Previously on GLT. Basic technologies. Lexical analysis. Basic technologies ASF+SDF. Concepts of programming languages

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Previously on GLT. Basic technologies. Lexical analysis. Basic technologies ASF+SDF. Concepts of programming languages"

Transcription

1 Prevously on GLT Generc Lnguge Technology: Bsc technologes Pro.dr. Mrk vn den Brnd ASF+SDF syntx descrptons semntc descrptons: type checkng nlyss trnsormtons t so to s Concepts o progrmmng lnguges syntctc ssues semntc ssues Met modelng nd model trnsormtons / Fcultet Wskunde en Inormtc PAGE 1 Bsc technologes Syntctcl nlyss Prser genertors Rewrte engnes Tsks nd orgnzton o lexcl nlyzer Speccton o lexcl tokens v regulr expressons Implementton o regulr expressons (non-)determnstc nte utomt trnslton o regulr expresson to utomton / Fcultet Wskunde en Inormtc PAGE 2 / Fcultet Wskunde en Inormtc PAGE 3

2 progrm text (chrcters) Syntctcl nlyss prse tree Tsks o the lexcl nlyzer: redng the nput nd producton o tokens elmnton o lyout nd comments keepng trck o poston normton Lexcl nlyzer get next token token Prser Symol tle / Fcultet Wskunde en Inormtc PAGE 4 / Fcultet Wskunde en Inormtc PAGE 5 A regulr expresson (r.e.) r over n lphet Σ corresponds to the lnguge L(r) 1. s r.e. nd corresponds to {} 2. Σ s r.e. nd corresponds to {} 3. Suppose r nd s re r.e. s correspondng to the lnguges L(r) nd L(s). lterntve (r) (s) s r.e. L(r) L(s). conctenton (r) (s) s r.e. L(r) L(s) c. Kleene closure (r)* s r.e. (L(r))* d. rckets (r) s r.e. L(r) Opertors re let-ssoctve nd prortes re * > conctenton > A regulr denton over lphet Σ hs the orm: re 1 -> d 1 re 2 -> d 2 re n -> d n where d re derent nmes nd ech re s r.e. over lphet Σ {d 1, d 2,, d -1 } Thus, n re occur only nmes whch re lredy dened / Fcultet Wskunde en Inormtc PAGE 6 / Fcultet Wskunde en Inormtc PAGE 7

3 A regulr expresson cn e compled nto nte utomton (FA = nte utomton) whch s recognzer or the correspondng regulr lnguge A nte utomton s non-determnstc severl derent trnstons re possle or one nput symol n stte (NFA) There re two possle wys o trnsormng r.e. nto determnstc nte utomton: 1. r.e. NFA DFA 2. re r.e. DFA The generted DFA hs to e optmzed Otherwse the nte utomton s determnstc (DFA) / Fcultet Wskunde en Inormtc PAGE 8 / Fcultet Wskunde en Inormtc PAGE 9 Non-determnstc nte utomton conssts o: 1. Set o sttes S 2. Input lphet Σ 3. Trnston uncton whch tkes stte/symol pr nd yelds set o new sttes 4. The strt stte s 0 S 5. A set F o cceptng sttes Exmple: S = {0,1,2,3} Σ = {, } S 0 = 0 F = {3} Ths utomton ccepts: ( )* Trnston uncton: Stte 0 {0,1} {0} 1 {2} 2 {3} / Fcultet Wskunde en Inormtc PAGE 10 / Fcultet Wskunde en Inormtc PAGE 11

4 Trnstons my lso e lelled wth NFA ccepts strng x There exsts pth n the trnston dgrm rom strt to nl stte such tht the conctenton o the lels on the pth equl x For exmple s ccepted y the prevous NFA Pth: Lels: = The regulr expresson s: * * / Fcultet Wskunde en Inormtc PAGE 12 / Fcultet Wskunde en Inormtc PAGE 13 Regulr expresson NFA Input: regulr expresson r over lphet Σ Output: NFA N whch ccepts L(r) 1. r = 2. r = where Σ 1. Suppose N(s) nd N(t) re NFAs or the r.e. s nd t. r = s t. r=st N(s) N(s) N(t) N(t) Ths operton s only possle the nl stte o N(s) hs no outgong trnstons nd the strt stte o N(t) hs no ncomng trnstons / Fcultet Wskunde en Inormtc PAGE 14 / Fcultet Wskunde en Inormtc PAGE 15

5 c. r = s* N(s) d. r =(s) thenn(r) =N(s) Converson NFA DFA Regulr expresson cn e trnsormed nto NFAs DFAs cn e smulted/mplemented ecently Trnsormton o NFA nto DFA: construct DFA where ech stte represents suset o the sttes o the sttes o the NFA ter redng the nput 1 2 n the NFA s n set o sttes T, whch corresponds to one stte o the DFA / Fcultet Wskunde en Inormtc PAGE 16 / Fcultet Wskunde en Inormtc PAGE 17 Auxlry unctons: -closure(s) yelds set o NFA sttes rechle rom stte s n NFA v -trnstons only -closure(t) yelds set o NFA sttes rechle rom stte s n T v -trnstons only move(t, ) yelds set o NFA sttes rechle rom stte s n T v nput Intlly, -closure(s 0 ) s the only stte n Dsttes nd unmrked whle there s n unmrked stte T n Dsttes do mrk T; or ech nput symol do U := -closure(move(t, )) U s not n Dsttes then dd U s n unmrked stte to Dsttes; end Dtrns[T,] := U; end end / Fcultet Wskunde en Inormtc PAGE 18 / Fcultet Wskunde en Inormtc PAGE 19

6 Suset constructon (Rn & Scott) NFA = (Q, V, γ, q 0, F) NFA N or ( )* Equvlent DFA = (P(Q), V, δ, {q 0 }, F ) ) δ P(Q) V P(Q) δ(qq, ) ) = ( q:q qq : γ(q, ( )) F = {qq P(Q) qq F } δ({q 0 }, w) = set o ll sttes n whch the orgnl NFA cn e ter processng strng w / Fcultet Wskunde en Inormtc PAGE 20 / Fcultet Wskunde en Inormtc PAGE 21 A = {0, 1, 4, 5, 7} (= -closure(0)) B = {1, 2, 3, 4, 6, 7, 8} (= move({0, 1, 4, 5, 7}, )) C = {1, 2, 4, 5, 6, 7} (= move({0, 1, 4, 5, 7}, )) D = {1,2,4,5,6,7,9}(= move({1, 2, 3, 4, 6, 7, 8}, )) E = {1, 2, 4, 5, 6, 7, 10} (= move({1, 2, 3, 4, 6, 7, 9}, )) Resultng DFA A B D E Trnston tle stte A B C B B D C B C D B E E B C C / Fcultet Wskunde en Inormtc PAGE 22 / Fcultet Wskunde en Inormtc PAGE 23

7 LEX s scnner genertor whch trnsorms regulr expressons nto nte utomton: r.e. NFA re 0 {cton 0 } re 1 {cton 1 } 0 0 re k {cton k } strt F = { 0,, k } NFA DFA cceptng sttes hve the orm {,,,,, c, } wth correspondng cton: cton mn(,,c) k k Resoluton o mgutes Longest mtch s preerred I two lterntves recognze the sme sequence o chrcters, the lterntve occurrng rst n the speccton s chosen BEGIN [sym := egnsym] IF [sym := sym] letter.(letter dgt)* [sym := dsym] dgt.(dgt)* [sym := ntrepsym] := [sym := ecomessym] / Fcultet Wskunde en Inormtc PAGE 24 / Fcultet Wskunde en Inormtc PAGE 25 Syntctcl nlyss Syntctcl nlyss Context-ree grmmrs Dervtons Prse Trees Let-recursve grmmrs Top-down prsng non-recursve predctve prsers constructon o prse tles Bottom-up prsng sht/reduce prsers LR prsers GLR prsers SGLR prsers A context-ree grmmr s 4-tuple G = (N, Σ, P, S) 1. N s set o non termnls 2. Σ s set o termnls (dsjont rom N) 3. P s suset o (N Σ)* N An element (α, A) P s clled producton A ::= α or α A 4. S N s the strt symol The sets N, Σ, P re nte / Fcultet Wskunde en Inormtc PAGE 26 / Fcultet Wskunde en Inormtc PAGE 27

8 Syntctcl nlyss Syntctcl nlyss A context-ree grmmr cn e consder s smple rewrte system: A A P (,, (N Σ)*, A N) Exmple N = {E}, Σ = {+,*,(,),-, }, S = E, P = { E + E E E * E E ( E ) E - E E E} } Dervton: E -E -(E) -(E+E) -(+E) -(+) The lnguge L(G) generted y the context-ree grmmr G = (N, Σ, P, S) s: L(G) = {w Σ* S + w} A sentence w L(G) contns only termnls A sententl orm s strng o termnls nd nontermnls whch cn e derved rom S: S * wth (N Σ) * A sentence n L(G) s sententl orm n whch no non-termnls occur / Fcultet Wskunde en Inormtc PAGE 28 / Fcultet Wskunde en Inormtc PAGE 29 Syntctcl nlyss Syntctcl nlyss Let/rght dervtons There re choces to e mde or ech dervton step: whch non-termnl must e replced? whch lterntve o the selected non-termnl must e ppled? Alwys selectng the letmost non-termnl n the sententl orm gves letmost dervton: lm There exsts lso rghtmost dervton: rm Consder the context-ree grmmr or expressons: Letmost dervton or -(+) E -E -(E) -(E+E) -(+E) -(+) Rghtmost t dervton or -(+) E -E -(E) -(E+E) -(E+) -(+) A prse tree or context-ree grmmr s G = (N, Σ, P, S) tree: 1. The root s leled wth S (the strt non-termnl) 2. Ech le s leled wth termnl ( Σ)or 3. All other nodes re leled wth non-termnl I A s the lel o node nd X 1,,X n re the lels o the chldren (rom let to rght) then X 1,,X n A must e producton rule n G (wth X s ether termnl or non-termnl) Specl cse: A wth lel A whch hs exctly one chld wth lel / Fcultet Wskunde en Inormtc PAGE 30 / Fcultet Wskunde en Inormtc PAGE 31

9 Syntctcl nlyss Syntctcl nlyss Exmple: E -E -(E) -(E+E) -(+E) -(+) E E E E E E E - E - E - E - E - E - E ( E ) ( E ) ( E ) ( E ) ( E ) E + E E + E E + E The prse tree strcts rom the dervton order Acceptor nd prser For ech grmmr G there exsts decson procedure (cceptor) AG or L(G): AG: STRING {true, lse} such tht AG(w) =true w L(G) A prser s n cceptor whch constructs prse tree s well. A top-down prser constructs the tree strtng rom the root A ottom-up prser constructs the tree strtng rom the les / Fcultet Wskunde en Inormtc PAGE 32 / Fcultet Wskunde en Inormtc PAGE 33

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-* Regulr Expressions (RE) Regulr Expressions (RE) Empty set F A RE denotes the empty set Opertion Nottion Lnguge UNIX Empty string A RE denotes the set {} Alterntion R +r L(r ) L(r ) r r Symol Alterntion

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt From Regulr Expressions to NFA- Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb. CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch.

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch. Overview H9 Vertlerouw H 9: Prsing: op-down & LL(1) do 3 mei 2001 56 heo Ruys h. 8 - Prsing 8.1 ontext-free Grmmrs 8.2 op-down Prsing 8.3 LL(1) Grmmrs See lso [ho, Sethi & Ullmn 1986] for more thorough

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck. Outline Automt Theory 101 Rlf Huuck Introduction Finite Automt Regulr Expressions ω-automt Session 1 2006 Rlf Huuck 1 Session 1 2006 Rlf Huuck 2 Acknowledgement Some slides re sed on Wolfgng Thoms excellent

More information

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1 CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

More information

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016 CS125 Lecture 12 Fll 2016 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple

More information

3 Regular expressions

3 Regular expressions 3 Regulr expressions Given n lphet Σ lnguge is set of words L Σ. So fr we were le to descrie lnguges either y using set theory (i.e. enumertion or comprehension) or y n utomton. In this section we shll

More information

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA Nondeterminism Nondeterministic Finite Automt Nondeterminism Subset Construction A nondeterministic finite utomton hs the bility to be in severl sttes t once. Trnsitions from stte on n input symbol cn

More information

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.

More information

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints) C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,

More information

1 From NFA to regular expression

1 From NFA to regular expression Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1 Chpter 1, Prt 1 Regulr Lnguges CSC527, Chpter 1, Prt 1 c 2012 Mitsunori Ogihr 1 Finite Automt A finite utomton is system for processing ny finite sequence of symols, where the symols re chosen from finite

More information

State Minimization for DFAs

State Minimization for DFAs Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

More information

input tape head moves current state

input tape head moves current state CPS 140 - Mthemticl Foundtions of CS Dr. Susn Rodger Section: Finite Automt (Ch. 2) (lecture notes) Things to do in clss tody (Jn. 13, 2004): ffl questions on homework 1 ffl finish chpter 1 ffl Red Chpter

More information

8 Automata and formal languages. 8.1 Formal languages

8 Automata and formal languages. 8.1 Formal languages 8 Automt nd forml lnguges This exposition ws developed y Clemens Gröpl nd Knut Reinert. It is sed on the following references, ll of which re recommended reding: 1. Uwe Schöning: Theoretische Informtik

More information

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata CSC4510 AUTOMATA 5.1 Definitions nd Exmples 5.2 Deterministic Pushdown Automt Definitions nd Exmples A lnguge cn be generted by CFG if nd only if it cn be ccepted by pushdown utomton. A pushdown utomton

More information

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language. Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Normal Forms for Context-free Grammars

Normal Forms for Context-free Grammars Norml Forms for Context-free Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171--178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S

More information

Formal Languages and Automata Theory. D. Goswami and K. V. Krishna

Formal Languages and Automata Theory. D. Goswami and K. V. Krishna Forml Lnguges nd Automt Theory D. Goswmi nd K. V. Krishn Novemer 5, 2010 Contents 1 Mthemticl Preliminries 3 2 Forml Lnguges 4 2.1 Strings............................... 5 2.2 Lnguges.............................

More information

Prefix-Free Regular-Expression Matching

Prefix-Free Regular-Expression Matching Prefix-Free Regulr-Expression Mthing Yo-Su Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST Prefix-Free Regulr-Expression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings

More information

7 Automata and formal languages. 7.1 Formal languages

7 Automata and formal languages. 7.1 Formal languages 7 Automt nd forml lnguges This exposition ws developed by Clemens Gröpl nd Knut Reinert. It is bsed on the following references, ll of which re recommended reding: 1. Uwe Schöning: Theoretische Informtik

More information

Lecture 9: LTL and Büchi Automata

Lecture 9: LTL and Büchi Automata Lecture 9: LTL nd Büchi Automt 1 LTL Property Ptterns Quite often the requirements of system follow some simple ptterns. Sometimes we wnt to specify tht property should only hold in certin context, clled

More information

Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Prefix-Free Subsets of Regular Languages and Descriptional Complexity Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek Jurj Šeej DCFS 2015 Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek, Jurj Šeej 1/22 Outline Mximl

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 330 Forml Methods nd Models Dn Richrds, section 003, George Mson University, Fll 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 7 1. Prove (p q) (p q), () (5pts) using truth tles. p q

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

The University of Nottingham

The University of Nottingham The University of Nottinghm SCHOOL OF COMPUTR SCINC AND INFORMATION TCHNOLOGY A LVL 1 MODUL, SPRING SMSTR 2004-2005 MACHINS AND THIR LANGUAGS Time llowed TWO hours Cndidtes must NOT strt writing their

More information

Recursively Enumerable and Recursive. Languages

Recursively Enumerable and Recursive. Languages Recursively Enumerble nd Recursive nguges 1 Recll Definition (clss 19.pdf) Definition 10.4, inz, 6 th, pge 279 et S be set of strings. An enumertion procedure for Turing Mchine tht genertes ll strings

More information

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4 Semnti nlysis SI 16 Priniples of Progrmming Lnguges Fulty of omputer Siene Dlhousie University Winter 2012 Reding: hpter 4 Motivtion Soure progrm (hrter strem) Snner (lexil nlysis) Front end Prse tree

More information

CSCI FOUNDATIONS OF COMPUTER SCIENCE

CSCI FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 My 7, 2015 2 Announcements Homework 9 is due now. Some finl exm review problems will be posted on the web site tody. These re prcqce problems not

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Domino Recognizability of Triangular Picture Languages

Domino Recognizability of Triangular Picture Languages Interntionl Journl of Computer Applictions (0975 8887) Volume 57 No.5 Novemer 0 Domino Recognizility of ringulr icture Lnguges V. Devi Rjselvi Reserch Scholr Sthym University Chenni 600 9. Klyni Hed of

More information

Where did dynamic programming come from?

Where did dynamic programming come from? Where did dynmic progrmming come from? String lgorithms Dvid Kuchk cs302 Spring 2012 Richrd ellmn On the irth of Dynmic Progrmming Sturt Dreyfus http://www.eng.tu.c.il/~mi/cd/ or50/1526-5463-2002-50-01-0048.pdf

More information

On Determinisation of History-Deterministic Automata.

On Determinisation of History-Deterministic Automata. On Deterministion of History-Deterministic Automt. Denis Kupererg Mich l Skrzypczk University of Wrsw YR-ICALP 2014 Copenhgen Introduction Deterministic utomt re centrl tool in utomt theory: Polynomil

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms Preview Greed Algorithms Greed Algorithms Coin Chnge Huffmn Code Greed lgorithms end to e simple nd strightforwrd. Are often used to solve optimiztion prolems. Alws mke the choice tht looks est t the moment,

More information

Nondeterministic Biautomata and Their Descriptional Complexity

Nondeterministic Biautomata and Their Descriptional Complexity Nondeterministic Biutomt nd Their Descriptionl Complexity Mrkus Holzer nd Sestin Jkoi Institut für Informtik Justus-Lieig-Universität Arndtstr. 2, 35392 Gießen, Germny 23. Theorietg Automten und Formle

More information

The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-order Pushdown Automata

The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-order Pushdown Automata The Cucl Hierrchy of Infinite Grphs in Terms of Logic nd Higher-order Pushdown Automt Arnud Cryol 1 nd Stefn Wöhrle 2 1 IRISA Rennes, Frnce rnud.cryol@iris.fr 2 Lehrstuhl für Informtik 7 RWTH Achen, Germny

More information

General idea LR(0) SLR LR(1) LALR To best exploit JavaCUP, should understand the theoretical basis (LR parsing);

General idea LR(0) SLR LR(1) LALR To best exploit JavaCUP, should understand the theoretical basis (LR parsing); Bottom up prsing Generl ide LR(0) SLR LR(1) LLR To best exploit JvCUP, should understnd the theoreticl bsis (LR prsing); 1 Top-down vs Bottom-up Bottom-up more powerful thn top-down; Cn process more powerful

More information

Lesson Notes: Week 40-Vectors

Lesson Notes: Week 40-Vectors Lesson Notes: Week 40-Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples

More information

Automata for Analyzing and Querying Compressed Documents Barbara FILA, LIFO, Orl eans (Fr.) Siva ANANTHARAMAN, LIFO, Orl eans (Fr.) Rapport No

Automata for Analyzing and Querying Compressed Documents Barbara FILA, LIFO, Orl eans (Fr.) Siva ANANTHARAMAN, LIFO, Orl eans (Fr.) Rapport No Automt for Anlyzing nd Querying Compressed Documents Brr FILA, LIFO, Orléns (Fr.) Siv ANANTHARAMAN, LIFO, Orléns (Fr.) Rpport N o 2006-03 Automt for Anlyzing nd Querying Compressed Documents Brr Fil, Siv

More information

Resources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations

Resources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations Introduction: Binding Prt of 4-lecture introduction Scheduling Resource inding Are nd performnce estimtion Control unit synthesis This lecture covers Resources nd resource types Resource shring nd inding

More information

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that us. Introducton he us s the nverse of the us,.e., () Snce we now tht nd therefore then I V () V I () V I (4) So us reltes the nodl current njectons to the nodl voltges, s seen n (4). In developng the power

More information

State Complexity of Union and Intersection of Binary Suffix-Free Languages

State Complexity of Union and Intersection of Binary Suffix-Free Languages Stte Complexity of Union nd Intersetion of Binry Suffix-Free Lnguges Glin Jirásková nd Pvol Olejár Slovk Ademy of Sienes nd Šfárik University, Košie 0000 1111 0000 1111 Glin Jirásková nd Pvol Olejár Binry

More information

Looking for All Palindromes in a String

Looking for All Palindromes in a String Looking or All Plindromes in String Shih Jng Pn nd R C T Lee Deprtment o Computer Science nd Inormtion Engineering, Ntionl Chi-Nn University, Puli, Nntou Hsien,, Tiwn, ROC sjpn@lgdoccsiencnuedutw, rctlee@ncnuedutw

More information

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS 3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

More information

General Algorithms for Testing the Ambiguity of Finite Automata

General Algorithms for Testing the Ambiguity of Finite Automata Generl Algorithms for Testing the Amiguity of Finite Automt Cyril Alluzen 1,, Mehryr Mohri 2,1, nd Ashish Rstogi 1, 1 Google Reserch, 76 Ninth Avenue, New York, NY 10011. 2 Cournt Institute of Mthemticl

More information

Good-for-Games Automata versus Deterministic Automata.

Good-for-Games Automata versus Deterministic Automata. Good-for-Gmes Automt versus Deterministic Automt. Denis Kuperberg 1,2 Mich l Skrzypczk 1 1 University of Wrsw 2 IRIT/ONERA (Toulouse) Séminire MoVe 12/02/2015 LIF, Luminy Introduction Deterministic utomt

More information

On Decentralized Observability of Discrete Event Systems

On Decentralized Observability of Discrete Event Systems 2011 50th IEEE Conference on Decision nd Control nd Europen Control Conference (CDC-ECC) Orlndo, FL, USA, Decemer 12-15, 2011 On Decentrlized Oservility of Discrete Event Systems M.P. Csino, A. Giu, C.

More information

On NFA reductions. N6A 5B7, London, Ontario, CANADA ilie 2 Department of Computer Science, University of Chile

On NFA reductions. N6A 5B7, London, Ontario, CANADA ilie 2 Department of Computer Science, University of Chile On NFA reductions Lucin Ilie 1,, Gonzlo Nvrro 2, nd Sheng Yu 1, 1 Deprtment of Computer Science, University of Western Ontrio N6A 5B7, London, Ontrio, CANADA ilie syu@csd.uwo.c 2 Deprtment of Computer

More information

Hierarchy of pushdown graphs

Hierarchy of pushdown graphs Hierrchy o pushdown grphs Didier Cucl CNRS / LIGM University Pris- Est Frnce The hierrchy o pushdown grphs recursive trnsition grphs Corresponding hierrchies o lnguges, terms, ordinls, ininite words higher

More information

Informed learners DRAFT. Understanding is compression, comprehension is compression! Greg Chaitin (Chaitin, 2007)

Informed learners DRAFT. Understanding is compression, comprehension is compression! Greg Chaitin (Chaitin, 2007) 12 Informed lerners Understnding is compression, comprehension is compression! Greg Chitin (Chitin, 2007) Compro. Hl de un juego donde ls regls no sen l líne de slid, sino el punto de llegd No? Arturo

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Type Theory. Coinduction in Type Theory. Andreas Abel. Department of Computer Science and Engineering Chalmers and Gothenburg University

Type Theory. Coinduction in Type Theory. Andreas Abel. Department of Computer Science and Engineering Chalmers and Gothenburg University Type Theory Coinduction in Type Theory Andres Ael Deprtment of Computer Science nd Engineering Chlmers nd Gothenurg University Type Theory Course CM0859 (2017-1) Universidd EAFIT, Medellin, Colomi 6-10

More information

Finite Automata and Regular languages

Finite Automata and Regular languages Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation CS2N: The Coming Revolution in Computer Architecture Lortory 2 Preprtion Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

1 Exercises about introductory part

1 Exercises about introductory part 1 Exercises out introductory prt 1. Pigeonhole Principle sys: If you hve more pigeons thn pigeonholes, nd ech pigeon ies into some pigeonhole, then there must e t lest one hole tht hs more thn one pigeon.

More information

Learning Goals. Relational Query Languages. Formal Relational Query Languages. Formal Query Languages: Relational Algebra and Relational Calculus

Learning Goals. Relational Query Languages. Formal Relational Query Languages. Formal Query Languages: Relational Algebra and Relational Calculus Forml Query Lnguges: Reltionl Alger nd Reltionl Clculus Chpter 4 Lerning Gols Given dtse ( set of tles ) you will e le to express dtse query in Reltionl Alger (RA), involving the sic opertors (selection,

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Numerical Integration

Numerical Integration Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture

More information

ON THE DETERMINIZATION OF WEIGHTED FINITE AUTOMATA

ON THE DETERMINIZATION OF WEIGHTED FINITE AUTOMATA To pper in SIAM Journl on Computing c SIAM 000 ON THE DETERMINIZATION OF WEIGHTED FINITE AUTOMATA ADAM L. BUCHSBAUM, RAFFAELE GIANCARLO, AND JEFFERY R. WESTBROOK Astrct. We study the prolem of constructing

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Semantic Reachability. Richard Mayr. Institut fur Informatik. Technische Universitat Munchen. Arcisstr. 21, D Munchen, Germany E. N. T. C. S.

Semantic Reachability. Richard Mayr. Institut fur Informatik. Technische Universitat Munchen. Arcisstr. 21, D Munchen, Germany E. N. T. C. S. URL: http://www.elsevier.nl/locte/entcs/volume6.html?? pges Semntic Rechbility Richrd Myr Institut fur Informtik Technische Universitt Munchen Arcisstr. 21, D-80290 Munchen, Germny e-mil: myrri@informtik.tu-muenchen.de

More information

Automata and Regular Languages

Automata and Regular Languages Chpter 9 Automt n Regulr Lnguges 9. Introution This hpter looks t mthemtil moels of omputtion n lnguges tht esrie them. The moel-lnguge reltionship hs multiple levels. We shll explore the simplest level,

More information

On the Relative Succinctness of Nondeterministic Büchi and co-büchi Word Automata

On the Relative Succinctness of Nondeterministic Büchi and co-büchi Word Automata On the Reltive Succinctness of Nondeterministic Büchi nd co-büchi Word Automt Benjmin Aminof, Orn Kupfermn, nd Omer Lev Herew University, School of Engineering nd Computer Science, Jeruslem 91904, Isrel

More information

General Algorithms for Testing the Ambiguity of Finite Automata and the Double-Tape Ambiguity of Finite-State Transducers

General Algorithms for Testing the Ambiguity of Finite Automata and the Double-Tape Ambiguity of Finite-State Transducers Interntionl Journl of Foundtions of Computer Science c World Scientific Pulishing Compny Generl Algorithms for Testing the Amiguity of Finite Automt nd the Doule-Tpe Amiguity of Finite-Stte Trnsducers

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

More information

Complementing Büchi Automata with a Subset-tuple Construction

Complementing Büchi Automata with a Subset-tuple Construction DEPARTEMENT D INFORMATIQUE DEPARTEMENT FÜR INFORMATIK Bd de Pérolles 90 CH-1700 Friourg www.unifr.ch/informtics WORKING PAPER Complementing Büchi Automt with Suset-tuple Construction J. Allred & U. Ultes-Nitsche

More information

How Deterministic are Good-For-Games Automata?

How Deterministic are Good-For-Games Automata? How Deterministic re Good-For-Gmes Automt? Udi Boker 1, Orn Kupfermn 2, nd Mich l Skrzypczk 3 1 Interdisciplinry Center, Herzliy, Isrel 2 The Herew University, Isrel 3 University of Wrsw, Polnd Astrct

More information

Train Up A Child Paul Marxhausen All Rights Reserved. Dedicated to Stu Tietz for 30 years of Lutheran teaching ministry. Free Praise License

Train Up A Child Paul Marxhausen All Rights Reserved. Dedicated to Stu Tietz for 30 years of Lutheran teaching ministry. Free Praise License Trn Up A Chld 2000 Pul Mrxhusen All Rghts Reserved Dedcted to Stu Tetz for 30 yers of Luthern techng mnstry Free Prse Lcense Ths lcense does NOT supercede or replce the rghts of the composer(s) under Unted

More information

Design and Analysis of Distributed Interacting Systems

Design and Analysis of Distributed Interacting Systems Design nd Anlysis of Distriuted Intercting Systems Lecture 6 LTL Model Checking Prof. Dr. Joel Greenyer My 16, 2013 Some Book References (1) C. Bier, J.-P. Ktoen: Principles of Model Checking. The MIT

More information

Tries and suffixes trees

Tries and suffixes trees Trie: A dt-structure for set of words Tries nd suffixes trees Alon Efrt Comuter Science Dertment University of Arizon All words over the lhet Σ={,,..z}. In the slides, let sy tht the lhet is only {,,c,d}

More information

Automata-based Pattern Mining from Imperfect Traces

Automata-based Pattern Mining from Imperfect Traces Automt-sed Pttern Mining from Imperfect Trces Giles Reger University of Mnchester Oxford Rod, M13 9PL Mnchester, UK regerg@cs.mn.c.uk Howrd Brringer University of Mnchester Oxford Rod, M13 9PL Mnchester,

More information

The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem

The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem Simpler & More Generl Minimiztion for Weighted Finite-Stte Automt Json Eisner Johns Hopkins University My 28, 2003 HLT-NAACL First hlf of tlk is setup - revies pst ork. Second hlf gives outline of the

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodal Analysis Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

More information

Automata theory for XML researchers

Automata theory for XML researchers Automt theory for XML reserchers Frnk Neven University of Limurg frnk.neven@luc.c.e Introduction The dvent of XML initited symiosis etween document reserch, dtses nd forml lnguges (see, e.g., the survey

More information

What else can you do?

What else can you do? Wht else cn you do? ngle sums The size of specil ngle types lernt erlier cn e used to find unknown ngles. tht form stright line dd to 180c. lculte the size of + M, if L is stright line M + L = 180c( stright

More information

The Magic Number Problem for Subregular Language Families

The Magic Number Problem for Subregular Language Families The Mgic Number Problem for Subregulr Lnguge Fmilies Mrkus Holzer Sebstin Jkobi Mrtin Kutrib Institut für Informtik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germny emil: {holzer,jkobi,kutrib}@informtik.uni-giessen.de

More information

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1 Properties of Regular Languages BBM 401 - Automata Theory and Formal Languages 1 Properties of Regular Languages Pumping Lemma: Every regular language satisfies the pumping lemma. A non-regular language

More information

Automata-based Pattern Mining from Imperfect Traces

Automata-based Pattern Mining from Imperfect Traces Automt-sed Pttern Mining from Imperfect Trces Giles Reger University of Mnchester Oxford Rod, M13 9PL Mnchester, UK regerg@cs.mn.c.uk Howrd Brringer University of Mnchester Oxford Rod, M13 9PL Mnchester,

More information

Discrete Time Process Algebra with Relative Timing

Discrete Time Process Algebra with Relative Timing Discrete Time Process Alger with Reltive Timing J.C.M. Beten nd M.A. Reniers Deprtment of Mthemtics nd Computing Science, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlnds

More information

Cover Automata for Finite Languages

Cover Automata for Finite Languages Cover Automt for Finite Lnguges Michël Cdilhc Technicl Report n o 0504, June 2005 revision 681 Astrct. Although regulr lnguges comined with finite utomt re widely used nd studied, mny pplictions only use

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

How to simulate Turing machines by invertible one-dimensional cellular automata

How to simulate Turing machines by invertible one-dimensional cellular automata How to simulte Turing mchines by invertible one-dimensionl cellulr utomt Jen-Christophe Dubcq Déprtement de Mthémtiques et d Informtique, École Normle Supérieure de Lyon, 46, llée d Itlie, 69364 Lyon Cedex

More information

Hyper-minimisation of weighted finite automata

Hyper-minimisation of weighted finite automata Hyper-minimistion of weighted finite utomt Dniel Quernheim nd ndres Mletti Institute for Nturl Lnguge Processing, University of Stuttgrt @ims.uni-stuttgrt.de ugust 18, 2011. Mletti nd D. Quernheim

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information