Proctored, 1 attempt) Opens: Monday, April 9 th Closes : riday, April 13 th Test ormat 15 Problems 10 Multiple Choice (75%)

More information

Statics deal with the condition of equilibrium of bodies acted upon by forces.

Statics deal with the condition of equilibrium of bodies acted upon by forces. Mechanics It is defined as that branch of science, which describes and predicts the conditions of rest or motion of bodies under the action of forces. Engineering mechanics applies the principle of mechanics

More information

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Start Chapter 1 1 the goal of this course is to develop your ability

More information

Grade 12 Precalculus 3 rd Nine Weeks Pacing Guide

Grade 12 Precalculus 3 rd Nine Weeks Pacing Guide Week 1 (1/ 4-6) Week 2 (1/9-13) Week 3 (1/16-20) 2016-2017 Grade 12 3 rd Nine Weeks Pacing Guide Review content prerequisites. 26. [F-TF.10] Determine the amplitude, period, phase shift, domain, and range

More information

The Study of Concurrent Forces with the Force Table

The Study of Concurrent Forces with the Force Table The Study of Concurrent Forces with the Force Table Apparatus: Force table with 4 pulleys, centering ring and string, 50 g weight hangers, slotted weights, protractors, and rulers. Discussion: The force

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 3 Equilibrium of a Particle Chapter Objectives To introduce the concept of the free-body diagram for a particle To show how to solve particle equilibrium

More information

STATICS. Statics of Particles VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Statics of Particles VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Statics of Particles Lecture Notes: J. Walt Oler Teas Tech Universit Contents Introduction Resultant

More information

Vectors in Two Dimensions

Vectors in Two Dimensions Vectors in Two Dimensions Introduction In engineering, phsics, and mathematics, vectors are a mathematical or graphical representation of a phsical quantit that has a magnitude as well as a direction.

More information

Simplified Structural Analysis and Design for Architects

Simplified Structural Analysis and Design for Architects Simplified Structural Analysis and Design for Architects Second Edition Rima Taher, PhD, PE New Jersey Institute of Technology Bassim Hamadeh, CEO and Publisher Kassie Graves, Director of Acquisitions

More information

ME 101: Engineering Mechanics

ME 101: Engineering Mechanics ME 101: Engineering Mechanics Rajib Kumar Bhattacharjya Department of Civil Engineering Indian Institute of Technology Guwahati M Block : Room No 005 : Tel: 2428 www.iitg.ernet.in/rkbc ME101: Division

More information

ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division

ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division ES226 (01) Engineering Mechanics: Statics Spring 2018 Lafayette College Engineering Division Exam 1 Study Guide Exam 1: Tuesday, February 6, 2018 7:30 to 8:30pm Kirby Room 104 Exam Format: 50 minute time

More information

Lecture 2: Vector-Vector Operations

Lecture 2: Vector-Vector Operations Lecture 2: Vector-Vector Operations Vector-Vector Operations Addition of two vectors Geometric representation of addition and subtraction of vectors Vectors and points Dot product of two vectors Geometric

More information

two loads, forces and vectors ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture ARCH 614

two loads, forces and vectors ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2017 lecture two y x z loads, forces and vectors Forces 1 Structural Design planning preliminary structural configuration

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces 2-9. The plate is subjected to the forces acting on members A and B as shown. If θ 60 o, determine the magnitude of the resultant of these forces and its direction measured clockwise from the positie x

More information

Unit 5 Forces I- Newtonʼ s First & Second Law

Unit 5 Forces I- Newtonʼ s First & Second Law Unit 5 orces I- Newtonʼ s irst & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, riction, Applied orce)

More information

Determine the angle θ between the two position vectors.

Determine the angle θ between the two position vectors. -100. Determine the angle θ between the two position vectors. -105. A force of 80 N is applied to the handle of the wrench. Determine the magnitudes of the components of the force acting along the axis

More information

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below:

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below: Vectors Extending the concepts of kinematics into two and three dimensions, the idea of a vector becomes very useful. By definition, a vector is a quantity with both a magnitude and a spatial direction.

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors

Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors Motion in two dimensions must use vectors and vector diagrams. Vector Representation: tail head magnitude (size): given by the length

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 2 Force Vectors 1 Chapter Objectives Parallelogram Law Cartesian vector form Dot product and an angle between two vectors 2 Chapter Outline 1. Scalars and

More information

xvi xxiii xxvi Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7

xvi xxiii xxvi Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7 About the Author v Preface to the Instructor xvi WileyPLUS xxii Acknowledgments xxiii Preface to the Student xxvi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real

More information

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Vectors 9.1 Introduction In engineering, frequent reference is made to physical quantities, such as force, speed and time. For example, we talk of the speed of a car, and the force in

More information

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Exercise Solutions for Introduction to 3D Game Programming with DirectX 10 Frank Luna, September 6, 009 Solutions to Part I Chapter 1 1. Let u = 1, and v = 3, 4. Perform the following computations and

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk Vector Operations Vector Operations ME 202 Multiplication by a scalar Addition/subtraction Scalar multiplication (dot product) Vector multiplication (cross product) 1 2 Graphical Operations Component Operations

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 1 Review the Course Outline and Class Schedule Go through

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS PRINCIPLES OF STTICS Statics is the study of how forces act and react on rigid bodies which are at rest or not in motion. This study is the basis for the engineering principles, which guide the design

More information

Physics 170 Lecture 2. Phys 170 Lecture 2 1

Physics 170 Lecture 2. Phys 170 Lecture 2 1 Physics 170 Lecture 2 Phys 170 Lecture 2 1 Phys 170 Lecture 2 2 dministrivia Registration issues? Web page issues? On Connect? http://www.physics.ubc.ca/~mattison/courses/phys170 Mastering Engineering

More information

AP Physics C Mechanics Vectors

AP Physics C Mechanics Vectors 1 AP Physics C Mechanics Vectors 2015 12 03 www.njctl.org 2 Scalar Versus Vector A scalar has only a physical quantity such as mass, speed, and time. A vector has both a magnitude and a direction associated

More information

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books.

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books. Vectors A Vector has Two properties Magnitude and Direction. That s a weirder concept than you think. A Vector does not necessarily start at a given point, but can float about, but still be the SAME vector.

More information

Pin-Jointed Frame Structures (Frameworks)

Pin-Jointed Frame Structures (Frameworks) Pin-Jointed rame Structures (rameworks) 1 Pin Jointed rame Structures (rameworks) A pin-jointed frame is a structure constructed from a number of straight members connected together at their ends by frictionless

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

Exercises on Newton s Laws of Motion

Exercises on Newton s Laws of Motion Exercises on Newton s Laws of Motion Problems created by: Raditya 1. A pendulum is hanging on a ceiling of a plane which is initially at rest. When the plane prepares to take off, it accelerates with a

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanics Lecture : Statics of particles Ahma Shahei Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.b, shakil6791@gmail.com Website: teacher.buet.ac.b/sshakil

More information

EQUILIBRIUM OF RIGID BODIES

EQUILIBRIUM OF RIGID BODIES EQUILIBRIUM OF RIGID BODIES Equilibrium A body in equilibrium is at rest or can translate with constant velocity F = 0 M = 0 EQUILIBRIUM IN TWO DIMENSIONS Case where the force system acting on a rigid

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

MECHANICS. MRS KL FALING Grade 11 Physical Science

MECHANICS. MRS KL FALING Grade 11 Physical Science MECHANICS MRS KL FALING Grade 11 Physical Science Revision from grade 10 Fill in the missing words A quantity can be either a scalar or a. Examples of scalars are,, and. A vector quantity is only fully

More information

Physics, Chapter 3: The Equilibrium of a Particle

Physics, Chapter 3: The Equilibrium of a Particle University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 3: The Equilibrium of a Particle

More information

Brief Review of Vector Algebra

Brief Review of Vector Algebra APPENDIX Brief Review of Vector Algebra A.0 Introduction Vector algebra is used extensively in computational mechanics. The student must thus understand the concepts associated with this subject. The current

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Spring 2018 Lecture 28 Exam Review

Spring 2018 Lecture 28 Exam Review Statics - TAM 210 & TAM 211 Spring 2018 Lecture 28 Exam Review Announcements Concept Inventory: Ungraded assessment of course knowledge Extra credit: Complete #1 or #2 for 0.5 out of 100 pt of final grade

More information

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions Introduction 1.1 Introduction Stress analysis is an important part of engineering science, as failure of most engineering components is usually due to stress. The component under a stress investigation

More information

Mechanics: Scalars and Vectors

Mechanics: Scalars and Vectors Mechanics: Scalars and Vectors Scalar Onl magnitude is associated with it Vector e.g., time, volume, densit, speed, energ, mass etc. Possess direction as well as magnitude Parallelogram law of addition

More information

MAT 1339-S14 Class 8

MAT 1339-S14 Class 8 MAT 1339-S14 Class 8 July 28, 2014 Contents 7.2 Review Dot Product........................... 2 7.3 Applications of the Dot Product..................... 4 7.4 Vectors in Three-Space.........................

More information